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1 Introduction 

The Flisvos multi-agent system will be described as it competed in the MAPC 2016 
contest and the following friendly matches. The team did not have an objective to try 
some specific multi-agent development methodology. The goal was to enjoy participation 
and achieve a very good result relative to the effort spent. This presentation is for anyone 
interested to learn how a multi-agent system was designed and implemented in short time 
and with high success. 

1.1 Implementation decisions 

The Flisvos multi-agent system (the system) was written in Python in order to ensure a 
robust and competitive implementation in short time by a single person working part-time 
on it. Key factors of robustness and effectiveness are proven stability of the language 
with almost no bugs, language brevity combined with expressiveness, language capability 
(supporting also object-oriented and functional programming), and the extensive libraries 
available. Also, in previous contests one team had used Python successfully. Before 
committing to Python, a multi-agent programming platform that is open source, stable, 
currently updated, with good and effective educational material, without many open 
issues, and with networking and xml processing capabilities at a minimum could not be 
found. Most agent oriented software gave the impression of being abandoned, not 
updated, and with no vibrant community. Two well known multi-agent development 
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platforms had major updates after June 2016 while contest coding was active. 
Furthermore, an examination of past contest literature and few papers available (Hess and 
Woller, 2013; Köster et al., 2012; Behrens et al., 2011; Pibil et al., 2011; Jensen and 
Buch, 2014), open source repositories, and stackoverflow questions showed such  
multi-agent systems presented a number of issues during development and needed effort 
to be used effectively. It was also disturbing that systems made with them often consisted 
of too many source code lines (from 2,000 to 8,000 lines), while some systems made with 
general programming languages needed less code for similar or better performance, and it 
was indicated that system performance depended mainly on implementation strategy, 
algorithms, and total effort spent rather than implementation language. The most 
important evaluation criterion for this team was the need to deliver a competitive and 
stable software product in short time and this does not imply anything about the potential 
or merits of such software, which I find interesting. Since the team participated for the 
first time and had no experience of usual multi-agent programming environments, it was 
decided to not experiment and go directly with a general programming language. This 
also allowed complete control of implementation by not being tied to some specific 
programming paradigm and the development of a platform for future contests. 

After the selection of Python, a few add-on packages were considered like pyDatalog 
(pyDatalog, 2016) for logic programming and Intellect (Intellect, 2012) a DSL and rules 
engine. They were not used because of the early discovery that the contest scenario could 
be handled easily and competitively with a subset of the available actions, especially 
excluding the novel assembly action. In case assembly was later deemed necessary, then a 
simple but capable enough hierarchical task network (HTN) planner (Nau, 2013) in 
Python (Pyhop, 2016) would be used. 

1.2 Agent actions 

Agents will goto from facility to facility and occasionally from random places to a 
facility if they were out of charge and needed service. Each agent, beyond the default skip 
when idle, will goto shops, buy items, and then goto a storage facility and deliver_job 
(partially or fully) for a job. On the move an agent may goto a charging station and 
charge and occasionally call_breakdown_service. A picture of an agent using the most 
common actions is shown in Figure 1. 

The actions of give/receive, which imply a carefully designed rendezvous, were 
thought useless, as also the store/retrieve actions. The reason is that it is more efficient in 
terms of elapsed steps for each agent to deliver individually (with optional charge or 
call_breakdown_service) than do a rendezvous/store in connection with other agents. The 
dump operation was thought of little use as there is a small number of products in the 
city, and if a product becomes an unused load (because of failing to complete a job), it 
can be used in a future time against a new job. Same for the assemble/assist_assemble 
actions because in all jobs all items needed can be found in at least one shop and in about 
50% of jobs the items can even be found in two or more shops. An assembly for an item 
means the loss of much time and money in gathering the required items/tools and doing 
the assembly process when it can be bought in less time and for less money from shops. 
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Figure 1 An agent doing two deliveries (see online version for colours) 

 

If we examine the formula (battery/10) * speed for each agent type, which gives the 
maximum range (150 for car, 125 for drone, 140 for motorcycle, 200 for truck), we see it 
is practically the same and almost spans the diagonal of the simulation maps (which 
ranges from 144 to 173 steps; and it is also reasonable that the facilities will rarely be  
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located exactly at the edges of the map). For this reason and because in the planning 
algorithm we can select the best agent to do an action based on speed/range and capacity, 
it was decided that all agents be general workers and no specific role assigned to any 
agent. Occasionally, the system will stop any work for a specific job and the agents 
working on it will abort if the job is not available (either the end time has been reached or 
the other team finished the job first) or no delivery has been made and a new job has 
arrived with almost the same items and higher reward, in which case the new job replaces 
the old one. 

The system works only with priced jobs reviewing them and selecting only a few to 
work on concurrently up to a configurable limit (usually 3). These jobs are called 
committed and the system makes all effort to complete them fast. For simplicity auction 
jobs and bid_for_job were left as a future addition. At random but almost regular 
intervals (semi-regular) one agent does post_job with lower reward compared to the cost 
of the job items in order to fool the opponent into working on it. 

1.3 Paper structure 

In the next sections, I will describe the details of the previous actions and the architecture 
as it played in the contest starting with an overview first, then the parts/modules, and 
finally the central control/planning logic. Also, some additional bug fixes and 
improvements will be described that were not possible to have available on the contest 
day but were completed one week later for the friendly matches (in fact, it is good luck 
that a working system was available on the contest day). These changes reflect what was 
expected to deliver, and though they do have a small impact individually, their sum 
makes for a much more effective system. The contest code was about 4,200 lines, and the 
final code was 4,500 lines (line count includes a lot of comments, blank lines and 
commented versions of code). 

2 Overall design 

There are 16 threads, each one representing one agent and running the same code. A 
separate module in each thread handles the network communication and the xml parsing 
of the incoming percept information. All communication is checked for errors or delays 
and for the correct format of messages at every step. In case of error, there is automatic 
attempt to reconnect and do all connection steps from start again (authorisation, etc.). 

Generic functions parse parts of the incoming xml document tree and convert each 
one to a mapping object (called dictionary in Python) with nested mappings that mirror 
the xml fragment. In certain cases extra keys are used to index entries, for example 
‘item_name’ is key for each product entry in the mapping of ‘products’. In order to ease 
significantly the code writing in accessing these mappings, a special enhancement was 
made to them to access the value of a key as an object attribute (the equivalent of an 
instance field in languages like Java). For example, instead of simulation[‘step’] one can 
simply write simulation.step and it is even possible to specify a long such chain, e.g., 
agent.view.simulation.step where agent is the agent thread’s object, view is an attribute 
which holds the recent action-request dictionary, simulation is the ‘simulation’ tag in the 
xml, and step is the ‘step’ attribute. All percept information is mapped automatically at 
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each step and is easily accessible in a unified manner during operation. There are two 
final mappings, the sim for the sim-start tree and the view for the request-action tree. 

The agents need to communicate their percepts, and in order to simplify development 
a shared storage strategy was used. Even if messaging was implemented, the result would 
still be the same. There is a shared mapping (imaginatively named shared) with one entry 
for each agent which contains a copy of the sim and view mappings and the job_op (the 
queue of actions to execute – more details in ‘the job queue’ chapter). There is also a 
number of common variables that are useful in operation and are shared with the 
collective name team variables. 

Each agent thread works in a cycle where it waits for a simulation percept/message, 
does some operations, and sends an action. Specifically 

• on sim-start, updates its sim entry in the shared dictionary 

• on sim-end, just prints the score and some statistics 

• on bye, stops working 

• on request-action, handles properly the result of the previous action, updates its view 
entry in the shared dictionary, and if it is not the last agent in the critical section that 
updates the shared/team variables, waits at a barrier, else executes the 
control/planning logic, and then wakes up all other agents waiting at the barrier; 
each agent after exiting the barrier reads from shared the new job_op and does what 
is appropriate to execute it. 

The control/planning logic is the heart of each agent and generates the actions that the 
agent will do. It is really the same for all agents and contains no randomised element, so 
all agents can execute it independently with the same result. This means that each agent 
can generate its own action and also know what other agents will do. There is implicit 
coordination so that when two or more agents are candidates to execute the same action, 
then a simple agent ranking principle is used to decide which agent performs it (the rank 
is simply the unique agent id) without costly communication overhead and duplication of 
agent work. We found later that this idea has been explored previously (Hindriks and 
Dix, 2013). 

In this implementation and for processing efficiency only (so the code runs 1× time 
instead of 16× times on a low-end personal CPU) the control/planning logic is run only 
by the last agent to enter the critical section and this agent then updates the shared/team 
variables and the job_op for all agents. This design is not centralised control really, and it 
can be easily modified to totally independent agents with a change of a few lines of code 
only and making a copy of the shared/team variables for each thread. 

The development had a target of system response time below 1.5 sec and this was a 
factor in changing or simplifying some algorithms discussed later. Care was taken to 
handle the situation with slow connections or slow CPU that would cause agents to start 
at different step numbers (e.g., half agents would start at step 0 and half at step 1) which 
if not handled can possibly stay the same for the whole simulation and can cause 
noAction events (events caused by slow response to simulation requests). In such a case, 
the agents that are a step behind are allowed to proceed and the others are blocked until 
all continue at the same step number. 

A considerable amount of the development effort (perhaps 50% but not unreasonable 
considering the two month time frame of this development) was spent on creating the 
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infrastructure for the communications, xml parsing, thread logic, and shared storage 
locking and to ensure it is robust and dependable. A big contribution to a good system 
performance comes from stability and robustness in operation (in fact there is no point in 
efficiency if there is no reliability). 

For the same reason there are assertions checked almost everywhere and defensive 
programming is employed. Defensive programming in the sense of the system continuing 
operation despite getting unforeseen percept input or the system being in states that were 
not thought of during development. For example, any division is coded to divide by 1 if 
the divisor is 0, many functions that must return some state or result are coded to always 
return a closest state or result that is legal. There are also extensive assertions (either as 
pre-conditions, post-conditions or invariants), but they never really signal an exception 
halting the code. Instead, the error is logged and in some cases recovered, trying to do 
something that will allow the software to keep operating, even if that leads to results that 
are inaccurate sometimes. An example case of inaccurate operation where defensive 
programming was employed a lot will be described later in ‘the jobs db’ chapter. 

Finally, quite a big amount of logging and statistics are recorded at each step for 
analysis and tuning of the system operation and certain information is summarised in a 
useful way and shown live during a contest. A very small indicative part is shown in 
Figure 2 (the log content will become more obvious later). 

Figure 2 Log output 

 

3 The parts/modules 

3.1 The job queue 

Each agent has a queue of actions to do. This is called job_op (in singular for historic 
development reasons but is really a queue containing many actions). This queue is simply 
a custom list with a few specialised methods, such as getting a string representation of the 
whole queue content, appending to the queue, getting the current and the next action. 
There is also a special drop method used when a decision has been made to drop the 
current sequence of actions that itself calls a on_action_drop method on the current 
action and gets a new queue to replace the entire queue. It is assumed that the current 
action knows best what has to be done to stop itself gracefully and efficiently and this 
may need a whole new sequence of actions. The job_op may be empty (or null). A typical 
log output showing the action queues of all agents is shown in Figure 3. 
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Figure 3 Agent action queues 

 

All actions descend from a template action. There are methods to get a string 
representation of the action, send the action, reset the action state so that the action can be 
sent again (useful in cases of failed_random), and to indicate if the action has to be 
repeated on every step until completion. There are also methods to check if the action is 
still active or has completed successfully or has failed, to update shared/team variables 
when an action completes successfully or fails, and to return a new sequence of actions to 
execute if the current action has to be stopped before completion (on_action_drop). 

The following action classes are defined for each action the system uses: 

• goto: it updates information needed by the steps cache system (see ‘the steps 
calculations and goto generation’ chapter) and updates the shop inventory when the 
agent enters a shop. The goto is failed if the battery charge becomes 0 (and only if 
the agent has not arrived at the destination). The on_action_drop sequence is a single 
abort action. 

The goto object is the only one that is not meant to be instantiated and appended to 
an action queue directly. Instead, there is a special method that generates the goto 
object and appends it to an action queue. This method may also generate extra goto 
objects for actions to goto to/from charging stations if needed. More about this in 
‘the steps calculations and goto generation’ chapter. 
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• service/charge: the on_action_drop sequence is a new service/charge action (the 
reason for this is that the system drops jobs not actions, which means that all action 
queues that relate to the job to be dropped have to be dropped, but an ongoing 
service/charge action should continue). 

• abort/buy/post_job 

• deliver_job: it checks the items to be delivered in jobs db (the database of job items 
– see ‘the jobs db’ chapter) in connection with the percept last action result and 
decides if this is a partial delivery or the job is completed (i.e., all items delivered) 
and if yes, it also drops all other system actions that are going on for this job. For 
reasons to be explained in ‘the jobs db’ chapter, a job may sometimes be completed 
earlier than expected by the system, so it is necessary to always check the last 
percept action result and also to drop any other active action queues associated with 
this job. 

3.2 The steps calculations and goto generation 

It is obvious that a competitive system must be able to estimate with some accuracy the 
time it takes to move from one place to another. Because I am not versed with the 
specific map format of the simulation and mapping software in general, an approximation 
method was used. All estimations are in units of simulation steps. 

No special map information is needed except for the map boundaries (lat/lon of the 
map square) and the true map centre (calculated from the map boundaries). 

Initially a direct estimate is made assuming plane geometry and using the Euclidean 
distance. The calculation is done in simulation cells (one cell is the distance measure in 
the simulation world) adjusted in size by the speed of the agent so the result is steps of 
simulation. If the agent is a drone, then the direct estimate is used as is. If the agent is any 
other vehicle, then the estimate is multiplied by a route factor (or detour index) which 
should be ~ 1.4 (Boscoe et al., 2012) but experience in this contest showed a best value of 
1.67. This is best in the sense that a few times the true distance is more than the estimated 
and most times is about the same or less and was determined after a series of test 
simulations. Exact accuracy is not needed for this application, an error of 10%–20% is 
tolerable. The important thing is to make the right decision to use or not use an 
intermediate charging station when going to a destination. 

As the simulation progresses, and for gotos between facilities only, the number of 
steps actually used is stored in a cache. The cache has a composite key containing the 
agent type (e.g., car, truck, etc., because the number of steps depends on agent speed) and 
the directional move, i.e., for a goto A → B there is one entry and another entry for a 
goto B → A (this is because tests showed that often the distance is different in the reverse 
direction; probably there are many roads connecting two points and some may be one 
directional only). The cache is first checked in the direction of the goto we are interested. 
If no entry is found, then it is checked in the reverse direction and finally if not found 
again, then the estimate described before is used. 

The cache should be able to provide very accurate distances soon, independent of the 
map. However, it was not as helpful as expected because it was not filled completely, i.e., 
not all agents did all possible routes in the simulation time. This was recognised early, 
but unfortunately no workaround was devised. In retrospect, an easy solution would be 
for the system to use the cache entry available from any agent role, except the drone, and 
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adjust the cache value. For example, if there is an entry for a route from a car (speed 3) 
and we want to estimate the steps for a truck (speed 2), then the 3/2 of the value should 
be used. Sometimes simple solutions easily escape the mind. 

There is a procedure that generates the goto actions needed in order to move from one 
facility to another and it is named creat (inspired by the well known Unix system call). 
This procedure may add extra gotos to and from an intermediate charging station. 

There are two strategies in deciding how to use charging stations. One is obviously to 
use them only as needed in the middle of the way to a facility. The other, and the one 
chosen, is to use them pre-emptively, i.e., even if not needed to arrive at the destination, 
so that on arrival there is always enough left charge to go to a nearby charging station on 
the way to the next facility. This approach is safer in the sense that there is less danger to 
run out of charge. Both approaches have the same total cost in the long run. A middle 
approach is to use a direct path always if the destination is a storage facility where we 
deliver. Unfortunately, this was not explored adequately and we cannot know how valid 
it is, but it has merit over the long run argument because the delivery part is the most 
critical part in the job process and must finish as soon as possible (after delivery the agent 
is free usually and not committed to a job so it can call breakdown service; a job 
commitment starts often in a shop where items are bought). 

creat uses two helper procedures. 

1 One selects a suitable charging station next to a destination. It first tries to find the 
nearest charging station from all the charging stations in the rectangle bounded by 
the destination and the centre of the map. The logic of this heuristic is to find a 
charging station that is on the way to most of the next destinations after this 
destination. If this fails, then the nearest of all charging stations is used. 

2 The other tries to find the best charging station from source to destination. Best is 
the one with the least total steps (including charging time steps; and in a tie the one 
nearest to start is chosen). In order to get a correct result, routes where there is 
enough charge to reach the charging station are examined first and then routes where 
there is not enough charge. For example, assume the battery has charge for 30 steps 
and charging station1 is 20 steps from start and 50 steps from destination for a total 
of 70 steps while charging station2 is 35 steps from start and 20 steps from 
destination for a total of 55 steps, then charging station1 must be selected over 
charging station2 even though it leads to more total steps because we cannot reach 
charging station2 without calling breakdown service. 

creat will always return a result even if the plan is not realistic and will not consider 
plans with more than one charging stations. The reason is both for reduced complexity 
and that in the majority of world maps one intermediate charging station is enough. If the 
plan is not feasible, the steps will reflect the true distance and can be used for comparison 
purposes with other plans. Also, if an unworkable plan is chosen it means there is no 
available workable plan with less steps and the comparison is still valid. 

In summary, the steps calculation system is considered adequate. Exact accuracy is 
not needed much but rather comparative accuracy, i.e., the ability to say that an agent will 
get faster to one place than another agent. This is done well enough, except in the cases 
of the cache effectiveness (as described before) and the delivery to storage (when we 
should go straight to the storage facility for delivery without an intermediate charging 
station if possible), where both did cost in jobs finished first by the opponent. 
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3.3 The jobs db 

The jobs db contains all necessary information for each job the system decides to work 
on. These jobs are also called committed because the system is committed to finish them 
as fast as possible. For each job it contains the pieces of items it has to deliver. A piece is 
simply a pair of (item name, item amount) that is the responsibility of a single specific 
agent to deliver. Each piece has a state: ON_BOARD if it is on board the agent (the piece 
may be already on board if it is a leftover of a previous job that was not completed in 
time or becomes on board after a buy action), BUY if it is about to be bought, 
DELIVERED if it has been delivered. The states for ON_BOARD and BUY imply that 
there is an active job_op with actions to deliver the on_board item or buy a new item, 
make it on_board, and then deliver it. Each piece amount is either the same amount as the 
job specifies for the item or smaller. 

Each jobs db entry is a hierarchical object structure where at the top is the job data 
like end step, reward, and storage facility to deliver. This contains items with name, 
amount, and delivered amount. Each item contains pieces with agent name, amount (of 
piece), and state. For each job there is extra computed information which is used in the 
control/planning algorithms: the number of distinct items and the total amount that is 
needed to complete the job. A printout of the structure is shown in Figure 4. 

Figure 4 Jobs db printout 

 

An important thing must be noted about this structure and its use in practice. It does not 
represent all the items an agent has on_board but only those needed for the job as 
planned by the system. This can have a very interesting consequence in some delivery 
scenarios. An agent may hold a piece for a job which is not planned by the system and is 
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not listed in this structure; e.g., many agents may have on board item0, but only agent1 is 
chosen to deliver and only its piece (item0, 3) is listed in the structure. Now it is possible 
that a second agent (agent2) that holds an unlisted piece (item0, 1) also holds a listed 
piece for the same job (e.g., a partial piece for item2) and so will do delivery for the same 
job too. This may happen for various reasons, one being that the system prefers to assign 
for delivery complete pieces (i.e., items at their entire amount) rather than partial pieces 
(of course if there was no whole piece available on any agent, then the system would take 
as many partial pieces as needed in order to complete the job). If the second agent 
(agent2) delivers first, it also delivers the unlisted piece which is hidden from the system 
and is not tracked at all. Then when the first agent (agent1) delivers, only the missing part 
of the piece is delivered really which is (item0, 2) and the job is completed. The system 
does not track all on_board pieces and does not adjust the pieces listed in the structure – 
it could list (item0, 1) for agent2 and (item0, 2) for agent1 – so in this example it has a 
wrong view on each delivery. 

However, it is not wrong entirely. Both agents would still need to deliver and the total 
delivered amount is correct. The agent actions to deliver are correct too. Adjusting the 
structure to reflect more correctly the delivery situation would need extra processing 
steps in already complicated procedures and would offer no increased benefit. It is a rare 
case of having a not so correct data structure that is effectively correct for the job. It is 
also a case were defensive programming was used a lot in manipulating this database. 

3.4 The jobs SPEC system 

The SPEC system (from SPECification) evaluates all new posted jobs and permanently 
ignores those that are not considered worthwhile. The correct operation of the SPEC 
system is fundamental to the success of the team. Because the SPEC system uses the total 
buy cost of all the items as a major factor in its selection, it gets active only when all 
shops have been visited and all item prices are known (item prices never change during 
the simulation). From then on, each new job is checked and a min, max, and estimated 
buy cost is calculated for all the items of the job. The estimated cost is a three-point or 
PERT estimation [Pinedo and Chao, (1999), chapter 4.3], i.e., 

min_ value max_ value 4 most_likely _ value
6

+ + ×  

where most_likely_value is currently selected as a configurable preset percentage point 
between min and max value. In practice there is consistently small difference between 
minimum and maximum cost and this estimate is a very good approximation of the true 
buy cost in operation. Of course the final buy cost can be much lower if existing items on 
board agents are used, but this would be extraordinary profit in accounting terms. Finally 
the job is ignored if any of the following is true. 

• steps remaining less than a limit (configurable and usually 63–120) 

• estimated cost greater than a limit (configurable as a percentage of reward and 
usually 70%–90%) 

• reward – estimated cost less than a limit (configurable and usually 2,000); this limit 
is thought of as a minimum of the charge/service costs and some profit remaining 
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• job has the encoded characteristics of a cookie job (see CC_op procedure in ‘the 
control/planning logic’ chapter). 

4 The control/planning logic 

4.1 The loop 

The control/planning logic is the control of each agent activity, and part of it is 
responsible for making job plans. It performs at each step the following operations in 
Figure 5. 

Figure 5 The loop 

 

For the jobs db, cleanup runs mainly to handle cases when a job has expired and check 
does consistency check (and just reports any errors it finds). 

fac_agents_update tracks which agents are located in each facility. It is used together 
with the tracking of which agents are going to each facility (which is maintained by the 
goto action class) to know which agents are covering each facility. We are mainly 
interested about shops in the algorithms, and a shop is covered by an agent if that agent is 
already inside the shop or is going to the shop. 

jobs_spec_update updates the jobs SPEC system. 
drop_jobs makes the decision and drops a committed job in jobs db if doing this is 

considered to be beneficial. It was added after the contest and just in time for the 
subsequent friendly matches. 

complete_jobs plans and schedules new actions using inactive agents in order to do 
new partial or full deliveries with intended target to complete committed jobs. 

new_jobs selects new jobs to commit to if the number of committed jobs has not 
reached the limit and plans and schedules the first actions for them using inactive agents 
(which actions may even complete these new jobs). 

explore_jobs plans and schedules new explores using inactive agents. An explore is 
simply a goto to a shop with desired target to have as many shops as possible covered by 
agents at all time (it also helps that in the contest the number of shops is roughly half the 
number of agents) and giving preference to most promising shops so that a 
complete_jobs/new_jobs will schedule a new job delivery as fast and as completely as 
possible. 
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service calls a battery recharge procedure for any inactive agent that has stalled (i.e., 
has no battery charge) and only if the remaining simulation steps are more than a 
configurable limit (usually 200). Evidence from the matches has shown that the service 
fee is trivial compared to other costs, and so this limit was rather high and should be less 
(perhaps about 50). The recharge procedure will schedule a call_breakdown_service or a 
normal charge action if the agent happens to be inside a charging station. service is not 
the only procedure that can schedule a call_breakdown_service/charge action; this may 
happen in any of the complete_jobs/new_jobs/explore_jobs procedures as part of their 
action planning if needed and with no limitation on the number of remaining steps. 

CC_op (or curious cookie job op) is a procedure that at regular random intervals (this 
means random intervals within a specific configurable range, usually 7 to 20 steps) posts 
a job with negative balance (cost of buying is less than reward) with the hope that the 
opponent team works on it and its performance is sabotaged. In order to speed up its 
development it relies on the SPEC database of posted jobs (by the simulation system and 
the opponent too) and selects the highest cost one which it posts again with the same 
items but with lower reward, a fixed destination storage, and a new number of steps to 
finish. The reward is a random number at around 43%–50% (configurable) of the buy 
cost of the items, the destination storage is the first storage facility always, the number of 
steps is a random number in a certain and big enough range of steps (configurable and 
usually 110–330 steps). The reward and number of steps are specifically selected to have 
certain properties that flag that these are fake jobs and signal the SPEC system to not 
consider them (so that screening is a bit faster and as an extra precaution that we do not 
get ourselves our own ‘trick cookie’). It is not believed that CC_op really tricked any 
opponent (at least this is my impression). The reason for this is that (beyond good 
calculations by the opponent) the selected job is the highest cost one among those posted 
which may be a fake job by the opponent with unusually huge number of items or other 
unrealistic parameters and so easily detectable too. More work should be done so that 
these jobs are hard to complete but realistic, generated autonomously, and as much 
similar to those posted by the simulation system and with higher reward, to almost 100% 
of the buy cost or a bit more, with the motive to make the opponent spend a lot of time 
with little benefit. The current reward factor of 50% was chosen so that in case the 
opponent completes the job and after paying, the total of our money is still a bit more 
than the opponent’s. This accounting-style logic was short-sighted. It is better in the end 
if we trick the opponent to spend effort and time on a job with little benefit and difficult 
to complete, thus allowing us to work on high benefit jobs. 

The order of the operations is important. For example, drop_jobs may remove a 
committed job making space for new_jobs later to commit to a better job. Even though 
drop_jobs knows which job is better than the dropped one, it does not do any job 
scheduling/action planning. Based on the principle of a single piece of code to do a 
specific operation, the new_jobs procedure is expected to find the same better job and 
schedule it. Another example of order importance is that complete_jobs uses the best 
inactive agents to complete committed jobs (our system priority); the remaining inactive 
agents will be considered for new_jobs and the last remaining ones for explore_jobs. 

In the next chapters the detailed workings of drop_jobs, explore_jobs and 
complete_jobs/new_jobs will be given. These call a common procedure to get the jobs to 
consider and the items needed to complete them with option to return all new jobs or all 
committed jobs (in which case, if there have been partial deliveries, it returns the items 
that have not been delivered completely yet, since the system can handle partial amount 
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deliveries of items too) or both. For new jobs, only jobs approved by the SPEC system 
are considered, and furthermore, an extra condition is to return jobs where all items are 
available in at least a configurable number of shops (usually 1, but could be 2 or more for 
increased chance of speedier completion). 

4.2 drop_jobs 

drop_jobs examines all new jobs against those committed jobs in jobs db for which there 
has not been any delivery yet and if some items of a new job are a subset of the items of a 
committed job (subset in the sense that every item of it is an item of the committed job 
and with lower or same amount) so that these items can be completed immediately, then 
drops this job if all the following conditions hold too. 

• the number of items is less than those of the committed job and at most a 
configurable limit (essentially the same limit used in new_jobs) 

• the items are available in a shop 

• the new reward is at least greater than the current reward by a configurable factor 
(usually 1.20 for the whole job multiplied by 1.30 for each item not completed) 

• the absolute difference in rewards is at least greater than a configurable limit 
(usually 2,000) 

• the new job ends later than the committed job and the steps available are at least a 
configurable limit (usually 63) 

The criteria really mimic a lot those used in the new_jobs procedure and the SPEC 
system and try to assert that the new job can be finished with higher reward and no more 
risk than the committed job. It is expected that the new_jobs procedure which will run 
later will select the new job and schedule it. A flaw of this logic is that it does not 
consider the location of the agents and the time needed to complete the current job vs. the 
time needed for the new job, but in any case in such a dynamic and fluid simulation 
world it might be more beneficial to delay a bit and deliver for a new job with higher 
benefit as much as it is risky to loose the current reward. 

A good drop_jobs is essential to good performance, but evaluation of the 
implementation at the matches showed that it kicked in rarely and had minimal benefit. In 
order for drop_jobs to be more effective, it should also have the capability to just drop a 
job even if a new job replacement is not available (or a new separate procedure be used 
for this functionality). This is the case when a partial delivery is needed to finish the job 
and the end time is soon approaching and no agent is yet scheduled for this delivery or 
the agents scheduled cannot really make it until the end time. In this case, a precious slot 
in the committed jobs database is held for many steps (perhaps 30–50) and this prohibits 
the system from working profitably on a new job. 

4.3 explore_jobs 

explore_jobs runs for all available agents (not busy) and all available shops (shops which 
are not covered already by a minimum configurable limit of agents, usually 2). 

A list is created with one entry for each available shop with the total distinct items 
that can be completed and the total item amount and volume of all items of all jobs 
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(committed and new) that can be bought. For a shop that has been visited by agents the 
latest inventory is used. For shops that have never been visited an estimation is made as a 
configurable percentage of the amount of all items (usually 50% for the total amount and 
40% for the distinct items). This list is sorted so that shops that have highest total distinct 
items, amount and volume for committed jobs are first and then follow those for new jobs. 
The first shop in this list is considered to be explored by available agents. Then this shop 
is removed and the loop is repeated for the next shop in the list until there are no more 
shops or no more available agents. 

Within the loop for each shop, certain key factors are computed for each available 
agent and an agent is chosen with the lowest value for all factors (i.e., the factors are 
simply a composite sort key). The factors are, from first to last 

• percentage of available agent capacity that has to be used for items needed for 
committed jobs, this percentage is not used exactly as is but is rounded to a multiple 
of a factor (usually 25%) so that all agents are sorted in buckets/classes of capacity 
usage (it is wrong to choose entirely on small differences in capacity) 

• 0/1 if ‘not in shop’/’in a shop’ already, thus giving preference to agents not in a shop 

• amount of available capacity (the negative value is used so higher available capacity 
sorts lower; added on day 2 of contest) 

• ratio of steps to go to the shop/available battery charge, this expresses in effect the 
number of steps as a percentage of the range of the agent (added on day 2 of contest, 
on day 1 just the number of steps was used). 

If the agent chosen happens to be already in this shop, then this shop is ignored. An extra 
check is done that the agent is not in any shop or if it is in another shop, then it is not a 
single one (alone) and there are items in the shop under evaluation to complete committed 
jobs. If the agent passes the check, it is scheduled to go to this new shop and is removed 
from the list of available agents; if not, no more agents are considered. 

As is easily seen the key factors are: if the agent is in shop or not, if there is real 
estimated benefit in visiting this shop (benefit in items towards completing committed 
jobs), and agent capacity. This configuration tries to setup agents able to carry the highest 
load for committed jobs first and minimise unnecessary moves, especially moves where 
two or more agents exchange their position within their shops, because if a new good job 
arrives and there is no available agent to buy items (because it is moving), then there is 
delay in completing the job which is the worst thing in the performance measure of the 
system. Agent range is really the last factor because this is an exploration step but 
certainly cannot be ignored in the case of a committed job when an agent is needed to 
move to a shop to buy items and complete it. 

Some tweaking in the order and choice of factors could be considered of course, such 
as specifying the range before available capacity (since in practice most items are needed 
in small quantity and since after first selection based on capacity percentage and the in 
shop flag, then range begins to matter a lot) and also expressing it in classes (or buckets 
of value, e.g., range 0–9 as value 0, range 10–19 as value 1, etc.). Unfortunately, there 
was no time to test effectively such variations. A correct test would have team A to 
compete against B and team B change each time the factors and compare the results. All 
tests would need to start with all agents at the same position and all items, shop 
inventories, and facility locations be the same every time. But it was not known how to 
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setup this, and the limited development time excluded this fine tuning exploration. 
Instead, tests were run where team A and B run the same code and the logs were 
examined for the agent distribution on shops by both teams (with target of making it even 
and matched to load capacity) and the number of total explores done (with target of 
minimising them). The tests could never be exhaustive of course and were guided by 
human intuition. 

4.4 complete_jobs/new_jobs 

Both call a procedure core_setup_jobs with a flag that selects an initial list of jobs to be 
only committed jobs or new jobs (for new jobs it runs only if the current number of 
committed jobs is up to a configurable limit, usually 3). 

core_setup_jobs runs for all available agents (not busy) a preparation step for each 
job and item and finds out 

• which agents have already on board the item needed for the job and only if the agent 
can goto to the delivery storage facility within the steps left for the job 

• which agents inside a shop can buy the item and only if the agent can goto to the 
delivery storage facility within the steps left for the job. 

These lists have an entry for each agent and item and are sorted in order by: 

• multiples of steps to go to the delivery facility (usually 10) so the agents are 
considered in classes and not absolutely by exact number of steps (accuracy is not 
that good for such exactness and the exact smallest number of steps should not be the 
sole factor in choosing an agent to deliver jobs) Note: 1 

• amount of item towards the job (negative number is used so that it sorts lower) 

• cost per item (or 0 in the case of items on board) 

• agent name. 

Note: 1: it was added later in the friendly matches. In the contest this was not available 
and the sort was only by cost and amount of item first (in this order and the amount was 
the true value and not the negative value). This order was chosen so that the small 
amount items on board are consumed first and agents may not get full on leftover items 
(since the dump action was not implemented), but it may lead to more than one agents 
work on the same item and contest experience proved that it was not really needed much 
as the item amounts were small and there were few leftover items anyway. 

A new delivery task for an agent starts always in a shop if it has to buy an item or 
anywhere if all the items are on board already. Starting with the initial list of jobs, a loop 
runs corresponding to the pseudocode in Figure 6 and with an exhaustive search finds for 
each job the best plan to complete it (partially or fully), then creates a priority list of the 
jobs from which a top-priority job is chosen to commit to, and the loop repeats with the 
remaining jobs until the limit of committed jobs is reached. 
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Figure 6 Core_setup_jobs 

 

Notes: Note: 1: the logic to get the partial amount that fits within the agent’s  
available capacity was not available during the contest (the item was just not 
considered at all). 
Note:2: available on day 2; in retrospect, this step should be done only for new 
jobs since for committed jobs it could severely restrict their chance to complete 
them faster or at all. 
Note:3: available on day 2. 

The priority list gives preference first to jobs that complete immediately or have the 
highest numbers of completed items, then to those of higher benefit (reward – buy cost), 
and then to jobs with more steps available until completion. The highest-priority entry 
(the first one in the sort order) is selected as a job to be scheduled. Specifically for each  
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agent in the on_board and buy lists of this job a new piece entry is made in the jobs db, a 
buy action is queued for agents buying, a service/charge action is queued in case the 
agent has no charge, and then a goto task (by creat) to the delivery facility is queued (all 
these are skipped if the agent happens to be already there, e.g., for a previous delivery). 
Finally, the agent is removed from the list of available agents and the job is removed 
from the list of jobs too. 

The agents used in the schedule are not available for later jobs which may not be 
scheduled and thus get delayed. So the selection order of jobs is important. In no way 
does the system do a search (exhaustive or A* or any other graph search) for a best 
overall plan considering all possibilities for job orders and agents that can be used (e.g., it 
cannot use a single agent for many jobs or it may use more agents than necessary in rare 
situations). For a single job the algorithm is able to schedule many agents each with many 
items or even a single agent with all the items (with a mixture of on board items and 
items to buy) in the fastest and most reliable way (reliable in the sense that there is less 
risk of delayed completion). 

Unfortunately, there was a shameful bug in the implementation and during the contest 
the priority list consisted of the same values for all jobs (the values of the last job), so no 
real ordering was done. The situation was saved from being disastrous by the fact that 
usually there were few potential jobs competing at the same time. Nevertheless, this bug 
had an impact and this was proved by the greatly improved performance in subsequent 
friendly matches when it had been fixed. 

5 Conclusions 

The system described was finished in two months by one person and had great 
performance in the contest and an unbeatable performance in the following friendly 
matches after the bug fixes and improvements discussed before. 

If we try to describe it using multi-agent terminology, we can say that it is a 
goal/utility-based multi-agent system [Russell and Norvig, (2009), section 2.4; Dix, 
2012] utilising a perceive-think-act control loop updating the state of the agent’s world 
and embodying heuristics and decision algorithms to generate a whole plan of many 
actions or a single action. 

The planning of the system is embodied in explore_jobs and core_setup_jobs. Both 
work together. The first explores shops and attaches agents to shops to be ready for their 
next job. The second schedules job delivery action sequences when it is appropriate using 
effectively those agents in shops. An extra benefit of using this double setup of 
exploration and job scheduling is that the exact inventory of the shop is known and 
correct decisions using availability of items can be made. 

Both use a heuristic-type selection algorithm enhanced with a search algorithm for a 
single job in core_setup_jobs. The heuristic is in the form of a priority queue with a 
specifically designed priority order that mirrors the performance measure. The 
performance measure is money, but since the team competes in the scale of time for a 
limited number of jobs (not only number of jobs available but also number of high 
benefit jobs it can complete successfully), it is important to make a good selection of jobs 
to work on and complete them fast. Therefore, the performance measure includes all 
these criteria in an appropriate manifestation in all priority queues referred before and in 
the job selection process. 
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The above resemble a lot the machinery of heuristics of scheduling algorithms 
especially those used in job shop scheduling [Pinedo and Chao, (1999), chapters 3, 5]. 
Indeed, the contest scenario is mostly a scheduling problem (minus the assembly action). 
This machinery uses a composite dispatching rule (or priority rule) as used in 
explore_jobs and a combination of an exact search solution for a smaller sub-problem 
and a composite dispatch rule for the greater problem as used in core_setup_jobs. 

Finally, it was learned that domain knowledge is very important in designing a  
multi-agent system and that most work is careful software engineering. 
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Appendix 

Questionnaire by the organisers 

1.1 Participants and their background 

What was your motivation to participate in the contest? 
I had participated in the past in similar ACM Queue ICPC challenges, which 
always excited me, and while I was researching about Clausthal TU in 
Wikipedia and saw a mention of this contest I made a decision on a whim to 
participate! 

What is the history of your group? 
The group was new. 

What is your field of research? Which work therein is related? 
I am not a professional researcher (unfortunately) though I keep in close touch 
with advancements in Computer Science and Mathematics and was once IEEE 
Computer Referee. I have many interests and AI is one of them. 

1.2 The cold hard facts 

How much time did you invest in the contest (for programming, organising your group, 
other)? 

A rough estimate is 250 man hours. 

How many lines of code did you produce for your final agent team? 
4,200 for contest days and 4,500 for friendly matches. 

How many people were involved? 
One. 

When did you start working on your agents? 
The first create date of project files is 20/6/2016 and the first backup was on 
28/6/2016. 

1.3 Strategies and details 

What is the main strategy of your agent team? 
It’s twofold: to select jobs and complete them as fast as possible using inactive 
agents holding items or stationed in a shop where they can buy items, and then 
to spread any remaining inactive agents over shops so that they are ready for 
future jobs. 
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How does the team work together? (coordination, information sharing, …) 
There is no specific coordination programmed rather common code (as a 
common mind) is run that makes decisions for all agents. There is implicit 
coordination by predicting what other agents will do and arbitrating agent work 
by their rank. 

What are critical components of your team? 
The good working of the code implementing the strategy expressed before. 

Can your agents change their behaviour during runtime? If so, what triggers the changes? 
There is no specific programmed or reflex behaviour except when there is a 
planned sequence of actions in order to deliver towards a job. This can be 
dropped when it is decided that a new job has more benefit to work on it than 
the current job. 

Did you make changes to the team during the contest? 
Yes, there were some changes from first to second day. They were not effective 
(mainly because of a serious bug that was not noticed). 

How do you organise your agents? Do you use e.g., hierarchies? Is your organisation 
implicit or explicit? 

There are no hierarchies. All agents do the same tasks. 

Is most of your agents’ behaviour emergent on an individual or team level? 
Most of the behaviour is emergent on a team level. 

If your agents perform some planning, how many steps do they plan ahead? 
Planning is for a task. The longest is a delivery task when inside a shop with 
buy items, call_breakdown_service, goto charging station, charge, goto 
delivery station, deliver_job, for a total of 9 actions (for 4 buys) where each one 
takes one or many simulation steps. 

If you have a perceive-think-act cycle, how is it synchronised with the server? 
Perceive starts with request-action and its percept payload and then follow 
think and act within the allowed time limit; and the cycle repeats. 

1.4 Scenario specifics 

How do your agents decide which jobs to fulfil? 
The decision is made using a few criteria based on efficacy (how complete the 
job can be delivered), benefit (reward – buy cost), and number of available 
steps. 

Do your agents make use of less used scenario aspects (e.g., dumping items, putting items 
in a storage)? 

No. 

Do you have different strategies for the different roles? 
No, all vehicle roles function the same. 
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Do your agents form ad-hoc teams for each job? 
No, there is a single team really. The fact that at certain times a few agents 
work for the same job does not constitute an ad-hoc team really. 

What do your agents do when they do not pursue any job? 
They either stay idle inside a shop or they move to a shop with job potential 
that matches better their load capacity and in a way that all agents are evenly 
spread over all shops. 

1.5 And the moral of it is … 

What did you learn from participating in the contest? 
I verified many software engineering teachings and how difficult it is to 
properly make a 4,000+ line code work right and updated knowledge on many 
algorithms. I also confirmed for the nth time that there is always a competitor 
with similar or same strategy. 

What are the strong and weak points of your team? 
The strong point is that it is efficient and adaptable. The weak point is that 
some design/configuration decisions depend on the simulation environment. 
This is a weak point but not an inadequacy as an agent system is designed for a 
specific environment. 

How viable were your chosen programming language, methodology, tools, and 
algorithms? 

The chosen language was perfect as it enabled quick development and code 
refactoring. The fact that it is slower than other common languages was no 
problem as it is still fast enough and when it got slow it forced a reviewing and 
improving of the algorithms. The methodology was good as it could handle the 
scenario well. 

Did you encounter new problems during the contest? 
None. 

Did playing against other agent teams bring about new insights on your own agents? 
Yes, definitely! It’s different when playing, the mind is more productive. 

What would you improve if you wanted to participate in the same contest a week from 
now (or next year)? 

The one week improvements have already been implemented. The one year 
improvements have also been described at specific places. The main design 
would rather stay the same. 

Which aspect of your team cost you the most time? 
The initial setup of threaded agents, xml message handling, networking code, 
and locking took precious time at the start of the project and later with various 
code refactorings. The same for the jobs database. Also, all these amounted to 
about a quarter of the total code. 
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What can be improved regarding the contest/scenario for next year? 
For the contest: friendly matches before and after the contest, it should be 
stated more specifically what is allowed/forbidden for the agent 
implementations and the matches, e.g., restarts, remote control, use of web-
services, etc. 

For the scenario: a single feature relating to a specific research area should be 
promoted and the rest of the scenario should stay exactly the same (the idea is 
to promote a specific research but not make participation very costly for 
teams). 

Really some random ideas: require totally independent agents and require 
communication through some protocol of peer-to-peer communication (or 
localised broadcast only; this is a capability needed much in the future, e.g., 
connected cars), I would like to see the concept of cooperation between 
opponent teams promoted and rewarded too (yes! but I had no time to think of 
a good scenario enhancement for this purpose). 

Why did your team perform as it did? Why did the other teams perform better/worse than 
you did? 

For this team, it’s the cumulative result of a robust implementation and a good 
overall design that is matched to the simulation environment (a design utilising 
not the best but good and effective solutions). For the other teams, I cannot 
really reason about their performance, but excluding the element of 
randomness/luck (which is strong indeed), there is a feeling that some 
performed worse because the code was not reliable or because they did not 
judge well the simulation environment and they did not tune their agents (i.e., 
their agents were not able to select the best actions, e.g., unnecessary use of 
assembly). Some teams performed better because they were faster in 
completing many of the same jobs as this team, and so they had good or better 
effective planning. 


