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Abstract: The non-local structure tensors have received much attention recently. However, the 
current computation methods of non-local structure tensor fail to fully use the anisotropic 
characteristic of tensors, hence resulting in limited performance. To address this problem, we 
present a novel anisotropic non-local regularisation scheme that integrates the atomic 
decomposition strategy with an extended line integral convolution method using non-local means 
filtering technique, in order to sufficiently utilise the spatial direction relevancy of tensors for 
their anisotropic smoothing. Experimental results on the test images show that our proposed 
anisotropic non-local structure tensor is superior to the current representative nonlinear structure 
tensors in corner detection. 
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1 Introduction 

As a useful tool for image orientation and geometric 
structure analysis, the structure tensor simultaneously 
introduced by Bigün et al. (1991) and Förstner and Gulch 
(1987) has been successfully applied in many fields of 
computer vision and image processing, including feature 
detection (Köthe, 2003; Zhang et al., 2009), optic flow 
computation (Nagel and Gehrke, 1998; Middendorf and 
Nagel, 2001), orientation extraction (Brox et al., 2006; 
Andersson and Duchkov, 2003), image magnification 
(Lefkimmiatis et al., 2015), image restoration (Hahn and 
Lee, 2009; Li et al., 2017; Estellers et al., 2015), image 
segmentation (de Luis-Garcia et al., 2008; Han et al., 2009), 
etc. In these applications, analysis accuracy and robustness 
to noise are its key requirements. 

In the early low-level computer vision field, image 
gradients were frequently utilised for image content 
analysis. However, straight application of image gradient 
often suffers from the robustness problem, especially in the 
presence of noise. Intuitively, one can average the image 
gradients within a local neighbourhood or window with a 
low-pass filter to suppress noise. Nevertheless, this usually 
results in cancellation effect (Brox et al., 2006) when image 
gradients with opposite directions to each other appear in 
the calculation windows. Such effect can be avoided by 
using the structure tensor that is a smoothed version of  
second-moment matrix (called tensor hereinafter) of an 
image. In general, the tensor is a 2 × 2 symmetric positive 
semi-definite matrix computed by the outer product of 
image gradient. The structure tensor can be viewed as a 
symmetric positive definite matrix, owing to its integration 
of the local or non-local knowledge about image 
orientations and contents. 

The classical structure tensor, also named as linear 
structure tensor (LST), applies linear regularisation 
technique to smooth the tensor field. Although linear 
filtering is robust to noise, it tends to distort important 
geometric information embedded in the tensors. To address 
this drawback, various adaptive local structure tensors 
(ALSTs) have been proposed with the aid of the nonlinear 
regularisation techniques. For instance, Nagel and Gehrke 
(1998) utilised an adaptive Gaussian kernel to regularise the 
tensor field for optic flow calculation, which was further 
extended by Middendorf in the works of Middendorf and 
Nagel (2001, 2002). Van den Boomgaard and van de Weijer 
(2002) proposed an ALST through robust statistics to 
extract image orientation. Köthe (2003) introduced a 
nonlinear structure tensor via utilising an hour-glass shaped 

filter to adaptively smooth the tensor field. Brox et al. 
(2006) presented an ALST construction framework by 
means of typical nonlinear diffusion equation such as the 
total variation (TV) type for the applications of image 
feature detection, optic flow estimation and image 
denoising. Hahn and Lee (2009) suggested a diffusion 
equation-based tensor regularisation method with a 
modified diffusivity matrix, which is composed of the first 
derivatives of an image instead of the derivatives of the 
tensor. Though the existing ALSTs have shown their 
effectiveness in many application fields, they fail to 
discriminate image details that differ only in scale. 

To overcome this problem, several multi-scale nonlinear 
structure tensors (MNSTs) have been introduced through 
incorporating scale knowledge into tensor field 
regularisation. For example, Scheunders (2006) proposed a 
MNST for image fusion and enhancement by means of 
image multi-resolution decomposition using discrete 
wavelet transform (Mallat and Zhong, 1992; Mallat, 1999), 
which are followed by an extension in Han et al. (2009) to 
texture image segmentation. Zhang et al. (2009) presented a 
MNST with a multi-scale bilateral filtering for image 
corners detection. It should be noted that these tensor 
regularisation approaches are localised, in the sense that 
merely the spatially neighbouring related information is 
involved in the structure tensor constructions. Recently, 
Doré et al. (2007) presented a NLST by extending the  
non-local means filtering (NLMF) (Buades et al., 2005; 
Zhang et al., 2016) to the tensor field. Lefkimmiatis and 
Osher (2015) employed the NLST to design regularisation 
operator to address image processing tasks. Chierchia et al. 
(2014) and Zheng et al. (2015a) used the non-local TV 
regularisations (Giboa and Osher, 2009; Lou et al., 2010) to 
construct structure tensors for image recovery and 
adaptively selecting the regularisation parameters, 
respectively. In these cases, the Euclidean distance is 
commonly employed for the similarity computation of the 
tensors. Because the Euclidean distance inaccurately 
measures the similarity of matrix-valued data, the existing 
NLSTs still have limited performance. Moreover, they are 
calculated in an isotropic way. 

Zheng et al. (2015b) presented an anisotropic non-local 
structure tensor (ANST) by utilising a decomposition and 
reconstruction scheme. In this work, the tensor filed 
regularisation can be reformulated into a problem of 
multiple vector-fields regularisation, thereby avoiding 
employment of Euclidean distance to evaluate the similarity 
of tensors. Nevertheless, this ANST computation probably 
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induces reconstruction errors, because of the discrete 
implementation of the structure tensor reconstruction. To 
overcome the problem, we attempt to explore a new way to 
obtain ANST by utilising the tensor direction decomposition 
strategy without reconstruction. A novel ANST construction 
method is introduced through jointing tensor direction 
decomposition with a variation of the traditional line 
integral convolution (LIC) (Cabral and Leedom, 1993). 

The remainder of this paper is organised as follows. 
Section 2 briefly describes the theoretical aspects of the 
structure tensor and the LIC computation. Details of our 
proposed ANST construction method are presented in  
Section 3. The experimental results are given in Section 4. 
Finally, Section 5 concludes the work. 

2 Preliminaries 

This section briefly introduces the basic theoretical 
background of the structure tensor and the traditional LIC. 

2.1 Structure Tensor and its eigendecomposition 

Let I denote an image with a bounded domain Ω. The 
structure tensor S of image I can be defined as: 

( ) 1 2

2 3
,x x x yT

x y y y

I I I I t t
S φ J I I φ φ

I I I I t t
⎛ ⎞ ⎛ ⎞
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where J is the tensor, ∇I = (Ix, Iy)T denotes the image 
gradient, T is the transpose, and φ(•) stands for the tensor 
regularising operator. Generally, in the nonlinear structure 
tensor construction a small-scale Gaussian smoothing is 
carried out before the adaptive regularisation operator φ(•) 
to suppress noise. Hence, the nonlinear structure tensors 
calculation can be uniformly written as: 
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where * denotes the convolution operator and gρ stands for 
the Gaussian kernel with standard deviation ρ. In (2), the 
Gaussian-smoothed structure tensor Ĵ  is accomplished by 
convolving tensor J component-wisely using the Gaussian 
kernel gρ as follows: 
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The two eigenvalues of structure tensor S, i.e., λ1 and λ2, and 
the corresponding orthogonal eigenvectors γ1 and γ2 can be 
respectively computed by: 
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With the eigenvalues and the eigenvectors, the spectral 
decomposition formula of S can be written as: 

1 1 2 21 2
T TS λ γ γ λ γ γ= +  (7) 

In principle, the eigenvector γ2 determines the dominant 
orientation of image structure, and different image 
geometric contents including flat areas, edges and corners 
can be discriminated with a combined use of the 
eigenvalues-based measures, such as the magnitude λ1 + λ2 
and the coherence 1 2 .λ λ−  Generally, the values of 
magnitude measure and the coherence measure are both 
small in image flat areas. At image edges, the two measure 
values are both large, while image corners have large 
magnitude measure value but small coherence measure 
value. 

2.2 Traditional LIC 

For visual representation of vector fields, LIC was first 
proposed by Cabral and Leedom (1993) and then have been 
extensively studied and widely extended (Tschumperlé, 
2005; Falk and Weiskopf, 2008). The main idea of LIC is to 
smooth an image (only containing noise) through averaging 
the pixels along an integral curve with respect to a given 
vector field. The continuous formulation of LIC calculation 
can be written as (Cabral and Leedom, 1993): 

( )( , )
1 ( )

p
LIC w
q q τ

p
I τ I dτ

Z −
= ∫ φ  (8) 

( )
p

p
Z τ dτ

−
= ∫ φ  (9) 

where φ(•) is a 1-dimensional even function that is usually 
the Gaussian function, ℓw denotes an integral curve related 
to the vector field w, which starts from the point q and 
parameterised by the parameter τ, the parameter p also 
named as length-factor determines the size of integral curve, 
and Z is the normalising factor. See Cabral and Leedom 
(1993) and Tschumperlé (2005) for the integral curve 
acquirement and computation in details. Note that the 
classical LIC is used for smoothing image pixels. In this 
paper we attempt to extend it to regularise the tensor field. 

3 Proposed ANST 

Let us recall two types of popular diffusion partial 
differential equations with divergence form, which are 
given as follows: 

( )( )|| ||tI div ψ I I= ∇ ∇  (10) 

( )tI div D I= ∇  (11) 
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where It denotes the derivative of the image I with respect to 
the time t, div(•) stands for the divergence operator, ψ(•) is a 
scalar-valued function of the gradient magnitude and 
defines the locally smoothing scale, and D is named as the 
diffusion tensor steering the diffusion process. Usually, the 
calculation of diffusion tensor D relies on the structure 
tensor and can be accomplished by: 

( ) ( ) 1 2
1 1 2 2 2 1 2 12 1

2 3
, ,T T d d

D f λ λ γ γ f λ λ γ γ
d d
⎛ ⎞

= + = ⎜ ⎟
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 (12) 

To construct our proposed ANST, we begin with 
directionally projecting all the diffusion tensors onto 
different orientations ranging from 0 to π, which leads to the 
atomic vector fields (AVFs) as follows: 
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where M denotes the number of projection directions. Then, 
for current point, a set of integral curves 0( )θw π

i i θ==  can 
be achieved from the AVFs. Within i  each integral curve 

θw
i  with length of 2p + 1 is calculated from its 

corresponding AVF Wθ, by means of tracking forward and 
backward from current point i with a simple and efficient 
approach based on the Runge-Kutta integration algorithm 
(Cabral and Leedom, 1993), which has been successfully 
used for image regularisation. For other interesting 
integration technique, we refer to the work in Zhao et al. 
(2016). In fact, integral curves can express the nonlocal 
behaviour of AVFs and their calculation is based on the 
spatial direction related image regularities distributed into 
the AVFs, including the continuity and the coherency. 
Therefore, they can be utilised to adaptively concatenate 
direction relevant tensors for subsequent smoothing. 

With the integral curve ,θw
i  a curve-level tensor 

regularisation can be carried out firstly. To do so, we 
present a tensor version of the LIC (T-LIC) based on 
integral curve ,θw

i  which is calculated as 
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In implementation, the corresponding discrete formulas of 
(15) and (16) are given by 
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Compared to the traditional LIC computation that employs 
the pixel-wise filtering operator on image, here we utilise a 
‘1-dimensional’ NLMF, that is  ( ),NL

θ iφ  to replace the 
function φθ(•) in (17) and (18), which regularises the 
Gaussian smoothed tensors along integral curve θw

i  as 
follows: 
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where ˆ( )l
iJ F  denotes a set of Gaussian-smoothed tenors in 

square region l
iF  centred at i, with size of l × l, 2|| ||

εgi  is 

the Euclidean distance weighted by a Gaussian function 
with zero mean and standard deviation ε, and the controlling 
parameter ϒ is calculated here by: 

( ) 2ˆ l
iJ σϒ = β F  (20) 

where 2ˆ| ( ) |l
iJ l=F  stands for the size of set ˆ( ),l

iJ F  σ 
denotes the standard deviation of image noise, and the 
parameter β is set manually. The usage of the extended 
NLMF is based on two considerations: non-local behaviour 
of the integral curves, and better robustness of the 
multipoint method to noise and outliers than the traditional 
point-wise approach. Normally, Euclidean metric would 
yield inaccurate estimation, and theoretically the 
Riemannian metrics would be more appropriate for the 
similarity measure of tensor data. However, the computation 
in the Riemannian framework comes at the cost of high time 
consumption because of its usual implementation in an 
iterative way. Encouragingly, the tensors on the integral 
curves are spatial direction related. As a result, the 
Euclidean distance-based measurement can be viewed as a 
good estimation for the similarity of tensors concatenated 
by the related integral curve. 

Using the curve-level smoothed tensor, a planar-level 
(full) tenor regularisation is carried out by averaging all the 
results of T-LICs achieved with the multiple integral curves, 
hence leading to the LIC-ANST. The continuous and 
discrete formulas for LIC-ANST calculation are 
respectively given by: 
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where Θ denotes the maximum projection orientation, 
computed by (14). In (21) and (22), the tensor regularisation 
is driven by the multiple integral curves that adaptively 
capture non-local spatial direction related tensors in a  
non-local way. Each integral curve depicts the image 
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regularity in a certain direction. Because of the introduction 
of spatial directional correlations into tensor field 
regularisation, the construction of LICANST is anisotropic. 

4 Experimental results 

In the experiments, our proposed structure tensors are 
compared with five representative structure tensors, that is 
the TV type diffusion equation-based ALST (TV-ALST) 
(Brox et al., 2006), the NLST (Doré et al., 2007), the  
non-local TV regularisation-based NLST (TV-NLST) 
(Zheng et al., 2015a), and the tensor decomposition and 
reconstruction-based ANST (TDRANST) (Zheng et al., 

2015b), in corner feature detection (Zhao et al., 2016; 
Zhang et al., 2016). Three test images shown in Figure 1 are 
used for corner detection, including the artificial image, the 
lab image and the House image. The corners are detected by 
jointly using two eigenvalue-based measures, i.e., the 
magnitude λ1 + λ2 and the coherence 1 2 .λ λ−  The  
ground-truth corners are obtained by averaging five 
manually labelling results independently conducted by five 
students. In addition, we mainly utilise three quantitative 
indexes for result evaluation, that is the correct recognition 
rate (CRR), the false recognition rate (FRR) and the mean 
localisation error (MLE). 

Figure 1 Original test images and their corresponding ground-truth corners (see online version for colours) 

 

  

 

  

Figure 2 Corner detection results on noisy artificial image, (a) noisy image (b) TV-ALST (c) NLST (d) TV-NLST (e) TDR-ANST  
(f) LIC-ANST (see online version for colours) 

 

    
(a)     (b)     (c) 

    
(d)     (e)     (f) 

 



 Line integral convolution-based non-local structure tensor 103 

Figure 3 Corner detection results on noisy house image, (a) noisy image (b) TV-ALST (c) NLST (d) TV-NLST (e) TDR-ANST  
(f) LIC-ANST (see online version for colours) 

 

    
(a)     (b)     (c) 

   
(d)     (e)     (f) 

Figure 4 Corner detection results on noisy lab image, (a) noisy image (b) TV-ALST (c) NLST (d) TV-NLST (e) TDR-ANST  
(f) LIC-ANST (see online version for colours) 

    
(a)     (b)     (c) 

   
(d)     (e)     (f) 
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Figure 2 illustrates the corner-detecting results on the noisy 
artificial image Figure 2(a), which is generated by adding 
the Gaussian noise (σ2 = 25) into the original image shown 
in Figure 1. Figures 2(b) to 2(h) display the corner detection 
results given by the five nonlinear structure tensors. We can 
clearly see from Figure 2 that the ALST (TV-ALST) and 
the isotropic NLSTs (NLST and TV-NLST) lose corners in 
the low-contrast and critically degraded areas, whereas the 
anisotropic NLSTs, including TDR-ANST and LIC-ANST, 
detect all corners from the noisy image. Visually, relative to 
TDR-ANST, we can observe that LIC-ANST performs well 
in term of corner localisation accuracy, especially in poor 
quality image regions. 

Table 1 Comparison of corner detection results 

Image Method Detected 
corners 

CRR 
(%) 

FRR 
(%) 

MLE 
(pixels)

Artificial 
image 

TV-ALST 33 91.67 0.000 1.2121 
NLST 35 97.22 0.000 0.8571 

TV-NLST 35 97.22 0.000 0.7143 
TDRANST 36 100.0 0.000 0.5278 
LIC-ANST 36 100.0 0.000 0.5000 

House 
image 

TV-ALST 78 81.72 2.564 2.421 
NLST 81 84.95 2.469 1.392 

TV-NLST 83 86.02 3.614 1.200 
TDR-ANST 85 88.17 3.529 0.976 
LIC-ANST 86 88.17 4.651 0.854 

Lab 
image 

TV-ALST 269 85.39 2.230 1.909 
NLST 289 91.23 2.768 1.199 

TV-NLST 297 93.18 3.367 0.895 
TDR-ANST 304 95.45 3.289 0.609 
LIC-ANST 308 96.43 3.571 0.572 

Figure 3 compares the detection results of the seven 
structure tensors on the noisy house image with Gaussian 
noise level σ2 = 20. As seen in Figures 3(b) to 3(e), the two 
isotropic NLSTs can extract corners from the low-contrast 
noisy chimney top, which is mainly attributed to the  
non-local smoothing methodology attempting to discover 
more similar tensors within the whole support domain for 
boosting tensor regularisation. Compared to the artificial 
image, the house image contains more similar corners. 
Hence, the NLSTs (both the isotropic and the anisotropic) 
can detect corners even in the low quality areas. However, 
from Figures 3(d) to 36(f) we can see that the TDR-ANST 
has limited corner-detecting performance in seriously 
corrupt image areas. Our proposed ANST is able to yield 
relatively better corner estimation results, which is verified 
again by the experiment on the noisy corner-rich lab image 
shown on Figure 4. In Figure 4, the lab image is corrupted 
by the Gaussian noise with variance σ2 = 15, shown in 
Figure 4(a). For further performance assessment of the 
ANST, see Table 1 for details. 

Table 1 presents a quantitative comparison of the 
corner-detecting results of all experiments. We can see that 

the our proposed structure tensor yields relatively good 
results as a whole, achieving a better trade-off than the 
CRR, the MLE and the FRR. 

5 Conclusions 

In this work, a new ANST, that is LIC-ANST, has been 
introduced through a new scheme of combining the 
direction projection-based tensor decomposition and the 
TLICs, which consists of the following three core stages: 

1 direction composition and integral curve acquirement 

2 T-LIC calculation to curve-level tensor regularisation 

3 ANST construction by means of the average of the  
T-LIC results. 

In implementation, relative to four representative nonlinear 
structure tensors including the LAST and the NLSTs, our 
proposed ANST performs well in complex image corner 
detection. 
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