

 58 Int. J. Agent-Oriented Software Engineering, Vol. 6, No. 1, 2018

 Copyright © 2018 Inderscience Enterprises Ltd.

Multi-agent programming contest 2016

Tobias Ahlbrecht*, Jürgen Dix and
Niklas Fiekas
Department of Informatics,
Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
Email: tobias.ahlbrecht@tu-clausthal.de
Email: dix@tu-clausthal.de
Email: niklas.fiekas@tu-clausthal.de
*Corresponding author

Abstract: We present the 11th edition of the multi-agent programming contest,
an annual, community-serving competition that attracts groups from all over
the world. Our contest enables head-to-head comparison of multi-agent systems
and supports educational efforts in their design and implementation. The
long-term aim is to evaluate the specific features of agent programming
languages and to compare them to more traditional languages.

Keywords: multi-agent systems; programming contest; multi-agent simulation;
MAS; programming competition; MAS benchmark; MAS comparison;
agent-oriented software engineering.

Reference to this paper should be made as follows: Ahlbrecht, T., Dix, J.
and Fiekas, N. (2018) ‘Multi-agent programming contest 2016’, Int. J.
Agent-Oriented Software Engineering, Vol. 6, No. 1, pp.58–85.

Biographical notes: Tobias Ahlbrecht is a PhD student in the Computational
Intelligence Group at the Department of Informatics of Clausthal University
of Technology. He earned his Master’s degree in Computer Science from the
same department in 2016. He is a co-organiser of the multi-agent programming
contest since 2013 and his current research interests include multi-agent
systems modelling and simulation.

Jürgen Dix is a Professor for Artificial Intelligence and Dean of the Faculty at
Clausthal University of Technology. In the past 30 years he worked on basic
research in knowledge representation and reasoning, deductive databases and
multi-agent systems. He co-authored or co-edited more than 20 books, over
70 journal publications and organised/chaired more than 40 conferences and
workshops. He is on the editorial boards of seven journals and several steering
committees.

Niklas Fiekas is a graduate student in Clausthal, Germany. He earned
his Bachelor’s degree in Computer Science from Clausthal University of
Technology in 2016. Previously, he was working on scalable multi-agent
simulation in the Decentralised Simulation project within the Simulation
Science Center Clausthal/Göttingen.

 Multi-agent programming contest 2016 59

1 Introduction

In this preface to the special issue, we

1 briefly introduce our contest1 and its development in the last ten years

2 elaborate on the brand new 2016 scenario (which will also be used, slightly
modified, in the 2017 competition)

3 introduce the five teams that took part in the tournament

4 analyse and interpret interesting matches

5 evaluate the performance and strategies of the teams.

The multi-agent programming contest (MAPC) is an annual international event that
started in 2005, initiated by Jürgen Dix and Mehdi Dastani (with a lot of help from Peter
Novak). In 2016, the competition was organised and held for the 11th time. It is an
attempt to stimulate research in the field of programming multi-agent systems by

1 identifying key problems

2 developing suitable benchmarks

3 comparing agent programming languages and platforms

4 compiling test cases which require and enforce coordinated action that can serve as
milestones for testing multi-agent programming languages, platforms and tools.

Furthermore, it supports educational efforts in the design and implementation of MAS’s
by providing concrete problems to solve.

The partaking teams develop one team of agents each, which connects remotely to the
contest server holding the environment. The server sends percepts to the agents and
awaits their actions, which are executed resulting in changes to the environment.

Detailed information about the strategies of the teams can be found in the subsequent
papers in this volume.

1.1 Rationale behind the contest

Originally, our contest had been designed for problem solving techniques based on
approaches using computational logics. This, however, has never been a requirement to
enter the competition. In the last eight years, we were focussing more on general
agent-based approaches.

But, again, we do not require participants to use any multi-agent platforms at all: even
centralised solutions are allowed. This allows us to compare solutions with and without
multi-agent characteristics. This years runner-up, team Flisvos-2016, developed a
strategy implemented in Python but without using any specific agent-related concepts,
only some HTN-based planning and concepts from logic programming.

Although each single instance of the contest has been won by a team using a MAS,
we have had almost always some approaches not based on agent technology at all.

When we started the contest, there were not too many professionally developed
multi-agent programming languages around. In the first few years, the contest was mainly

 60 T. Ahlbrecht et al.

used for debugging purposes of the participating teams (to improve their own
programming language or platform).

We were, however, always interested in developing scenarios to show that the agent
paradigm really pays off: the particular features in agent programming might be used to
solve a non-trivial problem more elegant, with less effort or more efficient than with
traditional software engineering languages (the questions we require the teams to answer
are intended to give us insights into the overall effort spent).

1.2 Related work

For a detailed account on the history of the contest as well as the underlying simulation
platform, we refer to Ahlbrecht et al. (2014), Behrens et al. (2010a, 2010b, 2009, 2012b),
Dastani et al. (2007, 2008), Köster et al. (2013) and Ahlbrecht et al. (2013a, 2013b). A
quick non-technical overview appeared in Behrens et al. (2012a). Similar contests,
competitions and challenges have taken place in the past few years.

Google’s AI challenge2, lying dormant since 2011 now, put its focus on intelligent
solutions to rather simple games. They also did not impose any restrictions on the
participants’ implementations, as long as they could be run on their servers. Compared to
the challenge, we employ more complicated scenarios in our contest so that more
potential of agent platforms may be leveraged.

The AI-MAS (Winter) Olympics3 last took place in 2013, featuring a game called
‘crafting quest 3’. This competition aims mostly to bring together students and
researchers in the AI field. At most three students each may collaborate to create a
solution based on a custom SDK. According to their tutorial, participants have to submit
JAR files implying that solutions must be in Java.

Other competitions, like the student StarCraft AI tournament4 or the Mario AI
championship (Karakovskiy and Togelius, 2012) focus on creating solutions for existing
games, which are intended for humans to play with the objective of benchmarking
reinforcement learning and general (video)game-related AI techniques. Also, these
programs have to be able to cope with ‘real time’, while we allow plenty of time (ca. 4
seconds per step) for reasoning (and network communication).

Various planning competitions5, e.g., the RoboCup logistics league6, as their name
suggests, centre around a single aspect of agent systems.

The general game playing7 competitions differ from the others as the games are not
known to the participants beforehand. The programs receive game and objective
descriptions just before playing and need to come up with a solution on the fly. Most of
the games are for 1 or 2 players only, which makes multi-agent approaches rather
unsuitable.

Finally, the trading agent competition8 targets the trading agent problem, e.g.,
managing supply chains. Again, it is more appropriate to use single agent solutions.

In summary, other competitions

• impose restrictions on the software used by the participants

• search solutions for a particular problem domain

• feature simple or single-player games which are more likely to be solved by a
‘centralised’ solution.

 Multi-agent programming contest 2016 61

1.3 History: the contest from 2005 to 2014

Through the history of the contest, changes to the scenarios were introduced with every
new edition including four major redesigns.

From 2005 to 2007, a gold miners scenario was used, where agents moved on a grid
to collect randomly placed gold pieces which had to be taken to the centre. Here, we
introduced the MASSim software: a platform for executing the contest tournaments.

From 2008 to 2010 we developed the cows and cowboys scenario, which was
designed to enforce cooperative behaviour among agents (Behrens et al., 2009). The
previous gold miners scenario proved to be too simple and could be solved without much
agent coordination, i.e., each agent of a team could work completely on its own. The
topology of the new scenario’s environment was again represented by a grid that
contained, besides various obstacles, a population of simulated cows. The goal was to
arrange agents in a manner that scared cows into special areas, called corrals, in order to
get points. While still maintaining the core tasks of environment exploration and path
planning, the use of cooperative strategies was a requirement of this scenario. For
example, agents had to coordinate their positions in order to force cows in the desired
direction. The scenario itself evolved, too. The first instance was won (out of
competition) by a really simple team of agents where each agent worked on its own, only
pushing a single cow at a time. This showed again that participants tend to ignore
cooperation aspects if the scenario does not require them. Thus, cows were improved
with a flocking algorithm to make it harder to chase single cows and allow groups of
agents to move an entire herd. Also, fences were added, which required one agent to
stand on a switch on one side and another agent to move through and keep the fence open
with a switch on the other side, again discouraging lone wolf behaviour.

In 2011, the agents on Mars scenario (Behrens et al., 2012b) was newly introduced.
In short, the environment topology was generalised to a weighted graph. Agents were
expected to cooperatively establish a graph covering while standing their ground in an
adversarial setting and reaching certain achievements. In the previous scenario, agents
had to work together in order to achieve their goals. However, interaction with the
opponent team was still rather indirect. Now, agents could only earn points in an area if
the other team was hindered from doing so. For example, agents now possessed the
ability to disable other agents. Also, complexity was increased once again by adding
multiple agent roles with different characteristics and available actions. For now, higher
complexity is our only measure to discourage centralised solutions. The basics of the
agents on Mars scenario remained until the 2014 edition9, although several modifications
were introduced to keep the contest challenging.

In 2015, work on the current scenario, which is presented later in this paper, began, as
the Mars scenario had been scaled up a few times and some good strategies began to
emerge. The new scenario was first used in the contest’s 2016 edition. Again, one of the
main goals was to discourage centralised solutions and instead favour those where
intelligent behaviour was emergent, like in a real MAS.

1.4 History 2: participants and their origins

In its 11th editions, the contest has seen 70 team participations (some teams partaking in
multiple editions, but mostly with changing members) from all over the world. Figure 1
shows the development of team numbers over the years.

 62 T. Ahlbrecht et al.

Figure 1 Participants of the MAPC through the years (see online version for colours)

In its humble beginnings, the contest started off with four teams in 2005 and three the
year after. From then on, the number of teams monotonically increased until 2011, the
best year yet with ten participating teams. The number has gone down to five teams since
and has remained there for three editions. The majority of teams originated from
academia: only two contestants competed without affiliation.

As of 2016, we are counting 19 different countries. The most frequently participating
country, Germany, denotes a total of 22 attempts to win. This is mostly due to the tireless
efforts from the Technical University of Berlin, who started in 2007 and have not missed
a contest since, sometimes even contributing two teams in the same year. This has
already fetched them the first place in 4 consecutive editions, starting right in 2007.

Closely following is Brazil, with 12 attempts and leading the list of winning countries
with five first placements from three universities. The team from Federal University of
Santa Catarina participated in every instance of the Mars scenario and won all three
contests. Brazil is immediately followed by eight participations of Danish teams, all from
Technical University of Denmark. They started participating in 2009, also not having
missed a single contest since, while having contributed two teams in 2014. Starting in
2008, the contest also saw a team from University College Dublin for five consecutive
years. In the same order of magnitude, seven teams from Iran participated already, from
which four teams just in 2011, three of which originated from Arak University, Iran.

Other sporadically participating countries, sorted by their first appearance, include the
UK, Japan, Chile, Spain, Switzerland, the Netherlands, Australia, Poland, France,
Turkey, Argentina, China, the US and Greece.

2 MAPC 2016: the new scenario

The new scenario consists of two teams of 16 agents each moving through the streets of a
realistic city. The goal for each team is to earn as much money as possible, which is

 Multi-agent programming contest 2016 63

rewarded for completing certain jobs. An agent is characterised by its battery (i.e., how
long it can move without recharging), its capacity (i.e., how much volume it can carry)
and its speed. The scenario features four distinct roles: drones, motorcycles, cars and
trucks, sorted by increasing capacity and energy, and decreasing speed.
Table 1 Agent roles and their properties

Role Battery Capacity Speed

Drone 250 100 5 (not limited to roads)
Motorcycle 350 300 4
Car 500 550 3
Truck 1,000 3,000 2

The simulation is divided into discrete steps and each agent can execute at most one
action per step. In the following we give a detailed description of the scenario and
actions. See Table 4 for an overview of all available actions.

The city map is taken from OpenStreetMap10 data and routing is provided by the
contest server. Each agent can move a fixed distance each turn (unless its destination is
closer than this distance). For this, agents can use the goto action specifying a location
on the map. The agents are positioned randomly on the map, as are a number of facilities,
which allow the agents to perform certain actions. In shops, items can be bought at prices
specific to the particular shop. Each shop only offers limited quantities of a subset of all
items. However, items are restocked after a number of steps. Agents can use the buy
action to obtain number items of a single type per step whenever they are in the same
location as a shop where this item is available. To promote exploration behaviour, an
agent can only perceive the number and cost of items in a shop if it is currently standing
in said shop.

Charging stations have to be frequently visited by agents in order to recharge their
battery. They always have to be taken into account when planning routes.

In workshops, agents can assemble items out of other required items. Most items also
need specific tools, which can only be used by a particular role. Agents may also
cooperate here. In that case, the resources of those agents are combined and the initiating
agent receives the finished item (if all prerequisites are satisfied). Thus, the agents need
to coordinate who obtains which items and how they work together for assembling
complex items. Agents have the actions assemble and assist_assemble at their
disposal, whereby the first has to be called by the initiator, who also wants to receive the
assembled item. The latter action has to be used specifying the agent that is to be assisted.

Items can be destroyed at dumps (to free capacity), while storages allow to store
items up to a specific volume for a certain price and also are the target for completing
jobs. Intuitively, storages require a store action and two types of retrieve actions.
One for getting items stored intentionally and one for retrieving items which belong to
the team but have been added to the storage for other reasons (and which do not count
towards the storage’s capacity).

Jobs comprise the acquisition, assembling, and transportation of goods. These jobs
can be created by either the system (environment) or one of the agent teams. There are
two types of jobs: normal ones and auctions. A team can accept an auction job by bidding

 64 T. Ahlbrecht et al.

on it. The bid will be the reward, i.e., the team is willing to procure the items for that
amount of money. Thus, if both teams bid, the lowest bid wins. If a job is not completed
in time, the corresponding team is fined to discourage auction ‘hoarding’.

Regular jobs have their rewards defined upfront, which is given to the first team to
complete that job, while the other team goes away empty-handed. The teams have to
decide which jobs to complete and how to do them, i.e., where to get the resources and
how to navigate the map considering targets like shops, charging stations, workshops, or
storage facilities. While auction jobs have to be more thoroughly assessed in order to
determine a minimum threshold at which the team would still earn money, they provide
some safety since the team that did not win the auction is effectively barred from
completing it.

Actions associated with jobs are bid_for_job, deliver_job and also
post_job, which allows agents to add their own jobs to the simulation. The source of a
job is not disclosed to the agents, so that posted jobs are potentially indistinguishable
from those created by the server.

Item types are also randomly generated and thus differ in each simulation. They can
be either bought or crafted. Agents can give them to a teammate, store them temporarily
in a storage, deliver them as part of a job or ditch them in a dump.

In case an agent runs low on energy with no charging station in sight, it can call the
breakdown service, which takes a long time to arrive and a considerable fee to charge the
agent’s battery.

Tournament points are distributed according to the amount of money a team owns at
the end of the simulation. To get the most points, a team has to beat the other, as well as
surpass the seed capital given to the team at the beginning of the simulation, i.e., make an
overall profit.

The scenario calls for increased coordination and planning among agents of the same
team. They have to decide which jobs to go for and how to handle them. Items for the
jobs can be either bought or partly assembled to save money (as assembly is intended to
be much cheaper than buying). Also, mixed strategies are possible, where only a
convenient subset of items for a job is assembled. Routing from point to point is provided
by the server, while planning the sequence of points is of course still up to the agents.

Interaction with the opponent team is for now limited to job and resource (items in
shops) contention, the bidding for auction jobs, and the posting of jobs for the other team,
which allows to outsource parts of a ‘real’ job.

3 The tournament

Following the tradition, a qualification round was held prior to the tournament, in
which teams were required to show that they were able to maintain good stability (i.e.,
timeout-rates below 5%) during a round of test matches. Only then were they allowed to
take part in the tournament. The qualification rounds showed extremely positive results:
each and every team encountered not even a single timeout.

The tournament took place on the 12 and 13 September 2016. Each day the teams
played against two other teams so that in the end all teams played against each other. We
started the tournament each day at 1 pm and finished around 6 pm.

 Multi-agent programming contest 2016 65

3.1 Simulation definition

A match between two teams consisted of three simulations comprising 1,000 steps each.
These three simulations differed in the map that was used and the form of jobs that were
generated. However, each match featured the same three sets of simulation parameters.

The first of each set of simulations was played on the street graph of (a part of)
London. Jobs had to be completed in 250 to 350 steps. The jobs’ rewards were
comparatively the lowest of all three simulations. For the second simulation, played on a
map of the German city Hannover, the job completion time bounds were decreased by
25 steps each and the potential job rewards increased. The same adjustments were made
for the third simulation, played on the San Francisco street graph, again decreasing
completion times and increasing job rewards.

To summarise, in one match it became (on average) more difficult but at the same
time more rewarding to complete a job.

Note that, while the simulation sets featured the same parameters, of course the
concrete simulation instances that were played by the teams were (with a very high
probability) never the same due to the random generation mechanism. The goal was, as in
previous editions of the contest, to generate a set of similar simulation instances, so that
one could compare the simulations afterwards without risking to give the agents the
possibility to learn the exact simulation from match to match (e.g., the prices of items or
what job will be generated in which step).

3.2 Participants and results

Five teams from around the world registered for the contest and were able to pass the
qualification round, thus taking part in the tournament (see Table 2).
Table 2 Participants of the 2016 edition

Team Affiliation Platform/language
BathTUB Technical University of Berlin JIAC V
Flisvos 2016 None Python
lampe Clausthal University of Technology C++
PUCRS Pontifical Catholic University of Rio Grande do Sul Jason, CArtAgO, Moise
Python-DTU Technical University of Denmark Python

The teams were awarded three points for winning a simulation (minus 1 point if they did
not make a profit) and 1 point in case of a draw. The results of this year’s Contest are
summarised in Table 3.
Table 3 Results

Pos. Team Score Difference Points

1 PUCRS 6,503,165 : 994,109 5,509,056 33
2 Flisvos 2016 7,197,893 : 941,069 6,256,824 30
3 lampe 1,320,153 : 1,601,549 –281,396 12
4 Python-DTU 532,714 : 7,764,645 –7,231,931 6
5 BathTUB –625,240 : 3,627,313 –4,252,553 5

 66 T. Ahlbrecht et al.

PUCRS secured an almost flawless victory, only losing a single simulation against
runner-up Flisvos 2016, thus scoring 33 out of 36 possible points. Flisvos 2016 in turn
only lost two of the simulations against PUCRS, resulting in 30 points total. Nevertheless,
Flisvos 2016 had a better score difference, which may be attributed to variations in the
simulation instances (see Sub-section 3.1 for details).

Following with a rather significant margin, team lampe won the third place with 12
points, still one out of each three possible points. The points were gained from two
victories each against BathTUB and Python-DTU.

Making for a close battle for the fourth place, Python-DTU was able to take it
with a one point lead over BathTUB. Having the edge in their match against each other,
Python-DTU won 2 out of the 3 simulations. However, no team was able to make a
profit, resulting in 4 and 2 points respectively. Both teams were able to win one
simulation against team lampe, resulting in 2 additional points for Python-DTU, and even
3 points for BathTUB, since they made a profit in that simulation.

3.3 The teams and their agents

In this section we collect information about the participants and their agent team
strategies. For more details, we refer to the team description articles that follow this
preface.

• BathTUB: the team BathTUB (Hessler, 2017) from Technical University Berlin,
Germany, is a regular contender of the MAPC. Their agents are once again
developed with the JIAC V platform (which won the contest several times in
previous years). This time, six students and their supervisor have spent around
1,000 person-hours developing their agent team. The approach is partly centralised,
each agent being coordinated by a central instance. It was planned to complete jobs
as fast as possible. To achieve that, a similar approach to PUCRS was chosen: any
agent may initiate the planning of a job and receives proposals from all the agents,
i.e., which items they can procure at which cost. The initiating agent then decides on
the optimal course of action and informs the other agents.

To prevent idling, a measure for proactiveness was implemented: the agents explore
the map, plan a new job or keep watch on the opponent agents.

• Flisvos 2016: the team Flisvos 2016 (Sarmas, 2017), consisting only of a single
person, participated for the first time in the Contest and promptly came second,
losing only two simulations against this year’s winners. The agents were
implemented in Python, having invested roughly 250 hours. The centralised
approach relies on no special agent-related concepts, instead employing a global
planning technique together with known optimisation heuristics. The agents only
communicate by updating a shared data structure in order to exchange percept
information.

• lampe: the two students of team lampe (Czerner and Pieper, 2017) from
Clausthal University of Technology developed their agents in C++, spending about
150 person-hours. They also rely on a centralised approach together with a heuristic
for choosing profitable jobs.

 Multi-agent programming contest 2016 67

• PUCRS: the team PUCRS (Cardoso et al., 2017) from Pontifical Catholic University
of Rio Grande do Sul won this year’s contest, only losing a single simulation against
the runner-up. Approximately 230 person-hours were invested by the 11 members
into developing the agent team in Jason, CArtAgO and Moise (JaCaMo). The
PUCRS agents start each simulation by exploring nearby shops to get information
about the prices of items. The exploration is coordinated with a token ring
communication, where each agent places its route to each facility if it is the shortest
one yet.

After that, they start evaluating the incoming jobs and estimate their costs (for
recharging the agents and buying or assembling the items). If a job’s reward
surpasses the cost, the agents try to complete it.

This is achieved by splitting the job into tasks which are distributed among the team
members using the contract net protocol.

In addition, the agents try to deceive the opponent agents by posting their own jobs,
rather to distract them than to outsource a task.

Nearing the end of the simulation, the agents adjust their strategies so they do not
take any job they cannot complete anymore.

• Python-DTU: the team Python-DTU (Villadsen et al., 2017) from the Technical
University of Denmark is another regular contender of the MAPC. After having tried
GOAL in the 2013 (and 2014) edition, as the name suggests, the team changed back
to using Python for this contest. The four members spent around 400 person-hours
developing their agents, not using any existing multi-agent technique or framework
but plain Python instead. As most of the other teams, they chose a centralised
approach. Simulations have shown the agents to always spend a certain amount of
money (a few hundred up to 15,000) and then stopping any noticeable behaviour. In
one particular match, the team tried a new strategy and posted up to 16 new
(non-sensical) jobs in each step11.

4 Performance of the teams

In this section, we will look at how the teams performed in the contest regarding scores,
completed jobs, stability and how they used certain aspects of the scenario.

4.1 Score and completed jobs

The score or the team’s money is mostly depending on how many jobs the team
completed and how economical the agents did it, as completing jobs is the only source of
income in the scenario. Money is decreased through buying items for the jobs or
recharging the agents when their energy gets low.

The scores and the number of completed jobs allow to assess a team’s overall
performance and compare it to other teams on the simulation level12.

• PUCRS: the contest winner completed 343 jobs in total, earning a money value of
18,221,172, or 53,122 on average per job.

 68 T. Ahlbrecht et al.

Comparing by simulation, the biggest difference in completed jobs was to
Python-DTU, the smallest to Flisvos 2016. Somewhere in between, we see similar
numbers for the simulations against BathTUB and lampe. PUCRS completed more
jobs than the opponent team in all but one simulation against Flisvos 2016 (also
being the one simulation they lost). However, in two simulations, Flisvos 2016
earned more money, which means PUCRS was a little more efficient in choosing and
completing jobs, as they won one of these simulations anyways. Namely, in their
second simulation, PUCRS completed 13 jobs more, earning on average 11,404 (vs.
21,910 for Flisvos 2016), showing that PUCRS focused on smaller jobs.

• Flisvos 2016: the runner-up completed 402 jobs, earning a total sum of 23,247,534.
Of course, the smallest difference in completed jobs shows in the simulations against
PUCRS. However, the numbers against all other teams look similar. Flisvos 2016
was able to complete more jobs than any opponent team in all but two simulations.
Correspondingly, there was only one simulation where Flisvos 2016 earned less
money than the opponent.

Against lampe and BathTUB, the team completed smaller jobs in comparison in two
out of three simulations each. In contrast, against PUCRS the average reward of jobs
completed by Flisvos 2016 was higher in all three simulations.

This leaves us with two possible conclusions. Either, Flisvos 2016 was second best
in decomposing the agents into smaller teams, thus completing more jobs in parallel,
or the smaller size of jobs can be attributed to efficiency, being able to finish jobs
with a smaller reward and still making appropriate profit of it (but most likely a
combination of both).

• lampe: the team completed rather few jobs compared to the previous two. Also, it
finished less jobs than BathTUB in all of their three simulations, winning two of
them anyway. In their first simulation, they earned less money on average per job
(and in total) than BathTUB, resulting in the lost simulation. Interestingly, in their
second simulation, they still earned less money in total, but more on average per job.
Having spent less money than BathTUB, this win went to lampe.

In two out of 12 simulations, one against PUCRS and one against Python-DTU,
lampe did not complete any job. In the first case, they finished with their starting
capital, indicating some one-time bug.

Looking at the averages again, lampe aimed for comparatively high job rewards,
pointing to a rather conservative heuristic. Only in the first simulation against each
team the average reward for lampe was smaller compared to the opponent’s.

• Python-DTU: weirdly enough, the fourth-placed team did not complete a single job.
They won two simulations against BathTUB in which the opponent team finished
with a big negative score and one against lampe with a monetary lead of roughly
2,000.

• BathTUB: the team completed more jobs than lampe or Python-DTU, in total 54.
Unfortunately, the agents could not make a profit in any simulation on the first day
of the contest. On the second day, they showed a varying performance. For example,
against Flisvos 2016, BathTUB was able to make a good profit (134,763) followed
by a rather big loss (–558,096) and only a small loss (–12,742). In all of these

 Multi-agent programming contest 2016 69

simulations, the team completed a similar amount of four to six jobs, pointing to
rather unpredictable investments. Their average reward against Flisvos 2016 was
higher in two out of three cases, however, they completed far less jobs.

Against lampe, they won the first simulation, in which they completed jobs with a
higher average reward. In the following two simulations, they still completed more
jobs but with a lower average reward than their opponent and lost both of those,
again with varying final scores: some profit in the first simulation, some loss in the
second and a good (but not big enough) profit in the third.

Having a final look at the completed jobs overall, none of them has been posted by any
competing team, i.e., unfortunately the teams did not try or succeed in fooling their
opponents into doing some work for them.

4.2 Agents’ behaviour

In this section, we will have a look at what actions the agents used to which extent and
how that possibly affected the outcome of single simulations and the contest as a whole.
As each team consisted of 16 agents, there were 16,000 actions in each simulation per
team. A big part of the actions of all teams is naturally made up of the actions skip,
continue and abort, as those are necessary to maintain the also frequently used
actions goto and charge.

Table 4 Total action counts

 Flisvos 2016 lampe BathTUB PUCRS Python-DTU
goto 5,224 3,721 26,860 7,134 4,892
noAction 0 35,824 7,823 1,855 4,010
skip 169,034 192 153,588 137,936 142,011
abort 0 108,491 32 0 0
continue 0 19,245 0 35,017 3,932
charge 2,042 2,951 1,885 2,326 3,910
retrieve 0 0 0 0 0
retrieve_delivered 0 406 0 0 0
store 0 0 0 0 0
dump 0 0 0 36 0
deliver_job 1,219 274 406 1,764 0
buy 1,695 342 1,166 2,044 164
assemble 0 10,010 0 0 17,734
assist_assemble 0 10,269 0 0 12,483
give 0 0 0 0 0
receive 0 0 0 0 0
call_b. (inst.) 12,824 (438) 467 (16) 0 3,338 (114) 0
post_job 154 0 0 742 3,056
bid_for_job 0 0 432 0 0

 70 T. Ahlbrecht et al.

Also, the actions store, retrieve, give and retrieve were not used at all,
indicating the direction in which the scenario needs to be improved. Total action counts
for all teams can be found in Table 4.

4.2.1 PUCRS

The team used the actions corresponding to job activities according to previous
observations. Comparing these job related actions, as depicted in Figures 2 and 3 for the
first and second simulation against Flisvos 2016, the numbers go in line with PUCRS
having completed the most jobs in the contest. Looking at the first simulation (where
PUCRS lost), we see that PUCRS used more deliver but less buy actions than the
opponent. However, around 50% of PUCRS’ deliver actions against Flisvos 2016
failed, many of them due to the job not being active (possibly already completed by
Flisvos 2016) or because the delivering agent did not carry any items that were still
missing for the particular job. Thus we can conclude that PUCRS employed less partial
deliveries than Flisvos 2016, as they needed less (successful) actions to complete more
(or comparable amounts of) jobs.

Figure 2 Job actions – Flisvos 2016 vs. PUCRS – simulation 1 of 3 (see online version
for colours)

 Multi-agent programming contest 2016 71

Figure 3 Job actions – Flisvos 2016 vs. PUCRS – simulation 2 of 3 (see online version
for colours)

From the same figures, we can see that PUCRS did not use any actions for
assembling products (making it another action to promote in future editions of the
contest). Indeed, PUCRS did not use the actions assemble, assist_assemble,
retrieve_delivered and bid_for_job for the entirety of the contest (in addition
to the actions that were never used by any team).

The buy action was used the most by PUCRS which also agrees with them having
completed the most jobs. They were also the only team to use the dump action, however,
there were only 36 cases where they saw the need to dispose of some items, 20 of them in
the match against Flisvos 2016. The post_job action was used sparingly in order to
distract the opponent teams by adding non-sensical jobs and therefore consuming some of
their processing time.

Finally, the team was one of the few to use the call_breakdown_service
action regularly, counts reaching from 100 to 500 times per simulation. However, as the
action has to be called repeatedly (25 times if it does not fail randomly) to have an effect,
this amounts to the agents being left without charge 114 times in total, or 9.5 times per
simulation, which is less than the number of agents.

 72 T. Ahlbrecht et al.

4.2.2 Flisvos 2016

The action counts of team Flisvos 2016 are overall similar to PUCRS. The actions
abort and continue were not used, the latter being replaced by more skip actions.
The team did not make use of the storage actions retrieve, store and dump. Also,
bid_for_job and retrieve_delivered were not used, thus ignoring auction jobs
and the possibility to retrieve (unsuccessful) partial deliveries.

Unfortunately, the explicitly cooperative actions give, receive, assemble,
assist_assemble were also not used at all by Flisvos 2016 (again, possibly not
being pushed enough by the concrete simulation instances).

Flisvos 2016 was one of three teams to use the call_breakdown_service
action, roughly three times more often than PUCRS, indicating either a tiny
routing/planning problem or that the team accepted to use the action in order to complete
some otherwise unachievable jobs. In total, uncharged agents were counted 438 times,
which is 36.5 times per simulation or 2 to 3 times per agent and simulation.

The post_job action was also used, however, more moderately than by PUCRS. As
no team completed a job posted by an opponent team, the team did not need to use the
retrieve_delivered action, as noted above.

Comparing the job related action counts to those of BathTUB, e.g., for their first
simulation as given in Figure 4, again the difference in buy and deliver actions
becomes obvious.

Figure 4 Job actions – BathTUB vs. Flisvos 2016 – simulation 1 of 3 (see online version
for colours)

 Multi-agent programming contest 2016 73

4.2.3 lampe
The lampe team decided to use the continue action in combination with abort
instead of skip, thus being the only team to make sure that ongoing actions are
explicitly stopped.

Interestingly, the team was the only one attempting to use the
retrieve_delivered action (however, only making up ca. 0.2% of their actions).
Unfortunately, the action only succeeded 20 times out of 406 for them.

The lampe agents did not use the give and receive actions, but they performed
the most successful assemble (and accordingly assist_assemble) actions, which
allowed them access to more valuable jobs. The ratio of these actions was almost 1:1
suggesting that most often exactly two agents cooperated.

Of the teams to use the deliver_job action, this team used it the least, again
highlighting their conservative heuristic which made the agents only work on the most
rewarding jobs while forgoing a lot of smaller ones. For example, much of this can be
seen in their third match against BathTUB, with both teams’ actions compared in Figure 5
and the failed actions of team lampe in Figure 6.

We see that lampe used fewer delivery actions but had some successful assemblies.
Comparing this to the money development in that simulation, as charted in Figure 7, one
can see again how it paid off (here) to complete jobs with higher rewards on average,
especially halfway through the simulation, where BathTUB only little more than broke
even. Counting the increments, BathTUB indeed completed one job more than lampe in
this simulation.

Figure 5 Job actions – BathTUB vs. lampe – simulation 3 of 3 (see online version for colours)

 74 T. Ahlbrecht et al.

Figure 6 Failed job actions lampe – BathTUB vs. lampe – simulation 3 of 3 (see online version
for colours)

Figure 7 Money – BathTUB vs. lampe – simulation 3 of 3 (see online version for colours)

 Multi-agent programming contest 2016 75

4.2.4 Python-DTU

The team Python-DTU used all the common actions to a ‘normal’ degree, featuring a
relatively high amount of skip actions.

Regarding storage actions, the team did not use any of them (e.g., retrieve or
deliver). Also, as with any other team, give and receive were not used. As for the
remaining actions, the team did not make use of bid_for_job and – surprisingly –
deliver_job.

The team used even less buy actions than lampe: only 164 during the whole contest.
However, surprising us again, the team used the most (assist-)assemble actions out
of all teams, even surpassing team lampe by roughly 77%. Recall that those were the only
two teams to use these actions at all.

Figure 8 Job actions – lampe vs. Python-DTU – simulation 1 of 3 (see online version for colours)

Probably as an attempt to completely occupy the opponent agents, the team used a
comparatively high amount of post_job actions. Fortunately, only the simulation web
monitor seemed to struggle with that much new information and could be quickly
repaired. This behaviour was only observed in certain simulations, e.g., the first one
against lampe, as depicted in Figure 8. In simulations where the Python-DTU team used
less post_job actions, the amount of assemble actions was noticeably higher. In the
accompanying Figure 9 we can also observe that the majority of assemble actions
failed.

 76 T. Ahlbrecht et al.

Figure 9 Failed job actions Python-DTU-lampe vs. Python-DTU – simulation 1 of 3 (see online
version for colours)

4.2.5 BathTUB

The BathTUB team also used no common action to an unusual degree. Like all others, the
team did not use the storage actions, nor any of the cooperative assembly and item
exchange actions.

Like Python-DTU, the team did not need the call_breakdown_service action.
Also, the BathTUB agents did not make use of the post_job feature. On the other hand,
they were the only ones to use the bid_for_job action, which did not fail in most of
the cases. The team was also the only one to complete several auction jobs per
simulation.

The amount of buy actions for team BathTUB lies somewhere below that of PUCRS
and Flisvos 2016, but considerably above that of lampe and Python-DTU. The effect of
these spendings can e.g., be observed in the second simulation of BathTUB against
lampe, as shown in Figure 10.

Shortly after step 400, the teams are almost on par, however, big investments of
BathTUB are not translated into greater rewards from then on.

 Multi-agent programming contest 2016 77

Figure 10 Money – BathTUB vs. lampe – simulation 2 of 3 (see online version for colours)

4.3 Agents’ reliability and stability

In the last section, we mostly analysed what the agents tried to do. Now, we will have a
look at the extent to which the agents submitted correct and sensible actions to the
system. For example, it does not make sense for an agent to perform a charge action if
that agent is not currently located within a charging station.

First off, the amount of noActions, which are registered if an agent does not
submit an action before the timeout, was considerably higher than in the
qualification phase. In fact, Flisvos 2016 was the only team to keep a flawless record of 0
noActions. Most timeouts were encountered by team lampe, a solid 18.66% of their
total actions. On the first day of the contest, their agents had a bug preventing them from
reconnecting to a match once they lost connection for the first time. Thus, almost half of
their 35,824 noActions originated from a single simulation, their third one against
PUCRS.

The second most noActions were due to team BathTUB, roughly a fifth of those of
team lampe. Python-DTU follows with half of that amount (i.e., ca. 4,000) and PUCRS
with a little less than half of that again.

 78 T. Ahlbrecht et al.

The actions that were received by the system could potentially fail due to a number of
reasons. Here, we will have a look at the causes of failed actions and how often they were
experienced by the teams.

• failed_location: this happens whenever an agent tries to perform a location-specific
action outside of that location, i.e., charging, assembling or buying. It happened only
a single time to PUCRS and about 150 times to Python-DTU.

• failed_unknown_item: this error occurs if an agent specifies a non-existing item as
parameter to an action. It happened only a single time to PUCRS.

• failed_unknown_facility: this is the same as above, but for facilities. It also occurred
only once for team PUCRS.

• failed_item_amount: this occurs whenever an agent tries to use more items for an
action than it currently carries. It happened 13 times to PUCRS and about 12,000 and
18,000 times for lampe and Python-DTU respectively, making it the most frequently
occurring failure code. We can assume that both of the latter teams had a rather
serious planning problem, as these numbers explain the previously seen counts of
failed assemble actions.

• failed_tools: whenever a group of agents tries an assemble action without carrying
the necessary tools, this failure occurs. Again, this occurred to both lampe and
Python-DTU, about 7,000 and 11,500 times respectively, making it the other big
cause of failed assemble actions. As ‘failed_tools’ takes precedence over
‘failed_item_amount’ and both cases could be satisfied at the same time, these
numbers should be taken into account at the same time.

• failed_capacity: this occurred whenever an agent did not have enough inventory
space to obtain an item. It happened close to 600 times for each BathTUB and
PUCRS.

• failed_job_status: this code indicates that an agent tried to either bid for a job that’s
not up for auctioning, or deliver items to a job which has already been completed by
the opponent team. Concerning Flisvos 2016, this was their only self-inflicted failure
and on top only two times, probably due to PUCRS completing a job faster. Vice
versa, the same thing happened to PUCRS 239 times, almost only against Flisvos
2016, indicating the same reason. The third and last team to experience the failure
code was BathTUB with 85 actions.

• failed_counterpart: this occurs whenever an agent tries to assist an assembling agent,
but any requirement for assembling is not satisfied. Both teams who tried to
assemble items, Python-DTU and lampe, experienced this failure on a minor scale,
i.e., 146 and 328 times respectively.

• failed_random: with a chance of 1%, any action might fail and get this result. By the
nature of this failure, all teams had a similar rate of around 1% of their total actions.

• useless: an agent causes this failure if it tries to deliver items towards the
completion of a job, but does not possess any item that is needed. Both Flisvos 2016
and Python-DTU did not cause this failure at all. BathTUB tried this only 35 times,
lampe 74, and PUCRS a surprising 438 times.

 Multi-agent programming contest 2016 79

Finally, the failure codes for invalid agent and job parameters, for an invalid location
passed to the goto action, for being in the wrong facility, for attempting to assemble an
item that cannot be assembled, for bidding on a job that is not an auction, and for using
wrong parameter types were not encountered by any agent during the contest.

4.4 Feature usage

As already suggested, there are a number of features of the scenario which have been
used only to a lesser degree or not at all. Since it was the first time the new scenario was
played, it was not entirely clear how the participating teams would handle the different
aspects.

For one, the teams did not use the assemble action very much. In preparation of the
contest, we balanced job rewards so that only by assembling items themselves the teams
would be able to net a notable profit. However, in previous tests, the testing agents were
not reliably earning money, which led us to the decision to increase base rewards so that
buying assembled items in shops still remained a viable though unfavourable option.

In addition, auction jobs were mostly neglected as well (or in case of BathTUB did
not bring a clear advantage), possibly due to an abundance of regular jobs, which do not
have a potential penalty attached (though of course any regular job comes with the risk of
the opponent team completing it faster).

The storage facilities were also not used. Probably, the teams were mostly able to
deliver the items they bought for their jobs on demand, while stocking up on certain items
up front would have been more risk than reward.

Regarding jobs, the teams have used the post_job action, yet only to divert the
opponent team’s attention and add to the information those agents have to process,
instead of outsourcing some of their own work.

5 Interesting simulations

In this section, we will have a closer look at particular simulations and how they played
out. We also try to carve out a few more details and to draw some conclusions.

5.1 Flisvos 2016 vs. PUCRS – simulations 1 and 2

The simulations of Flisvos 2016 against PUCRS were played on the second day of the
contest. While the first simulation was won by Flisvos 2016, PUCRS was able to take the
lead in the second one. Both results were relatively close, see e.g., the development of
scores (money) pictured in Figures 11 and 12.

In the first simulation, both teams struggled to make a profit at first. After 100 steps,
PUCRS was first able to surpass the initial money of 50,000 (but only for a short time),
while Flisvos 2016 was spending a lot of money overall. Around step 500, Flisvos 2016
overtook PUCRS for the first time, only to lose the lead after about 50 steps. This did not
change until around step 850, where both teams drew level and remained neck-and-neck
for another 100 steps, gaining and spending similar amounts of money, with Flisvos 2016
slightly in the lead. However, said team was able to complete one final job, rewarding
them the certain win.

 80 T. Ahlbrecht et al.

Figure 11 Money – Flisvos 2016 vs. PUCRS – simulation 1 of 3 (see online version for colours)

Figure 12 Money – Flisvos 2016 vs. PUCRS – simulation 2 of 3 (see online version for colours)

 Multi-agent programming contest 2016 81

By comparison, Flisvos 2016 completed four jobs more than PUCRS, earning over
100,000 more. As both teams finished with a difference of only around 20,000, we may
deduce that Flisvos 2016 also spent considerably more money. Also from the money
charts we can see that the curves for PUCRS get flat at around step 900, while Flisvos
2016 remains active until the simulation is over (an ever slightly decreasing curve
indicating charging agents). However, this was one factor giving Flisvos 2016 the edge in
the first simulation, as the last and critical job was completed while PUCRS was already
in sleep mode. Also, in the second simulation, the final spendings of Flisvos 2016 were
not crucial as PUCRS already had the first place when they halted their activities.

5.2 BathTUB vs. lampe – simulations 1 and 2

Each team chooses very few jobs to attempt, giving more weight to every individual
decision. lampe struggles in the first simulation, barely balancing their account at the end.
Successfully completing jobs takes them between 102 and 276 steps from the time they
are posted with an average of 186 steps. It can not be ruled out that BathTUB beat them
to some jobs with much shorter completion times between 66 and 99, averaging 72 steps.
Towards the end BathTUB makes another big investment and secures a lead of 14,165 by
delivering in time.

The pattern is reversed in simulation 2. Here BathTUB completes five jobs in 54, 68,
142, 206 and 218 steps. However only one of them turns out to be profitable, not
allowing them to break even. Meanwhile lampe swiftly completes just two well-chosen
jobs in 141 and 30 steps. Simulation 2 ends with lampe winning 38,638: 85,114.

Figure 13 Money – lampe vs. Python-DTU – simulation 1 of 3 (see online version for colours)

 82 T. Ahlbrecht et al.

5.3 lampe vs. Python-DTU – simulation 1

This simulation is among the most interesting. Python-DTU changed their strategy and
posted an astonishing number of 2,692 jobs. This not only revealed a weakness in the
web monitor13 but might have had an effect on team lampe, which crashed in the first few
steps with the result of not much happening for about 800 steps. Fortunately, team lampe
found the bug, that was preventing them from reconnecting the agents, during the
simulation and reconnected between steps 800 and 900. Unfortunately for them, this
made their agents spend more money than Python-DTU in the last couple of steps, as
depicted in Figure 13, ultimately accounting for their loss.

6 Conclusions and outlook

In conclusion, we have seen an interesting contest and a solid first run of the new
scenario which we can use as a foundation for future improvements. Judging from the
previous section, we need to put some effort into pushing the scenario into a more
cooperative direction. One way of doing this is to put more emphasis on or even enforce
the use of the assemble action and the related systems. A rework of this is already in
progression and should become ready in early 2017.

Also, the scenario still leaves room for more contention among the opposing teams.
This year, the teams could mostly just work alongside each other without having much
influence on the other team’s possibilities.

As we are already looking forward to the next edition of the contest in 2017, we have
to admit that our advertising and promotion efforts still leave room for improvement, to
say the least. With a stagnating number of participants since 2013, which had its peak in
2011, we have to take action to attract more contestants. Hopefully, this publication helps
in this respect and gives us some visibility. Also, we will focus more on pushing for the
use of our platform in teaching MAS.

We conclude with a critical remark. It was our aim from the very beginning to
eventually show the superiority of agent-based approaches in certain environments where
autonomous behaviour of agents pays off. We were quite sure to easily develop scenarios
where the use of agents would be not only natural, but also very beneficial in finding a
good solution without using a classical, distributed but hard-coded algorithm developed
for that particular scenario. We were looking forward to a solution that evolves naturally
by the interplay among the autonomous agents. We were hoping that an underlying agent
programming language can provide agent features suitable for allowing such an evolving
solution.

However, we never forbade that all agents share the same information or a
programmer develops a classical distributed algorithm, where one agents is the master
and all other agents are slaves steered by the master (a centralised approach). For our
scenarios, a solution could, in principle, be hard-coded by hand (although we are not
aware of such a solution). This is, obviously, against the philosophy of a truly
agent-based paradigm. Our way to deal with this problem is, rather than forbidding such
solutions, to develop scenarios where such unwanted approaches are very difficult or,
perhaps, not possible at all (or at least not as good as agent-based solutions).

At the same time, we are looking for a scenario that can be easily tested and does not
have extremely difficult rules (just difficult solutions). After ten years of research, we

 Multi-agent programming contest 2016 83

still have not found such a convincing scenario. Nor have we yet proved that agent-based
approaches are clearly superior to other, sometimes even ad-hoc, approaches using
traditional programming languages. This is related to the famous search for a killer
application, as one of the referees pointed out. It may well be that such killer applications
do not exist and that the advantage in using MAS technology only becomes apparent in
other categories: reusability, maintenance, bug-freeness, the possibility to model-check
agents, code running on different platforms, etc.

A possible way to go is to consider many agents, not just a few, but hundreds or
thousands of sophisticated agents – traditional approaches do not seem to perform well in
such a situation. Moreover, with many interacting agents we might see some interesting
behaviour evolve.

We are also seriously considering to let participate more than two teams in the same
simulation. The current scenario would provide for this naturally, however, the
underlying technical system has evolved with only two teams in mind, making this
change quite a challenge.

Our ultimate vision is an agent platform that allows to deploy agents written in very
different agent languages, using the specific features of them. For example it might be
beneficial for BDI agents to solve very efficiently certain tasks, whereas planning agents
based on some form of HTN could do the planning for them. Being able to re-use agents
already developed (and based on different paradigms) would certainly push the envelope
for applications of multi-agent systems. However, the price to pay is to standardise the
communication and set up common protocols and interfaces for such agents.

Acknowledgements

We would like to thank some anonymous referees for giving us interesting feedback that
helped to improve this article. We also thank Alfred Hofmann from Springer for his
support during the last ten years and for endowing the prices of 500 and 250 Euros in
Springer books.

References
Ahlbrecht, T., Bender-Saebelkampf, C., de Brito, M., Christensen, N.C., Dix, J., Franco, M.R.,

Heller, H., Hess, A.V., Heßler, A., Hübner, J.F., Jensen, A.S., Johnsen, J.B., Köster, M.,
Li, C., Liu, L., Morato, M.M., Ørum, P.B., Schlesinger, F., Schmitz, T.L., Sichman, J.S.,
de Souza, K.S., Uez, D.M., Villadsen, J., Werner, S., Woller, O.G. and Zatelli, M.R. (2013a)
‘Multi-agent programming contest 2013: the teams and the design of their systems’, in
Cossentino, M., El Fallah-Seghrouchni, A. and Winikoff, M. (Eds.): Engineering Multi-Agent
Systems – First International Workshop, EMAS, St. Paul, MN, USA, 6–7 May, revised
selected papers, Lecture Notes in Computer Science, Vol. 8245, pp.366–390, Springer.

Ahlbrecht, T., Dix, J., Köster, M. and Schlesinger, F. (2013b) ‘Multi-agent programming contest
2013’, in Cossentino, M., El Fallah-Seghrouchni, A. and Winikoff, M. (Eds.): Engineering
Multi-Agent Systems – First International Workshop, EMAS 2013, St. Paul, MN, USA, 6–7
May, revised selected papers, Lecture Notes in Computer Science, Vol. 8245, pp.292–318,
Springer.

 84 T. Ahlbrecht et al.

Ahlbrecht, T., Dix, J. and Schlesinger, F. (2014) ‘From testing agent systems to a scalable
simulation platform’, in Eiter, T., Strass, H., Truszczynski, M. and Woltran, S. (Eds):
Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation.
Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science, Vol. 9060, pp.47–62, Springer.

Behrens, T., Dastani, M., Dix, J. and Novák, P. (2009) ‘Agent contest competition: 4th edition’, in
Hindriks, K.V., Pokahr, A. and Sardiña, S. (Eds): Programming Multi-Agent Systems, 6th
International Workshop (ProMAS 2008), Lecture Notes in Computer Science, Vol. 5442,
pp.211–222, Springer.

Behrens, T., Dastani, M., Dix, J., Hübner, J., Köster, M., Novák, P. and Schlesinger, F. (2012a)
‘The multi-agent programming contest’, AI Magazine, Vol. 33, No. 4, pp.111–113.

Behrens, T., Köster, M., Schlesinger, F., Dix, J. and Hübner, J. (2012b) ‘The multi-agent
programming contest 2011: a résumé’, in Dennis, L., Boissier, O. and Bordini, R. (Eds.):
Programming Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 7217,
pp.155–172, Springer Berlin/Heidelberg.

Behrens, T., Dastani, M., Dix, J., Köster, M. and Novák, P. (2010a) ‘The multi-agent programming
contest from 2005–2010: from collecting gold to herding cows’, Annals of Mathematics and
Artificial Intelligence, Vol. 59, No. 3, pp.277–311.

Behrens, T., Dastani, M., Dix, J., Köster, M. and Novák, P. (Eds.) (2010b) ‘Special issue about
multi-agent-contest I’, Annals of Mathematics and Artificial Intelligence, Vol. 59, Nos. 3–4,
pp.275–437, Springer, Netherlands.

Cardoso, R.C., Pereira, R.F., Krzisch, G., Magnaguagno, M.C., Baségio, T. and Meneguzzi, F.
(2017) ‘Team PUCRS: a decentralised multi-agent solution for the agents in the city scenario’,
Int. J. Agent-Oriented Software Engineering, Vol. 6, No. 1, pp.3–34.

Czerner, P. and Pieper, J. (2017) ‘Multi-agent programming contest 2016: lampe team description’,
Int. J. Agent-Oriented Software Engineering, Vol. 6, No. 1, pp.101–117.

Dastani, M., Dix, J. and Novák, P. (2007) ‘The second contest on multi-agent systems based on
computational logic’, in Inoue, K., Satoh, K. and Toni, F. (Eds.): Computational Logic in
Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 4371, pp.266–283, Springer
Berlin Heidelberg.

Dastani, M., Dix, J. and Novák, P. (2008) ‘Agent contest competition – 3rd edition’, in Dastani, M.,
Ricci, A., El Fallah Seghrouchni, A. and Winikoff, M. (Eds.): Proceedings of ProMAS ‘07,
revised selected and invited papers, Lecture Notes in Artificial Intelligence, Vol. 4908,
Springer, Honululu, US.

Hessler, A. (2017) ‘BathTUB team description – multi-agent programming contest 2016’, Int. J.
Agent-Oriented Software Engineering, Vol. 6, No. 1, pp.118–127.

Karakovskiy, S. and Togelius, J. (2012) ‘The Mario AI benchmark and competitions’, IEEE
Transactions on Computational Intelligence and AI in Games, Vol. 4, No. 1, pp.55–67.

Köster, M., Schlesinger, F. and Dix, J. (2013) ‘The multi-agent programming contest 2012’, in
Programming Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 7837,
pp.174–195, Springer Berlin Heidelberg.

Sarmas, E. (2017) ‘The Flisvos-2016 multi-agent system’, Int. J. Agent-Oriented Software
Engineering, Vol. 6, No. 1, pp.35–57.

Villadsen, J., From, A.H., Jacobi, S. and Larsen, N.N. (2017) ‘Multi-agent programming contest
2016 – the Python-DTU team’, Int. J. Agent-Oriented Software Engineering, Vol. 6, No. 1,
pp.86–100.

 Multi-agent programming contest 2016 85

Notes
1 https://multiagentcontest.org.
2 http://aichallenge.org/.
3 http://aiolympics.ro/.
4 http://sscaitournament.com/.
5 http://ipc.icaps-conference.org/.
6 http://www.robocup-logistics.org/sim-comp.
7 http://games.stanford.edu/.
8 http://tac.sics.se/.
9 The 2014 contest was an “unofficial” edition (i.e., no publications and prizes, only glory) with

no changes to 201.
10 https://www.openstreetmap.org.
11 Fortunately, only the web monitor had to be quickly patched to accommodate for the increased

data volume. The MASSim server was able to handle the situation well.
12 Due to the random generation of simulations, score (i.e., money) comparisons on the contest

level can only serve as estimations.
13 Increasing the JVM’s stack size for the monitor remedied the problem.

