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1 Introduction 

In this preface to the special issue, we 

1 briefly introduce our contest1 and its development in the last ten years 

2 elaborate on the brand new 2016 scenario (which will also be used, slightly 
modified, in the 2017 competition) 

3 introduce the five teams that took part in the tournament 

4 analyse and interpret interesting matches 

5 evaluate the performance and strategies of the teams. 

The multi-agent programming contest (MAPC) is an annual international event that 
started in 2005, initiated by Jürgen Dix and Mehdi Dastani (with a lot of help from Peter 
Novak). In 2016, the competition was organised and held for the 11th time. It is an 
attempt to stimulate research in the field of programming multi-agent systems by 

1 identifying key problems 

2 developing suitable benchmarks 

3 comparing agent programming languages and platforms 

4 compiling test cases which require and enforce coordinated action that can serve as 
milestones for testing multi-agent programming languages, platforms and tools. 

Furthermore, it supports educational efforts in the design and implementation of MAS’s 
by providing concrete problems to solve. 

The partaking teams develop one team of agents each, which connects remotely to the 
contest server holding the environment. The server sends percepts to the agents and 
awaits their actions, which are executed resulting in changes to the environment. 

Detailed information about the strategies of the teams can be found in the subsequent 
papers in this volume. 

1.1 Rationale behind the contest 

Originally, our contest had been designed for problem solving techniques based on 
approaches using computational logics. This, however, has never been a requirement to 
enter the competition. In the last eight years, we were focussing more on general  
agent-based approaches. 

But, again, we do not require participants to use any multi-agent platforms at all: even 
centralised solutions are allowed. This allows us to compare solutions with and without 
multi-agent characteristics. This years runner-up, team Flisvos-2016, developed a 
strategy implemented in Python but without using any specific agent-related concepts, 
only some HTN-based planning and concepts from logic programming. 

Although each single instance of the contest has been won by a team using a MAS, 
we have had almost always some approaches not based on agent technology at all. 

When we started the contest, there were not too many professionally developed  
multi-agent programming languages around. In the first few years, the contest was mainly 
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used for debugging purposes of the participating teams (to improve their own 
programming language or platform). 

We were, however, always interested in developing scenarios to show that the agent 
paradigm really pays off: the particular features in agent programming might be used to 
solve a non-trivial problem more elegant, with less effort or more efficient than with 
traditional software engineering languages (the questions we require the teams to answer 
are intended to give us insights into the overall effort spent). 

1.2 Related work 

For a detailed account on the history of the contest as well as the underlying simulation 
platform, we refer to Ahlbrecht et al. (2014), Behrens et al. (2010a, 2010b, 2009, 2012b), 
Dastani et al. (2007, 2008), Köster et al. (2013) and Ahlbrecht et al. (2013a, 2013b). A 
quick non-technical overview appeared in Behrens et al. (2012a). Similar contests, 
competitions and challenges have taken place in the past few years. 

Google’s AI challenge2, lying dormant since 2011 now, put its focus on intelligent 
solutions to rather simple games. They also did not impose any restrictions on the 
participants’ implementations, as long as they could be run on their servers. Compared to 
the challenge, we employ more complicated scenarios in our contest so that more 
potential of agent platforms may be leveraged. 

The AI-MAS (Winter) Olympics3 last took place in 2013, featuring a game called 
‘crafting quest 3’. This competition aims mostly to bring together students and 
researchers in the AI field. At most three students each may collaborate to create a 
solution based on a custom SDK. According to their tutorial, participants have to submit 
JAR files implying that solutions must be in Java. 

Other competitions, like the student StarCraft AI tournament4 or the Mario AI 
championship (Karakovskiy and Togelius, 2012) focus on creating solutions for existing 
games, which are intended for humans to play with the objective of benchmarking 
reinforcement learning and general (video)game-related AI techniques. Also, these 
programs have to be able to cope with ‘real time’, while we allow plenty of time (ca. 4 
seconds per step) for reasoning (and network communication). 

Various planning competitions5, e.g., the RoboCup logistics league6, as their name 
suggests, centre around a single aspect of agent systems. 

The general game playing7 competitions differ from the others as the games are not 
known to the participants beforehand. The programs receive game and objective 
descriptions just before playing and need to come up with a solution on the fly. Most of 
the games are for 1 or 2 players only, which makes multi-agent approaches rather 
unsuitable. 

Finally, the trading agent competition8 targets the trading agent problem, e.g., 
managing supply chains. Again, it is more appropriate to use single agent solutions. 

In summary, other competitions 

• impose restrictions on the software used by the participants 

• search solutions for a particular problem domain 

• feature simple or single-player games which are more likely to be solved by a 
‘centralised’ solution. 
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1.3 History: the contest from 2005 to 2014 

Through the history of the contest, changes to the scenarios were introduced with every 
new edition including four major redesigns. 

From 2005 to 2007, a gold miners scenario was used, where agents moved on a grid 
to collect randomly placed gold pieces which had to be taken to the centre. Here, we 
introduced the MASSim software: a platform for executing the contest tournaments. 

From 2008 to 2010 we developed the cows and cowboys scenario, which was 
designed to enforce cooperative behaviour among agents (Behrens et al., 2009). The 
previous gold miners scenario proved to be too simple and could be solved without much 
agent coordination, i.e., each agent of a team could work completely on its own. The 
topology of the new scenario’s environment was again represented by a grid that 
contained, besides various obstacles, a population of simulated cows. The goal was to 
arrange agents in a manner that scared cows into special areas, called corrals, in order to 
get points. While still maintaining the core tasks of environment exploration and path 
planning, the use of cooperative strategies was a requirement of this scenario. For 
example, agents had to coordinate their positions in order to force cows in the desired 
direction. The scenario itself evolved, too. The first instance was won (out of 
competition) by a really simple team of agents where each agent worked on its own, only 
pushing a single cow at a time. This showed again that participants tend to ignore 
cooperation aspects if the scenario does not require them. Thus, cows were improved 
with a flocking algorithm to make it harder to chase single cows and allow groups of 
agents to move an entire herd. Also, fences were added, which required one agent to 
stand on a switch on one side and another agent to move through and keep the fence open 
with a switch on the other side, again discouraging lone wolf behaviour. 

In 2011, the agents on Mars scenario (Behrens et al., 2012b) was newly introduced. 
In short, the environment topology was generalised to a weighted graph. Agents were 
expected to cooperatively establish a graph covering while standing their ground in an 
adversarial setting and reaching certain achievements. In the previous scenario, agents 
had to work together in order to achieve their goals. However, interaction with the 
opponent team was still rather indirect. Now, agents could only earn points in an area if 
the other team was hindered from doing so. For example, agents now possessed the 
ability to disable other agents. Also, complexity was increased once again by adding 
multiple agent roles with different characteristics and available actions. For now, higher 
complexity is our only measure to discourage centralised solutions. The basics of the 
agents on Mars scenario remained until the 2014 edition9, although several modifications 
were introduced to keep the contest challenging. 

In 2015, work on the current scenario, which is presented later in this paper, began, as 
the Mars scenario had been scaled up a few times and some good strategies began to 
emerge. The new scenario was first used in the contest’s 2016 edition. Again, one of the 
main goals was to discourage centralised solutions and instead favour those where 
intelligent behaviour was emergent, like in a real MAS. 

1.4 History 2: participants and their origins 

In its 11th editions, the contest has seen 70 team participations (some teams partaking in 
multiple editions, but mostly with changing members) from all over the world. Figure 1 
shows the development of team numbers over the years. 
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Figure 1 Participants of the MAPC through the years (see online version for colours) 

 

In its humble beginnings, the contest started off with four teams in 2005 and three the 
year after. From then on, the number of teams monotonically increased until 2011, the 
best year yet with ten participating teams. The number has gone down to five teams since 
and has remained there for three editions. The majority of teams originated from 
academia: only two contestants competed without affiliation. 

As of 2016, we are counting 19 different countries. The most frequently participating 
country, Germany, denotes a total of 22 attempts to win. This is mostly due to the tireless 
efforts from the Technical University of Berlin, who started in 2007 and have not missed 
a contest since, sometimes even contributing two teams in the same year. This has 
already fetched them the first place in 4 consecutive editions, starting right in 2007. 

Closely following is Brazil, with 12 attempts and leading the list of winning countries 
with five first placements from three universities. The team from Federal University of 
Santa Catarina participated in every instance of the Mars scenario and won all three 
contests. Brazil is immediately followed by eight participations of Danish teams, all from 
Technical University of Denmark. They started participating in 2009, also not having 
missed a single contest since, while having contributed two teams in 2014. Starting in 
2008, the contest also saw a team from University College Dublin for five consecutive 
years. In the same order of magnitude, seven teams from Iran participated already, from 
which four teams just in 2011, three of which originated from Arak University, Iran. 

Other sporadically participating countries, sorted by their first appearance, include the 
UK, Japan, Chile, Spain, Switzerland, the Netherlands, Australia, Poland, France, 
Turkey, Argentina, China, the US and Greece. 

2 MAPC 2016: the new scenario 

The new scenario consists of two teams of 16 agents each moving through the streets of a 
realistic city. The goal for each team is to earn as much money as possible, which is  
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rewarded for completing certain jobs. An agent is characterised by its battery (i.e., how 
long it can move without recharging), its capacity (i.e., how much volume it can carry) 
and its speed. The scenario features four distinct roles: drones, motorcycles, cars and 
trucks, sorted by increasing capacity and energy, and decreasing speed. 
Table 1 Agent roles and their properties 

Role Battery Capacity Speed 

Drone 250 100 5 (not limited to roads) 
Motorcycle 350 300 4 
Car 500 550 3 
Truck 1,000 3,000 2 

The simulation is divided into discrete steps and each agent can execute at most one 
action per step. In the following we give a detailed description of the scenario and 
actions. See Table 4 for an overview of all available actions. 

The city map is taken from OpenStreetMap10 data and routing is provided by the 
contest server. Each agent can move a fixed distance each turn (unless its destination is 
closer than this distance). For this, agents can use the goto action specifying a location 
on the map. The agents are positioned randomly on the map, as are a number of facilities, 
which allow the agents to perform certain actions. In shops, items can be bought at prices 
specific to the particular shop. Each shop only offers limited quantities of a subset of all 
items. However, items are restocked after a number of steps. Agents can use the buy 
action to obtain number items of a single type per step whenever they are in the same 
location as a shop where this item is available. To promote exploration behaviour, an 
agent can only perceive the number and cost of items in a shop if it is currently standing 
in said shop. 

Charging stations have to be frequently visited by agents in order to recharge their 
battery. They always have to be taken into account when planning routes. 

In workshops, agents can assemble items out of other required items. Most items also 
need specific tools, which can only be used by a particular role. Agents may also 
cooperate here. In that case, the resources of those agents are combined and the initiating 
agent receives the finished item (if all prerequisites are satisfied). Thus, the agents need 
to coordinate who obtains which items and how they work together for assembling 
complex items. Agents have the actions assemble and assist_assemble at their 
disposal, whereby the first has to be called by the initiator, who also wants to receive the 
assembled item. The latter action has to be used specifying the agent that is to be assisted. 

Items can be destroyed at dumps (to free capacity), while storages allow to store 
items up to a specific volume for a certain price and also are the target for completing 
jobs. Intuitively, storages require a store action and two types of retrieve actions. 
One for getting items stored intentionally and one for retrieving items which belong to 
the team but have been added to the storage for other reasons (and which do not count 
towards the storage’s capacity). 

Jobs comprise the acquisition, assembling, and transportation of goods. These jobs 
can be created by either the system (environment) or one of the agent teams. There are 
two types of jobs: normal ones and auctions. A team can accept an auction job by bidding  
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on it. The bid will be the reward, i.e., the team is willing to procure the items for that 
amount of money. Thus, if both teams bid, the lowest bid wins. If a job is not completed 
in time, the corresponding team is fined to discourage auction ‘hoarding’. 

Regular jobs have their rewards defined upfront, which is given to the first team to 
complete that job, while the other team goes away empty-handed. The teams have to 
decide which jobs to complete and how to do them, i.e., where to get the resources and 
how to navigate the map considering targets like shops, charging stations, workshops, or 
storage facilities. While auction jobs have to be more thoroughly assessed in order to 
determine a minimum threshold at which the team would still earn money, they provide 
some safety since the team that did not win the auction is effectively barred from 
completing it. 

Actions associated with jobs are bid_for_job, deliver_job and also 
post_job, which allows agents to add their own jobs to the simulation. The source of a 
job is not disclosed to the agents, so that posted jobs are potentially indistinguishable 
from those created by the server. 

Item types are also randomly generated and thus differ in each simulation. They can 
be either bought or crafted. Agents can give them to a teammate, store them temporarily 
in a storage, deliver them as part of a job or ditch them in a dump. 

In case an agent runs low on energy with no charging station in sight, it can call the 
breakdown service, which takes a long time to arrive and a considerable fee to charge the 
agent’s battery. 

Tournament points are distributed according to the amount of money a team owns at 
the end of the simulation. To get the most points, a team has to beat the other, as well as 
surpass the seed capital given to the team at the beginning of the simulation, i.e., make an 
overall profit. 

The scenario calls for increased coordination and planning among agents of the same 
team. They have to decide which jobs to go for and how to handle them. Items for the 
jobs can be either bought or partly assembled to save money (as assembly is intended to 
be much cheaper than buying). Also, mixed strategies are possible, where only a 
convenient subset of items for a job is assembled. Routing from point to point is provided 
by the server, while planning the sequence of points is of course still up to the agents. 

Interaction with the opponent team is for now limited to job and resource (items in 
shops) contention, the bidding for auction jobs, and the posting of jobs for the other team, 
which allows to outsource parts of a ‘real’ job. 

3 The tournament 

Following the tradition, a qualification round was held prior to the tournament, in  
which teams were required to show that they were able to maintain good stability (i.e., 
timeout-rates below 5%) during a round of test matches. Only then were they allowed to 
take part in the tournament. The qualification rounds showed extremely positive results: 
each and every team encountered not even a single timeout. 

The tournament took place on the 12 and 13 September 2016. Each day the teams 
played against two other teams so that in the end all teams played against each other. We 
started the tournament each day at 1 pm and finished around 6 pm. 
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3.1 Simulation definition 

A match between two teams consisted of three simulations comprising 1,000 steps each. 
These three simulations differed in the map that was used and the form of jobs that were 
generated. However, each match featured the same three sets of simulation parameters. 

The first of each set of simulations was played on the street graph of (a part of) 
London. Jobs had to be completed in 250 to 350 steps. The jobs’ rewards were 
comparatively the lowest of all three simulations. For the second simulation, played on a 
map of the German city Hannover, the job completion time bounds were decreased by  
25 steps each and the potential job rewards increased. The same adjustments were made 
for the third simulation, played on the San Francisco street graph, again decreasing 
completion times and increasing job rewards. 

To summarise, in one match it became (on average) more difficult but at the same 
time more rewarding to complete a job. 

Note that, while the simulation sets featured the same parameters, of course the 
concrete simulation instances that were played by the teams were (with a very high 
probability) never the same due to the random generation mechanism. The goal was, as in 
previous editions of the contest, to generate a set of similar simulation instances, so that 
one could compare the simulations afterwards without risking to give the agents the 
possibility to learn the exact simulation from match to match (e.g., the prices of items or 
what job will be generated in which step). 

3.2 Participants and results 

Five teams from around the world registered for the contest and were able to pass the 
qualification round, thus taking part in the tournament (see Table 2). 
Table 2 Participants of the 2016 edition 

Team Affiliation Platform/language 
BathTUB Technical University of Berlin JIAC V 
Flisvos 2016 None Python 
lampe Clausthal University of Technology C++ 
PUCRS Pontifical Catholic University of Rio Grande do Sul Jason, CArtAgO, Moise 
Python-DTU Technical University of Denmark Python 

The teams were awarded three points for winning a simulation (minus 1 point if they did 
not make a profit) and 1 point in case of a draw. The results of this year’s Contest are 
summarised in Table 3. 
Table 3 Results 

Pos. Team Score Difference Points 

1 PUCRS 6,503,165 : 994,109 5,509,056 33 
2 Flisvos 2016 7,197,893 : 941,069 6,256,824 30 
3 lampe 1,320,153 : 1,601,549 –281,396 12 
4 Python-DTU 532,714 : 7,764,645 –7,231,931 6 
5 BathTUB –625,240 : 3,627,313 –4,252,553 5 
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PUCRS secured an almost flawless victory, only losing a single simulation against 
runner-up Flisvos 2016, thus scoring 33 out of 36 possible points. Flisvos 2016 in turn 
only lost two of the simulations against PUCRS, resulting in 30 points total. Nevertheless, 
Flisvos 2016 had a better score difference, which may be attributed to variations in the 
simulation instances (see Sub-section 3.1 for details). 

Following with a rather significant margin, team lampe won the third place with 12 
points, still one out of each three possible points. The points were gained from two 
victories each against BathTUB and Python-DTU. 

Making for a close battle for the fourth place, Python-DTU was able to take it  
with a one point lead over BathTUB. Having the edge in their match against each other, 
Python-DTU won 2 out of the 3 simulations. However, no team was able to make a 
profit, resulting in 4 and 2 points respectively. Both teams were able to win one 
simulation against team lampe, resulting in 2 additional points for Python-DTU, and even 
3 points for BathTUB, since they made a profit in that simulation. 

3.3 The teams and their agents 

In this section we collect information about the participants and their agent team 
strategies. For more details, we refer to the team description articles that follow this 
preface. 

• BathTUB: the team BathTUB (Hessler, 2017) from Technical University Berlin, 
Germany, is a regular contender of the MAPC. Their agents are once again 
developed with the JIAC V platform (which won the contest several times in 
previous years). This time, six students and their supervisor have spent around  
1,000 person-hours developing their agent team. The approach is partly centralised, 
each agent being coordinated by a central instance. It was planned to complete jobs 
as fast as possible. To achieve that, a similar approach to PUCRS was chosen: any 
agent may initiate the planning of a job and receives proposals from all the agents, 
i.e., which items they can procure at which cost. The initiating agent then decides on 
the optimal course of action and informs the other agents. 

To prevent idling, a measure for proactiveness was implemented: the agents explore 
the map, plan a new job or keep watch on the opponent agents. 

• Flisvos 2016: the team Flisvos 2016 (Sarmas, 2017), consisting only of a single 
person, participated for the first time in the Contest and promptly came second, 
losing only two simulations against this year’s winners. The agents were 
implemented in Python, having invested roughly 250 hours. The centralised 
approach relies on no special agent-related concepts, instead employing a global 
planning technique together with known optimisation heuristics. The agents only 
communicate by updating a shared data structure in order to exchange percept 
information. 

• lampe: the two students of team lampe (Czerner and Pieper, 2017) from  
Clausthal University of Technology developed their agents in C++, spending about 
150 person-hours. They also rely on a centralised approach together with a heuristic 
for choosing profitable jobs. 
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• PUCRS: the team PUCRS (Cardoso et al., 2017) from Pontifical Catholic University 
of Rio Grande do Sul won this year’s contest, only losing a single simulation against 
the runner-up. Approximately 230 person-hours were invested by the 11 members 
into developing the agent team in Jason, CArtAgO and Moise (JaCaMo). The 
PUCRS agents start each simulation by exploring nearby shops to get information 
about the prices of items. The exploration is coordinated with a token ring 
communication, where each agent places its route to each facility if it is the shortest 
one yet. 

After that, they start evaluating the incoming jobs and estimate their costs (for 
recharging the agents and buying or assembling the items). If a job’s reward 
surpasses the cost, the agents try to complete it. 

This is achieved by splitting the job into tasks which are distributed among the team 
members using the contract net protocol. 

In addition, the agents try to deceive the opponent agents by posting their own jobs, 
rather to distract them than to outsource a task. 

Nearing the end of the simulation, the agents adjust their strategies so they do not 
take any job they cannot complete anymore. 

• Python-DTU: the team Python-DTU (Villadsen et al., 2017) from the Technical 
University of Denmark is another regular contender of the MAPC. After having tried 
GOAL in the 2013 (and 2014) edition, as the name suggests, the team changed back 
to using Python for this contest. The four members spent around 400 person-hours 
developing their agents, not using any existing multi-agent technique or framework 
but plain Python instead. As most of the other teams, they chose a centralised 
approach. Simulations have shown the agents to always spend a certain amount of 
money (a few hundred up to 15,000) and then stopping any noticeable behaviour. In 
one particular match, the team tried a new strategy and posted up to 16 new  
(non-sensical) jobs in each step11. 

4 Performance of the teams 

In this section, we will look at how the teams performed in the contest regarding scores, 
completed jobs, stability and how they used certain aspects of the scenario. 

4.1 Score and completed jobs 

The score or the team’s money is mostly depending on how many jobs the team 
completed and how economical the agents did it, as completing jobs is the only source of 
income in the scenario. Money is decreased through buying items for the jobs or 
recharging the agents when their energy gets low. 

The scores and the number of completed jobs allow to assess a team’s overall 
performance and compare it to other teams on the simulation level12. 

• PUCRS: the contest winner completed 343 jobs in total, earning a money value of  
18,221,172, or 53,122 on average per job. 



   

 

   

   
 

   

   

 

   

   68 T. Ahlbrecht et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Comparing by simulation, the biggest difference in completed jobs was to  
Python-DTU, the smallest to Flisvos 2016. Somewhere in between, we see similar 
numbers for the simulations against BathTUB and lampe. PUCRS completed more 
jobs than the opponent team in all but one simulation against Flisvos 2016 (also 
being the one simulation they lost). However, in two simulations, Flisvos 2016 
earned more money, which means PUCRS was a little more efficient in choosing and 
completing jobs, as they won one of these simulations anyways. Namely, in their 
second simulation, PUCRS completed 13 jobs more, earning on average 11,404 (vs. 
21,910 for Flisvos 2016), showing that PUCRS focused on smaller jobs. 

• Flisvos 2016: the runner-up completed 402 jobs, earning a total sum of 23,247,534. 
Of course, the smallest difference in completed jobs shows in the simulations against 
PUCRS. However, the numbers against all other teams look similar. Flisvos 2016 
was able to complete more jobs than any opponent team in all but two simulations. 
Correspondingly, there was only one simulation where Flisvos 2016 earned less 
money than the opponent. 

Against lampe and BathTUB, the team completed smaller jobs in comparison in two 
out of three simulations each. In contrast, against PUCRS the average reward of jobs 
completed by Flisvos 2016 was higher in all three simulations. 

This leaves us with two possible conclusions. Either, Flisvos 2016 was second best 
in decomposing the agents into smaller teams, thus completing more jobs in parallel, 
or the smaller size of jobs can be attributed to efficiency, being able to finish jobs 
with a smaller reward and still making appropriate profit of it (but most likely a 
combination of both). 

• lampe: the team completed rather few jobs compared to the previous two. Also, it 
finished less jobs than BathTUB in all of their three simulations, winning two of 
them anyway. In their first simulation, they earned less money on average per job 
(and in total) than BathTUB, resulting in the lost simulation. Interestingly, in their 
second simulation, they still earned less money in total, but more on average per job. 
Having spent less money than BathTUB, this win went to lampe. 

In two out of 12 simulations, one against PUCRS and one against Python-DTU, 
lampe did not complete any job. In the first case, they finished with their starting 
capital, indicating some one-time bug. 

Looking at the averages again, lampe aimed for comparatively high job rewards, 
pointing to a rather conservative heuristic. Only in the first simulation against each 
team the average reward for lampe was smaller compared to the opponent’s. 

• Python-DTU: weirdly enough, the fourth-placed team did not complete a single job. 
They won two simulations against BathTUB in which the opponent team finished 
with a big negative score and one against lampe with a monetary lead of roughly 
2,000. 

• BathTUB: the team completed more jobs than lampe or Python-DTU, in total 54. 
Unfortunately, the agents could not make a profit in any simulation on the first day 
of the contest. On the second day, they showed a varying performance. For example, 
against Flisvos 2016, BathTUB was able to make a good profit (134,763) followed 
by a rather big loss (–558,096) and only a small loss (–12,742). In all of these 
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simulations, the team completed a similar amount of four to six jobs, pointing to 
rather unpredictable investments. Their average reward against Flisvos 2016 was 
higher in two out of three cases, however, they completed far less jobs. 

Against lampe, they won the first simulation, in which they completed jobs with a 
higher average reward. In the following two simulations, they still completed more 
jobs but with a lower average reward than their opponent and lost both of those, 
again with varying final scores: some profit in the first simulation, some loss in the 
second and a good (but not big enough) profit in the third. 

Having a final look at the completed jobs overall, none of them has been posted by any 
competing team, i.e., unfortunately the teams did not try or succeed in fooling their 
opponents into doing some work for them. 

4.2 Agents’ behaviour 

In this section, we will have a look at what actions the agents used to which extent and 
how that possibly affected the outcome of single simulations and the contest as a whole. 
As each team consisted of 16 agents, there were 16,000 actions in each simulation per 
team. A big part of the actions of all teams is naturally made up of the actions skip, 
continue and abort, as those are necessary to maintain the also frequently used 
actions goto and charge. 

Table 4 Total action counts 

 Flisvos 2016 lampe BathTUB PUCRS Python-DTU 
goto 5,224 3,721 26,860 7,134 4,892 
noAction 0 35,824 7,823 1,855 4,010 
skip 169,034 192 153,588 137,936 142,011 
abort 0 108,491 32 0 0 
continue 0 19,245 0 35,017 3,932 
charge 2,042 2,951 1,885 2,326 3,910 
retrieve 0 0 0 0 0 
retrieve_delivered 0 406 0 0 0 
store 0 0 0 0 0 
dump 0 0 0 36 0 
deliver_job 1,219 274 406 1,764 0 
buy 1,695 342 1,166 2,044 164 
assemble 0 10,010 0 0 17,734 
assist_assemble 0 10,269 0 0 12,483 
give 0 0 0 0 0 
receive 0 0 0 0 0 
call_b. (inst.) 12,824 (438) 467 (16) 0 3,338 (114) 0 
post_job 154 0 0 742 3,056 
bid_for_job 0 0 432 0 0 
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Also, the actions store, retrieve, give and retrieve were not used at all, 
indicating the direction in which the scenario needs to be improved. Total action counts 
for all teams can be found in Table 4. 

4.2.1 PUCRS 

The team used the actions corresponding to job activities according to previous 
observations. Comparing these job related actions, as depicted in Figures 2 and 3 for the 
first and second simulation against Flisvos 2016, the numbers go in line with PUCRS 
having completed the most jobs in the contest. Looking at the first simulation (where 
PUCRS lost), we see that PUCRS used more deliver but less buy actions than the 
opponent. However, around 50% of PUCRS’ deliver actions against Flisvos 2016 
failed, many of them due to the job not being active (possibly already completed by 
Flisvos 2016) or because the delivering agent did not carry any items that were still 
missing for the particular job. Thus we can conclude that PUCRS employed less partial 
deliveries than Flisvos 2016, as they needed less (successful) actions to complete more 
(or comparable amounts of) jobs. 

Figure 2 Job actions – Flisvos 2016 vs. PUCRS – simulation 1 of 3 (see online version  
for colours) 
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Figure 3 Job actions – Flisvos 2016 vs. PUCRS – simulation 2 of 3 (see online version  
for colours) 

 

From the same figures, we can see that PUCRS did not use any actions for  
assembling products (making it another action to promote in future editions of the 
contest). Indeed, PUCRS did not use the actions assemble, assist_assemble, 
retrieve_delivered and bid_for_job for the entirety of the contest (in addition 
to the actions that were never used by any team). 

The buy action was used the most by PUCRS which also agrees with them having 
completed the most jobs. They were also the only team to use the dump action, however, 
there were only 36 cases where they saw the need to dispose of some items, 20 of them in 
the match against Flisvos 2016. The post_job action was used sparingly in order to 
distract the opponent teams by adding non-sensical jobs and therefore consuming some of 
their processing time. 

Finally, the team was one of the few to use the call_breakdown_service 
action regularly, counts reaching from 100 to 500 times per simulation. However, as the 
action has to be called repeatedly (25 times if it does not fail randomly) to have an effect, 
this amounts to the agents being left without charge 114 times in total, or 9.5 times per 
simulation, which is less than the number of agents. 
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4.2.2 Flisvos 2016 

The action counts of team Flisvos 2016 are overall similar to PUCRS. The actions 
abort and continue were not used, the latter being replaced by more skip actions. 
The team did not make use of the storage actions retrieve, store and dump. Also, 
bid_for_job and retrieve_delivered were not used, thus ignoring auction jobs 
and the possibility to retrieve (unsuccessful) partial deliveries. 

Unfortunately, the explicitly cooperative actions give, receive, assemble, 
assist_assemble were also not used at all by Flisvos 2016 (again, possibly not 
being pushed enough by the concrete simulation instances). 

Flisvos 2016 was one of three teams to use the call_breakdown_service 
action, roughly three times more often than PUCRS, indicating either a tiny 
routing/planning problem or that the team accepted to use the action in order to complete 
some otherwise unachievable jobs. In total, uncharged agents were counted 438 times, 
which is 36.5 times per simulation or 2 to 3 times per agent and simulation. 

The post_job action was also used, however, more moderately than by PUCRS. As 
no team completed a job posted by an opponent team, the team did not need to use the 
retrieve_delivered action, as noted above. 

Comparing the job related action counts to those of BathTUB, e.g., for their first 
simulation as given in Figure 4, again the difference in buy and deliver actions 
becomes obvious. 

Figure 4 Job actions – BathTUB vs. Flisvos 2016 – simulation 1 of 3 (see online version  
for colours) 

 



   

 

   

   
 

   

   

 

   

    Multi-agent programming contest 2016 73    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.2.3 lampe 
The lampe team decided to use the continue action in combination with abort 
instead of skip, thus being the only team to make sure that ongoing actions are 
explicitly stopped. 

Interestingly, the team was the only one attempting to use the 
retrieve_delivered action (however, only making up ca. 0.2% of their actions). 
Unfortunately, the action only succeeded 20 times out of 406 for them. 

The lampe agents did not use the give and receive actions, but they performed 
the most successful assemble (and accordingly assist_assemble) actions, which 
allowed them access to more valuable jobs. The ratio of these actions was almost 1:1 
suggesting that most often exactly two agents cooperated. 

Of the teams to use the deliver_job action, this team used it the least, again 
highlighting their conservative heuristic which made the agents only work on the most 
rewarding jobs while forgoing a lot of smaller ones. For example, much of this can be 
seen in their third match against BathTUB, with both teams’ actions compared in Figure 5 
and the failed actions of team lampe in Figure 6. 

We see that lampe used fewer delivery actions but had some successful assemblies. 
Comparing this to the money development in that simulation, as charted in Figure 7, one 
can see again how it paid off (here) to complete jobs with higher rewards on average, 
especially halfway through the simulation, where BathTUB only little more than broke 
even. Counting the increments, BathTUB indeed completed one job more than lampe in 
this simulation. 

Figure 5 Job actions – BathTUB vs. lampe – simulation 3 of 3 (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

   74 T. Ahlbrecht et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 6 Failed job actions lampe – BathTUB vs. lampe – simulation 3 of 3 (see online version 
for colours) 

 

Figure 7 Money – BathTUB vs. lampe – simulation 3 of 3 (see online version for colours) 
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4.2.4 Python-DTU 

The team Python-DTU used all the common actions to a ‘normal’ degree, featuring a 
relatively high amount of skip actions. 

Regarding storage actions, the team did not use any of them (e.g., retrieve or 
deliver). Also, as with any other team, give and receive were not used. As for the 
remaining actions, the team did not make use of bid_for_job and – surprisingly – 
deliver_job. 

The team used even less buy actions than lampe: only 164 during the whole contest. 
However, surprising us again, the team used the most (assist-)assemble actions out 
of all teams, even surpassing team lampe by roughly 77%. Recall that those were the only 
two teams to use these actions at all. 

Figure 8 Job actions – lampe vs. Python-DTU – simulation 1 of 3 (see online version for colours) 

 

Probably as an attempt to completely occupy the opponent agents, the team used a 
comparatively high amount of post_job actions. Fortunately, only the simulation web 
monitor seemed to struggle with that much new information and could be quickly 
repaired. This behaviour was only observed in certain simulations, e.g., the first one 
against lampe, as depicted in Figure 8. In simulations where the Python-DTU team used 
less post_job actions, the amount of assemble actions was noticeably higher. In the 
accompanying Figure 9 we can also observe that the majority of assemble actions 
failed. 
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Figure 9 Failed job actions Python-DTU-lampe vs. Python-DTU – simulation 1 of 3 (see online 
version for colours) 

 

4.2.5 BathTUB 

The BathTUB team also used no common action to an unusual degree. Like all others, the 
team did not use the storage actions, nor any of the cooperative assembly and item 
exchange actions. 

Like Python-DTU, the team did not need the call_breakdown_service action. 
Also, the BathTUB agents did not make use of the post_job feature. On the other hand, 
they were the only ones to use the bid_for_job action, which did not fail in most of 
the cases. The team was also the only one to complete several auction jobs per 
simulation. 

The amount of buy actions for team BathTUB lies somewhere below that of PUCRS 
and Flisvos 2016, but considerably above that of lampe and Python-DTU. The effect of 
these spendings can e.g., be observed in the second simulation of BathTUB against 
lampe, as shown in Figure 10. 

Shortly after step 400, the teams are almost on par, however, big investments of 
BathTUB are not translated into greater rewards from then on. 
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Figure 10 Money – BathTUB vs. lampe – simulation 2 of 3 (see online version for colours) 

 

4.3 Agents’ reliability and stability 

In the last section, we mostly analysed what the agents tried to do. Now, we will have a 
look at the extent to which the agents submitted correct and sensible actions to the 
system. For example, it does not make sense for an agent to perform a charge action if 
that agent is not currently located within a charging station. 

First off, the amount of noActions, which are registered if an agent does not 
submit an action before the timeout, was considerably higher than in the  
qualification phase. In fact, Flisvos 2016 was the only team to keep a flawless record of 0 
noActions. Most timeouts were encountered by team lampe, a solid 18.66% of their 
total actions. On the first day of the contest, their agents had a bug preventing them from 
reconnecting to a match once they lost connection for the first time. Thus, almost half of 
their 35,824 noActions originated from a single simulation, their third one against 
PUCRS. 

The second most noActions were due to team BathTUB, roughly a fifth of those of 
team lampe. Python-DTU follows with half of that amount (i.e., ca. 4,000) and PUCRS 
with a little less than half of that again. 
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The actions that were received by the system could potentially fail due to a number of 
reasons. Here, we will have a look at the causes of failed actions and how often they were 
experienced by the teams. 

• failed_location: this happens whenever an agent tries to perform a location-specific 
action outside of that location, i.e., charging, assembling or buying. It happened only 
a single time to PUCRS and about 150 times to Python-DTU. 

• failed_unknown_item: this error occurs if an agent specifies a non-existing item as 
parameter to an action. It happened only a single time to PUCRS. 

• failed_unknown_facility: this is the same as above, but for facilities. It also occurred 
only once for team PUCRS. 

• failed_item_amount: this occurs whenever an agent tries to use more items for an 
action than it currently carries. It happened 13 times to PUCRS and about 12,000 and 
18,000 times for lampe and Python-DTU respectively, making it the most frequently 
occurring failure code. We can assume that both of the latter teams had a rather 
serious planning problem, as these numbers explain the previously seen counts of 
failed assemble actions. 

• failed_tools: whenever a group of agents tries an assemble action without carrying 
the necessary tools, this failure occurs. Again, this occurred to both lampe and 
Python-DTU, about 7,000 and 11,500 times respectively, making it the other big 
cause of failed assemble actions. As ‘failed_tools’ takes precedence over 
‘failed_item_amount’ and both cases could be satisfied at the same time, these 
numbers should be taken into account at the same time. 

• failed_capacity: this occurred whenever an agent did not have enough inventory 
space to obtain an item. It happened close to 600 times for each BathTUB and 
PUCRS. 

• failed_job_status: this code indicates that an agent tried to either bid for a job that’s 
not up for auctioning, or deliver items to a job which has already been completed by 
the opponent team. Concerning Flisvos 2016, this was their only self-inflicted failure 
and on top only two times, probably due to PUCRS completing a job faster. Vice 
versa, the same thing happened to PUCRS 239 times, almost only against Flisvos 
2016, indicating the same reason. The third and last team to experience the failure 
code was BathTUB with 85 actions. 

• failed_counterpart: this occurs whenever an agent tries to assist an assembling agent, 
but any requirement for assembling is not satisfied. Both teams who tried to 
assemble items, Python-DTU and lampe, experienced this failure on a minor scale, 
i.e., 146 and 328 times respectively. 

• failed_random: with a chance of 1%, any action might fail and get this result. By the 
nature of this failure, all teams had a similar rate of around 1% of their total actions. 

• useless: an agent causes this failure if it tries to deliver items towards the  
completion of a job, but does not possess any item that is needed. Both Flisvos 2016 
and Python-DTU did not cause this failure at all. BathTUB tried this only 35 times, 
lampe 74, and PUCRS a surprising 438 times. 
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Finally, the failure codes for invalid agent and job parameters, for an invalid location 
passed to the goto action, for being in the wrong facility, for attempting to assemble an 
item that cannot be assembled, for bidding on a job that is not an auction, and for using 
wrong parameter types were not encountered by any agent during the contest. 

4.4 Feature usage 

As already suggested, there are a number of features of the scenario which have been 
used only to a lesser degree or not at all. Since it was the first time the new scenario was 
played, it was not entirely clear how the participating teams would handle the different 
aspects. 

For one, the teams did not use the assemble action very much. In preparation of the 
contest, we balanced job rewards so that only by assembling items themselves the teams 
would be able to net a notable profit. However, in previous tests, the testing agents were 
not reliably earning money, which led us to the decision to increase base rewards so that 
buying assembled items in shops still remained a viable though unfavourable option. 

In addition, auction jobs were mostly neglected as well (or in case of BathTUB did 
not bring a clear advantage), possibly due to an abundance of regular jobs, which do not 
have a potential penalty attached (though of course any regular job comes with the risk of 
the opponent team completing it faster). 

The storage facilities were also not used. Probably, the teams were mostly able to 
deliver the items they bought for their jobs on demand, while stocking up on certain items 
up front would have been more risk than reward. 

Regarding jobs, the teams have used the post_job action, yet only to divert the 
opponent team’s attention and add to the information those agents have to process, 
instead of outsourcing some of their own work. 

5 Interesting simulations 

In this section, we will have a closer look at particular simulations and how they played 
out. We also try to carve out a few more details and to draw some conclusions. 

5.1 Flisvos 2016 vs. PUCRS – simulations 1 and 2 

The simulations of Flisvos 2016 against PUCRS were played on the second day of the 
contest. While the first simulation was won by Flisvos 2016, PUCRS was able to take the 
lead in the second one. Both results were relatively close, see e.g., the development of 
scores (money) pictured in Figures 11 and 12. 

In the first simulation, both teams struggled to make a profit at first. After 100 steps, 
PUCRS was first able to surpass the initial money of 50,000 (but only for a short time), 
while Flisvos 2016 was spending a lot of money overall. Around step 500, Flisvos 2016 
overtook PUCRS for the first time, only to lose the lead after about 50 steps. This did not 
change until around step 850, where both teams drew level and remained neck-and-neck 
for another 100 steps, gaining and spending similar amounts of money, with Flisvos 2016 
slightly in the lead. However, said team was able to complete one final job, rewarding 
them the certain win. 
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Figure 11 Money – Flisvos 2016 vs. PUCRS – simulation 1 of 3 (see online version for colours) 

 

Figure 12 Money – Flisvos 2016 vs. PUCRS – simulation 2 of 3 (see online version for colours) 
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By comparison, Flisvos 2016 completed four jobs more than PUCRS, earning over 
100,000 more. As both teams finished with a difference of only around 20,000, we may 
deduce that Flisvos 2016 also spent considerably more money. Also from the money 
charts we can see that the curves for PUCRS get flat at around step 900, while Flisvos 
2016 remains active until the simulation is over (an ever slightly decreasing curve 
indicating charging agents). However, this was one factor giving Flisvos 2016 the edge in 
the first simulation, as the last and critical job was completed while PUCRS was already 
in sleep mode. Also, in the second simulation, the final spendings of Flisvos 2016 were 
not crucial as PUCRS already had the first place when they halted their activities. 

5.2 BathTUB vs. lampe – simulations 1 and 2 

Each team chooses very few jobs to attempt, giving more weight to every individual 
decision. lampe struggles in the first simulation, barely balancing their account at the end. 
Successfully completing jobs takes them between 102 and 276 steps from the time they 
are posted with an average of 186 steps. It can not be ruled out that BathTUB beat them 
to some jobs with much shorter completion times between 66 and 99, averaging 72 steps. 
Towards the end BathTUB makes another big investment and secures a lead of 14,165 by 
delivering in time. 

The pattern is reversed in simulation 2. Here BathTUB completes five jobs in 54, 68, 
142, 206 and 218 steps. However only one of them turns out to be profitable, not 
allowing them to break even. Meanwhile lampe swiftly completes just two well-chosen 
jobs in 141 and 30 steps. Simulation 2 ends with lampe winning 38,638: 85,114. 

Figure 13 Money – lampe vs. Python-DTU – simulation 1 of 3 (see online version for colours) 
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5.3 lampe vs. Python-DTU – simulation 1 

This simulation is among the most interesting. Python-DTU changed their strategy and 
posted an astonishing number of 2,692 jobs. This not only revealed a weakness in the 
web monitor13 but might have had an effect on team lampe, which crashed in the first few 
steps with the result of not much happening for about 800 steps. Fortunately, team lampe 
found the bug, that was preventing them from reconnecting the agents, during the 
simulation and reconnected between steps 800 and 900. Unfortunately for them, this 
made their agents spend more money than Python-DTU in the last couple of steps, as 
depicted in Figure 13, ultimately accounting for their loss. 

6 Conclusions and outlook 

In conclusion, we have seen an interesting contest and a solid first run of the new 
scenario which we can use as a foundation for future improvements. Judging from the 
previous section, we need to put some effort into pushing the scenario into a more 
cooperative direction. One way of doing this is to put more emphasis on or even enforce 
the use of the assemble action and the related systems. A rework of this is already in 
progression and should become ready in early 2017. 

Also, the scenario still leaves room for more contention among the opposing teams. 
This year, the teams could mostly just work alongside each other without having much 
influence on the other team’s possibilities. 

As we are already looking forward to the next edition of the contest in 2017, we have 
to admit that our advertising and promotion efforts still leave room for improvement, to 
say the least. With a stagnating number of participants since 2013, which had its peak in 
2011, we have to take action to attract more contestants. Hopefully, this publication helps 
in this respect and gives us some visibility. Also, we will focus more on pushing for the 
use of our platform in teaching MAS. 

We conclude with a critical remark. It was our aim from the very beginning to 
eventually show the superiority of agent-based approaches in certain environments where 
autonomous behaviour of agents pays off. We were quite sure to easily develop scenarios 
where the use of agents would be not only natural, but also very beneficial in finding a 
good solution without using a classical, distributed but hard-coded algorithm developed 
for that particular scenario. We were looking forward to a solution that evolves naturally 
by the interplay among the autonomous agents. We were hoping that an underlying agent 
programming language can provide agent features suitable for allowing such an evolving 
solution. 

However, we never forbade that all agents share the same information or a 
programmer develops a classical distributed algorithm, where one agents is the master 
and all other agents are slaves steered by the master (a centralised approach). For our 
scenarios, a solution could, in principle, be hard-coded by hand (although we are not 
aware of such a solution). This is, obviously, against the philosophy of a truly  
agent-based paradigm. Our way to deal with this problem is, rather than forbidding such 
solutions, to develop scenarios where such unwanted approaches are very difficult or, 
perhaps, not possible at all (or at least not as good as agent-based solutions). 

At the same time, we are looking for a scenario that can be easily tested and does not 
have extremely difficult rules (just difficult solutions). After ten years of research, we 
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still have not found such a convincing scenario. Nor have we yet proved that agent-based 
approaches are clearly superior to other, sometimes even ad-hoc, approaches using 
traditional programming languages. This is related to the famous search for a killer 
application, as one of the referees pointed out. It may well be that such killer applications 
do not exist and that the advantage in using MAS technology only becomes apparent in 
other categories: reusability, maintenance, bug-freeness, the possibility to model-check 
agents, code running on different platforms, etc. 

A possible way to go is to consider many agents, not just a few, but hundreds or 
thousands of sophisticated agents – traditional approaches do not seem to perform well in 
such a situation. Moreover, with many interacting agents we might see some interesting 
behaviour evolve. 

We are also seriously considering to let participate more than two teams in the same 
simulation. The current scenario would provide for this naturally, however, the 
underlying technical system has evolved with only two teams in mind, making this 
change quite a challenge. 

Our ultimate vision is an agent platform that allows to deploy agents written in very 
different agent languages, using the specific features of them. For example it might be 
beneficial for BDI agents to solve very efficiently certain tasks, whereas planning agents 
based on some form of HTN could do the planning for them. Being able to re-use agents 
already developed (and based on different paradigms) would certainly push the envelope 
for applications of multi-agent systems. However, the price to pay is to standardise the 
communication and set up common protocols and interfaces for such agents. 
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Notes 
1 https://multiagentcontest.org. 
2 http://aichallenge.org/. 
3 http://aiolympics.ro/. 
4 http://sscaitournament.com/. 
5 http://ipc.icaps-conference.org/. 
6 http://www.robocup-logistics.org/sim-comp. 
7 http://games.stanford.edu/. 
8 http://tac.sics.se/. 
9 The 2014 contest was an “unofficial” edition (i.e., no publications and prizes, only glory) with 

no changes to 201. 
10 https://www.openstreetmap.org. 
11 Fortunately, only the web monitor had to be quickly patched to accommodate for the increased 

data volume. The MASSim server was able to handle the situation well. 
12 Due to the random generation of simulations, score (i.e., money) comparisons on the contest 

level can only serve as estimations. 
13 Increasing the JVM’s stack size for the monitor remedied the problem. 


