

 Int. J. Agent-Oriented Software Engineering, Vol. 6, No. 1, 2018 35

 Copyright © 2018 Inderscience Enterprises Ltd.

The Flisvos-2016 multi-agent system

Evangelos I. Sarmas
Email: eis@sarmas.com

Abstract: This paper presents the workings of the Flisvos-2016 multi-agent
system that participated in the multi-agent programming contest MAPC 2016
of Clausthal TU.

Keywords: Flisvos; multi-agent system; multi-agent programming; contest;
MAPC.

Reference to this paper should be made as follows: Sarmas, E.I. (2018)
‘The Flisvos-2016 multi-agent system’, Int. J. Agent-Oriented Software
Engineering, Vol. 6, No. 1, pp.35–57.

Biographical notes: Evangelos I. Sarmas holds an MSc in Computer Science
from Rutgers University, an MBA and a BSc in Physics. He is a professional
Computer Scientist and has been Oracle Database Beta tester. He has
many interests, mainly in algorithms, artificial intelligence, bioinformatics,
mathematics, programming techniques, programming languages and their
implementation, databases, operating systems, computer architecture, and
software engineering.

1 Introduction

The Flisvos multi-agent system will be described as it competed in the MAPC 2016
contest and the following friendly matches. The team did not have an objective to try
some specific multi-agent development methodology. The goal was to enjoy participation
and achieve a very good result relative to the effort spent. This presentation is for anyone
interested to learn how a multi-agent system was designed and implemented in short time
and with high success.

1.1 Implementation decisions

The Flisvos multi-agent system (the system) was written in Python in order to ensure a
robust and competitive implementation in short time by a single person working part-time
on it. Key factors of robustness and effectiveness are proven stability of the language
with almost no bugs, language brevity combined with expressiveness, language capability
(supporting also object-oriented and functional programming), and the extensive libraries
available. Also, in previous contests one team had used Python successfully. Before
committing to Python, a multi-agent programming platform that is open source, stable,
currently updated, with good and effective educational material, without many open
issues, and with networking and xml processing capabilities at a minimum could not be
found. Most agent oriented software gave the impression of being abandoned, not
updated, and with no vibrant community. Two well known multi-agent development

 36 E.I. Sarmas

platforms had major updates after June 2016 while contest coding was active.
Furthermore, an examination of past contest literature and few papers available (Hess and
Woller, 2013; Köster et al., 2012; Behrens et al., 2011; Pibil et al., 2011; Jensen and
Buch, 2014), open source repositories, and stackoverflow questions showed such
multi-agent systems presented a number of issues during development and needed effort
to be used effectively. It was also disturbing that systems made with them often consisted
of too many source code lines (from 2,000 to 8,000 lines), while some systems made with
general programming languages needed less code for similar or better performance, and it
was indicated that system performance depended mainly on implementation strategy,
algorithms, and total effort spent rather than implementation language. The most
important evaluation criterion for this team was the need to deliver a competitive and
stable software product in short time and this does not imply anything about the potential
or merits of such software, which I find interesting. Since the team participated for the
first time and had no experience of usual multi-agent programming environments, it was
decided to not experiment and go directly with a general programming language. This
also allowed complete control of implementation by not being tied to some specific
programming paradigm and the development of a platform for future contests.

After the selection of Python, a few add-on packages were considered like pyDatalog
(pyDatalog, 2016) for logic programming and Intellect (Intellect, 2012) a DSL and rules
engine. They were not used because of the early discovery that the contest scenario could
be handled easily and competitively with a subset of the available actions, especially
excluding the novel assembly action. In case assembly was later deemed necessary, then a
simple but capable enough hierarchical task network (HTN) planner (Nau, 2013) in
Python (Pyhop, 2016) would be used.

1.2 Agent actions

Agents will goto from facility to facility and occasionally from random places to a
facility if they were out of charge and needed service. Each agent, beyond the default skip
when idle, will goto shops, buy items, and then goto a storage facility and deliver_job
(partially or fully) for a job. On the move an agent may goto a charging station and
charge and occasionally call_breakdown_service. A picture of an agent using the most
common actions is shown in Figure 1.

The actions of give/receive, which imply a carefully designed rendezvous, were
thought useless, as also the store/retrieve actions. The reason is that it is more efficient in
terms of elapsed steps for each agent to deliver individually (with optional charge or
call_breakdown_service) than do a rendezvous/store in connection with other agents. The
dump operation was thought of little use as there is a small number of products in the
city, and if a product becomes an unused load (because of failing to complete a job), it
can be used in a future time against a new job. Same for the assemble/assist_assemble
actions because in all jobs all items needed can be found in at least one shop and in about
50% of jobs the items can even be found in two or more shops. An assembly for an item
means the loss of much time and money in gathering the required items/tools and doing
the assembly process when it can be bought in less time and for less money from shops.

 The Flisvos-2016 multi-agent system 37

Figure 1 An agent doing two deliveries (see online version for colours)

If we examine the formula (battery/10) * speed for each agent type, which gives the
maximum range (150 for car, 125 for drone, 140 for motorcycle, 200 for truck), we see it
is practically the same and almost spans the diagonal of the simulation maps (which
ranges from 144 to 173 steps; and it is also reasonable that the facilities will rarely be

 38 E.I. Sarmas

located exactly at the edges of the map). For this reason and because in the planning
algorithm we can select the best agent to do an action based on speed/range and capacity,
it was decided that all agents be general workers and no specific role assigned to any
agent. Occasionally, the system will stop any work for a specific job and the agents
working on it will abort if the job is not available (either the end time has been reached or
the other team finished the job first) or no delivery has been made and a new job has
arrived with almost the same items and higher reward, in which case the new job replaces
the old one.

The system works only with priced jobs reviewing them and selecting only a few to
work on concurrently up to a configurable limit (usually 3). These jobs are called
committed and the system makes all effort to complete them fast. For simplicity auction
jobs and bid_for_job were left as a future addition. At random but almost regular
intervals (semi-regular) one agent does post_job with lower reward compared to the cost
of the job items in order to fool the opponent into working on it.

1.3 Paper structure

In the next sections, I will describe the details of the previous actions and the architecture
as it played in the contest starting with an overview first, then the parts/modules, and
finally the central control/planning logic. Also, some additional bug fixes and
improvements will be described that were not possible to have available on the contest
day but were completed one week later for the friendly matches (in fact, it is good luck
that a working system was available on the contest day). These changes reflect what was
expected to deliver, and though they do have a small impact individually, their sum
makes for a much more effective system. The contest code was about 4,200 lines, and the
final code was 4,500 lines (line count includes a lot of comments, blank lines and
commented versions of code).

2 Overall design

There are 16 threads, each one representing one agent and running the same code. A
separate module in each thread handles the network communication and the xml parsing
of the incoming percept information. All communication is checked for errors or delays
and for the correct format of messages at every step. In case of error, there is automatic
attempt to reconnect and do all connection steps from start again (authorisation, etc.).

Generic functions parse parts of the incoming xml document tree and convert each
one to a mapping object (called dictionary in Python) with nested mappings that mirror
the xml fragment. In certain cases extra keys are used to index entries, for example
‘item_name’ is key for each product entry in the mapping of ‘products’. In order to ease
significantly the code writing in accessing these mappings, a special enhancement was
made to them to access the value of a key as an object attribute (the equivalent of an
instance field in languages like Java). For example, instead of simulation[‘step’] one can
simply write simulation.step and it is even possible to specify a long such chain, e.g.,
agent.view.simulation.step where agent is the agent thread’s object, view is an attribute
which holds the recent action-request dictionary, simulation is the ‘simulation’ tag in the
xml, and step is the ‘step’ attribute. All percept information is mapped automatically at

 The Flisvos-2016 multi-agent system 39

each step and is easily accessible in a unified manner during operation. There are two
final mappings, the sim for the sim-start tree and the view for the request-action tree.

The agents need to communicate their percepts, and in order to simplify development
a shared storage strategy was used. Even if messaging was implemented, the result would
still be the same. There is a shared mapping (imaginatively named shared) with one entry
for each agent which contains a copy of the sim and view mappings and the job_op (the
queue of actions to execute – more details in ‘the job queue’ chapter). There is also a
number of common variables that are useful in operation and are shared with the
collective name team variables.

Each agent thread works in a cycle where it waits for a simulation percept/message,
does some operations, and sends an action. Specifically

• on sim-start, updates its sim entry in the shared dictionary

• on sim-end, just prints the score and some statistics

• on bye, stops working

• on request-action, handles properly the result of the previous action, updates its view
entry in the shared dictionary, and if it is not the last agent in the critical section that
updates the shared/team variables, waits at a barrier, else executes the
control/planning logic, and then wakes up all other agents waiting at the barrier;
each agent after exiting the barrier reads from shared the new job_op and does what
is appropriate to execute it.

The control/planning logic is the heart of each agent and generates the actions that the
agent will do. It is really the same for all agents and contains no randomised element, so
all agents can execute it independently with the same result. This means that each agent
can generate its own action and also know what other agents will do. There is implicit
coordination so that when two or more agents are candidates to execute the same action,
then a simple agent ranking principle is used to decide which agent performs it (the rank
is simply the unique agent id) without costly communication overhead and duplication of
agent work. We found later that this idea has been explored previously (Hindriks and
Dix, 2013).

In this implementation and for processing efficiency only (so the code runs 1× time
instead of 16× times on a low-end personal CPU) the control/planning logic is run only
by the last agent to enter the critical section and this agent then updates the shared/team
variables and the job_op for all agents. This design is not centralised control really, and it
can be easily modified to totally independent agents with a change of a few lines of code
only and making a copy of the shared/team variables for each thread.

The development had a target of system response time below 1.5 sec and this was a
factor in changing or simplifying some algorithms discussed later. Care was taken to
handle the situation with slow connections or slow CPU that would cause agents to start
at different step numbers (e.g., half agents would start at step 0 and half at step 1) which
if not handled can possibly stay the same for the whole simulation and can cause
noAction events (events caused by slow response to simulation requests). In such a case,
the agents that are a step behind are allowed to proceed and the others are blocked until
all continue at the same step number.

A considerable amount of the development effort (perhaps 50% but not unreasonable
considering the two month time frame of this development) was spent on creating the

 40 E.I. Sarmas

infrastructure for the communications, xml parsing, thread logic, and shared storage
locking and to ensure it is robust and dependable. A big contribution to a good system
performance comes from stability and robustness in operation (in fact there is no point in
efficiency if there is no reliability).

For the same reason there are assertions checked almost everywhere and defensive
programming is employed. Defensive programming in the sense of the system continuing
operation despite getting unforeseen percept input or the system being in states that were
not thought of during development. For example, any division is coded to divide by 1 if
the divisor is 0, many functions that must return some state or result are coded to always
return a closest state or result that is legal. There are also extensive assertions (either as
pre-conditions, post-conditions or invariants), but they never really signal an exception
halting the code. Instead, the error is logged and in some cases recovered, trying to do
something that will allow the software to keep operating, even if that leads to results that
are inaccurate sometimes. An example case of inaccurate operation where defensive
programming was employed a lot will be described later in ‘the jobs db’ chapter.

Finally, quite a big amount of logging and statistics are recorded at each step for
analysis and tuning of the system operation and certain information is summarised in a
useful way and shown live during a contest. A very small indicative part is shown in
Figure 2 (the log content will become more obvious later).

Figure 2 Log output

3 The parts/modules

3.1 The job queue

Each agent has a queue of actions to do. This is called job_op (in singular for historic
development reasons but is really a queue containing many actions). This queue is simply
a custom list with a few specialised methods, such as getting a string representation of the
whole queue content, appending to the queue, getting the current and the next action.
There is also a special drop method used when a decision has been made to drop the
current sequence of actions that itself calls a on_action_drop method on the current
action and gets a new queue to replace the entire queue. It is assumed that the current
action knows best what has to be done to stop itself gracefully and efficiently and this
may need a whole new sequence of actions. The job_op may be empty (or null). A typical
log output showing the action queues of all agents is shown in Figure 3.

 The Flisvos-2016 multi-agent system 41

Figure 3 Agent action queues

All actions descend from a template action. There are methods to get a string
representation of the action, send the action, reset the action state so that the action can be
sent again (useful in cases of failed_random), and to indicate if the action has to be
repeated on every step until completion. There are also methods to check if the action is
still active or has completed successfully or has failed, to update shared/team variables
when an action completes successfully or fails, and to return a new sequence of actions to
execute if the current action has to be stopped before completion (on_action_drop).

The following action classes are defined for each action the system uses:

• goto: it updates information needed by the steps cache system (see ‘the steps
calculations and goto generation’ chapter) and updates the shop inventory when the
agent enters a shop. The goto is failed if the battery charge becomes 0 (and only if
the agent has not arrived at the destination). The on_action_drop sequence is a single
abort action.

The goto object is the only one that is not meant to be instantiated and appended to
an action queue directly. Instead, there is a special method that generates the goto
object and appends it to an action queue. This method may also generate extra goto
objects for actions to goto to/from charging stations if needed. More about this in
‘the steps calculations and goto generation’ chapter.

 42 E.I. Sarmas

• service/charge: the on_action_drop sequence is a new service/charge action (the
reason for this is that the system drops jobs not actions, which means that all action
queues that relate to the job to be dropped have to be dropped, but an ongoing
service/charge action should continue).

• abort/buy/post_job

• deliver_job: it checks the items to be delivered in jobs db (the database of job items
– see ‘the jobs db’ chapter) in connection with the percept last action result and
decides if this is a partial delivery or the job is completed (i.e., all items delivered)
and if yes, it also drops all other system actions that are going on for this job. For
reasons to be explained in ‘the jobs db’ chapter, a job may sometimes be completed
earlier than expected by the system, so it is necessary to always check the last
percept action result and also to drop any other active action queues associated with
this job.

3.2 The steps calculations and goto generation

It is obvious that a competitive system must be able to estimate with some accuracy the
time it takes to move from one place to another. Because I am not versed with the
specific map format of the simulation and mapping software in general, an approximation
method was used. All estimations are in units of simulation steps.

No special map information is needed except for the map boundaries (lat/lon of the
map square) and the true map centre (calculated from the map boundaries).

Initially a direct estimate is made assuming plane geometry and using the Euclidean
distance. The calculation is done in simulation cells (one cell is the distance measure in
the simulation world) adjusted in size by the speed of the agent so the result is steps of
simulation. If the agent is a drone, then the direct estimate is used as is. If the agent is any
other vehicle, then the estimate is multiplied by a route factor (or detour index) which
should be ~ 1.4 (Boscoe et al., 2012) but experience in this contest showed a best value of
1.67. This is best in the sense that a few times the true distance is more than the estimated
and most times is about the same or less and was determined after a series of test
simulations. Exact accuracy is not needed for this application, an error of 10%–20% is
tolerable. The important thing is to make the right decision to use or not use an
intermediate charging station when going to a destination.

As the simulation progresses, and for gotos between facilities only, the number of
steps actually used is stored in a cache. The cache has a composite key containing the
agent type (e.g., car, truck, etc., because the number of steps depends on agent speed) and
the directional move, i.e., for a goto A → B there is one entry and another entry for a
goto B → A (this is because tests showed that often the distance is different in the reverse
direction; probably there are many roads connecting two points and some may be one
directional only). The cache is first checked in the direction of the goto we are interested.
If no entry is found, then it is checked in the reverse direction and finally if not found
again, then the estimate described before is used.

The cache should be able to provide very accurate distances soon, independent of the
map. However, it was not as helpful as expected because it was not filled completely, i.e.,
not all agents did all possible routes in the simulation time. This was recognised early,
but unfortunately no workaround was devised. In retrospect, an easy solution would be
for the system to use the cache entry available from any agent role, except the drone, and

 The Flisvos-2016 multi-agent system 43

adjust the cache value. For example, if there is an entry for a route from a car (speed 3)
and we want to estimate the steps for a truck (speed 2), then the 3/2 of the value should
be used. Sometimes simple solutions easily escape the mind.

There is a procedure that generates the goto actions needed in order to move from one
facility to another and it is named creat (inspired by the well known Unix system call).
This procedure may add extra gotos to and from an intermediate charging station.

There are two strategies in deciding how to use charging stations. One is obviously to
use them only as needed in the middle of the way to a facility. The other, and the one
chosen, is to use them pre-emptively, i.e., even if not needed to arrive at the destination,
so that on arrival there is always enough left charge to go to a nearby charging station on
the way to the next facility. This approach is safer in the sense that there is less danger to
run out of charge. Both approaches have the same total cost in the long run. A middle
approach is to use a direct path always if the destination is a storage facility where we
deliver. Unfortunately, this was not explored adequately and we cannot know how valid
it is, but it has merit over the long run argument because the delivery part is the most
critical part in the job process and must finish as soon as possible (after delivery the agent
is free usually and not committed to a job so it can call breakdown service; a job
commitment starts often in a shop where items are bought).

creat uses two helper procedures.

1 One selects a suitable charging station next to a destination. It first tries to find the
nearest charging station from all the charging stations in the rectangle bounded by
the destination and the centre of the map. The logic of this heuristic is to find a
charging station that is on the way to most of the next destinations after this
destination. If this fails, then the nearest of all charging stations is used.

2 The other tries to find the best charging station from source to destination. Best is
the one with the least total steps (including charging time steps; and in a tie the one
nearest to start is chosen). In order to get a correct result, routes where there is
enough charge to reach the charging station are examined first and then routes where
there is not enough charge. For example, assume the battery has charge for 30 steps
and charging station1 is 20 steps from start and 50 steps from destination for a total
of 70 steps while charging station2 is 35 steps from start and 20 steps from
destination for a total of 55 steps, then charging station1 must be selected over
charging station2 even though it leads to more total steps because we cannot reach
charging station2 without calling breakdown service.

creat will always return a result even if the plan is not realistic and will not consider
plans with more than one charging stations. The reason is both for reduced complexity
and that in the majority of world maps one intermediate charging station is enough. If the
plan is not feasible, the steps will reflect the true distance and can be used for comparison
purposes with other plans. Also, if an unworkable plan is chosen it means there is no
available workable plan with less steps and the comparison is still valid.

In summary, the steps calculation system is considered adequate. Exact accuracy is
not needed much but rather comparative accuracy, i.e., the ability to say that an agent will
get faster to one place than another agent. This is done well enough, except in the cases
of the cache effectiveness (as described before) and the delivery to storage (when we
should go straight to the storage facility for delivery without an intermediate charging
station if possible), where both did cost in jobs finished first by the opponent.

 44 E.I. Sarmas

3.3 The jobs db

The jobs db contains all necessary information for each job the system decides to work
on. These jobs are also called committed because the system is committed to finish them
as fast as possible. For each job it contains the pieces of items it has to deliver. A piece is
simply a pair of (item name, item amount) that is the responsibility of a single specific
agent to deliver. Each piece has a state: ON_BOARD if it is on board the agent (the piece
may be already on board if it is a leftover of a previous job that was not completed in
time or becomes on board after a buy action), BUY if it is about to be bought,
DELIVERED if it has been delivered. The states for ON_BOARD and BUY imply that
there is an active job_op with actions to deliver the on_board item or buy a new item,
make it on_board, and then deliver it. Each piece amount is either the same amount as the
job specifies for the item or smaller.

Each jobs db entry is a hierarchical object structure where at the top is the job data
like end step, reward, and storage facility to deliver. This contains items with name,
amount, and delivered amount. Each item contains pieces with agent name, amount (of
piece), and state. For each job there is extra computed information which is used in the
control/planning algorithms: the number of distinct items and the total amount that is
needed to complete the job. A printout of the structure is shown in Figure 4.

Figure 4 Jobs db printout

An important thing must be noted about this structure and its use in practice. It does not
represent all the items an agent has on_board but only those needed for the job as
planned by the system. This can have a very interesting consequence in some delivery
scenarios. An agent may hold a piece for a job which is not planned by the system and is

 The Flisvos-2016 multi-agent system 45

not listed in this structure; e.g., many agents may have on board item0, but only agent1 is
chosen to deliver and only its piece (item0, 3) is listed in the structure. Now it is possible
that a second agent (agent2) that holds an unlisted piece (item0, 1) also holds a listed
piece for the same job (e.g., a partial piece for item2) and so will do delivery for the same
job too. This may happen for various reasons, one being that the system prefers to assign
for delivery complete pieces (i.e., items at their entire amount) rather than partial pieces
(of course if there was no whole piece available on any agent, then the system would take
as many partial pieces as needed in order to complete the job). If the second agent
(agent2) delivers first, it also delivers the unlisted piece which is hidden from the system
and is not tracked at all. Then when the first agent (agent1) delivers, only the missing part
of the piece is delivered really which is (item0, 2) and the job is completed. The system
does not track all on_board pieces and does not adjust the pieces listed in the structure –
it could list (item0, 1) for agent2 and (item0, 2) for agent1 – so in this example it has a
wrong view on each delivery.

However, it is not wrong entirely. Both agents would still need to deliver and the total
delivered amount is correct. The agent actions to deliver are correct too. Adjusting the
structure to reflect more correctly the delivery situation would need extra processing
steps in already complicated procedures and would offer no increased benefit. It is a rare
case of having a not so correct data structure that is effectively correct for the job. It is
also a case were defensive programming was used a lot in manipulating this database.

3.4 The jobs SPEC system

The SPEC system (from SPECification) evaluates all new posted jobs and permanently
ignores those that are not considered worthwhile. The correct operation of the SPEC
system is fundamental to the success of the team. Because the SPEC system uses the total
buy cost of all the items as a major factor in its selection, it gets active only when all
shops have been visited and all item prices are known (item prices never change during
the simulation). From then on, each new job is checked and a min, max, and estimated
buy cost is calculated for all the items of the job. The estimated cost is a three-point or
PERT estimation [Pinedo and Chao, (1999), chapter 4.3], i.e.,

min_ value max_ value 4 most_likely _ value
6

+ + ×

where most_likely_value is currently selected as a configurable preset percentage point
between min and max value. In practice there is consistently small difference between
minimum and maximum cost and this estimate is a very good approximation of the true
buy cost in operation. Of course the final buy cost can be much lower if existing items on
board agents are used, but this would be extraordinary profit in accounting terms. Finally
the job is ignored if any of the following is true.

• steps remaining less than a limit (configurable and usually 63–120)

• estimated cost greater than a limit (configurable as a percentage of reward and
usually 70%–90%)

• reward – estimated cost less than a limit (configurable and usually 2,000); this limit
is thought of as a minimum of the charge/service costs and some profit remaining

 46 E.I. Sarmas

• job has the encoded characteristics of a cookie job (see CC_op procedure in ‘the
control/planning logic’ chapter).

4 The control/planning logic

4.1 The loop

The control/planning logic is the control of each agent activity, and part of it is
responsible for making job plans. It performs at each step the following operations in
Figure 5.

Figure 5 The loop

For the jobs db, cleanup runs mainly to handle cases when a job has expired and check
does consistency check (and just reports any errors it finds).

fac_agents_update tracks which agents are located in each facility. It is used together
with the tracking of which agents are going to each facility (which is maintained by the
goto action class) to know which agents are covering each facility. We are mainly
interested about shops in the algorithms, and a shop is covered by an agent if that agent is
already inside the shop or is going to the shop.

jobs_spec_update updates the jobs SPEC system.
drop_jobs makes the decision and drops a committed job in jobs db if doing this is

considered to be beneficial. It was added after the contest and just in time for the
subsequent friendly matches.

complete_jobs plans and schedules new actions using inactive agents in order to do
new partial or full deliveries with intended target to complete committed jobs.

new_jobs selects new jobs to commit to if the number of committed jobs has not
reached the limit and plans and schedules the first actions for them using inactive agents
(which actions may even complete these new jobs).

explore_jobs plans and schedules new explores using inactive agents. An explore is
simply a goto to a shop with desired target to have as many shops as possible covered by
agents at all time (it also helps that in the contest the number of shops is roughly half the
number of agents) and giving preference to most promising shops so that a
complete_jobs/new_jobs will schedule a new job delivery as fast and as completely as
possible.

 The Flisvos-2016 multi-agent system 47

service calls a battery recharge procedure for any inactive agent that has stalled (i.e.,
has no battery charge) and only if the remaining simulation steps are more than a
configurable limit (usually 200). Evidence from the matches has shown that the service
fee is trivial compared to other costs, and so this limit was rather high and should be less
(perhaps about 50). The recharge procedure will schedule a call_breakdown_service or a
normal charge action if the agent happens to be inside a charging station. service is not
the only procedure that can schedule a call_breakdown_service/charge action; this may
happen in any of the complete_jobs/new_jobs/explore_jobs procedures as part of their
action planning if needed and with no limitation on the number of remaining steps.

CC_op (or curious cookie job op) is a procedure that at regular random intervals (this
means random intervals within a specific configurable range, usually 7 to 20 steps) posts
a job with negative balance (cost of buying is less than reward) with the hope that the
opponent team works on it and its performance is sabotaged. In order to speed up its
development it relies on the SPEC database of posted jobs (by the simulation system and
the opponent too) and selects the highest cost one which it posts again with the same
items but with lower reward, a fixed destination storage, and a new number of steps to
finish. The reward is a random number at around 43%–50% (configurable) of the buy
cost of the items, the destination storage is the first storage facility always, the number of
steps is a random number in a certain and big enough range of steps (configurable and
usually 110–330 steps). The reward and number of steps are specifically selected to have
certain properties that flag that these are fake jobs and signal the SPEC system to not
consider them (so that screening is a bit faster and as an extra precaution that we do not
get ourselves our own ‘trick cookie’). It is not believed that CC_op really tricked any
opponent (at least this is my impression). The reason for this is that (beyond good
calculations by the opponent) the selected job is the highest cost one among those posted
which may be a fake job by the opponent with unusually huge number of items or other
unrealistic parameters and so easily detectable too. More work should be done so that
these jobs are hard to complete but realistic, generated autonomously, and as much
similar to those posted by the simulation system and with higher reward, to almost 100%
of the buy cost or a bit more, with the motive to make the opponent spend a lot of time
with little benefit. The current reward factor of 50% was chosen so that in case the
opponent completes the job and after paying, the total of our money is still a bit more
than the opponent’s. This accounting-style logic was short-sighted. It is better in the end
if we trick the opponent to spend effort and time on a job with little benefit and difficult
to complete, thus allowing us to work on high benefit jobs.

The order of the operations is important. For example, drop_jobs may remove a
committed job making space for new_jobs later to commit to a better job. Even though
drop_jobs knows which job is better than the dropped one, it does not do any job
scheduling/action planning. Based on the principle of a single piece of code to do a
specific operation, the new_jobs procedure is expected to find the same better job and
schedule it. Another example of order importance is that complete_jobs uses the best
inactive agents to complete committed jobs (our system priority); the remaining inactive
agents will be considered for new_jobs and the last remaining ones for explore_jobs.

In the next chapters the detailed workings of drop_jobs, explore_jobs and
complete_jobs/new_jobs will be given. These call a common procedure to get the jobs to
consider and the items needed to complete them with option to return all new jobs or all
committed jobs (in which case, if there have been partial deliveries, it returns the items
that have not been delivered completely yet, since the system can handle partial amount

 48 E.I. Sarmas

deliveries of items too) or both. For new jobs, only jobs approved by the SPEC system
are considered, and furthermore, an extra condition is to return jobs where all items are
available in at least a configurable number of shops (usually 1, but could be 2 or more for
increased chance of speedier completion).

4.2 drop_jobs

drop_jobs examines all new jobs against those committed jobs in jobs db for which there
has not been any delivery yet and if some items of a new job are a subset of the items of a
committed job (subset in the sense that every item of it is an item of the committed job
and with lower or same amount) so that these items can be completed immediately, then
drops this job if all the following conditions hold too.

• the number of items is less than those of the committed job and at most a
configurable limit (essentially the same limit used in new_jobs)

• the items are available in a shop

• the new reward is at least greater than the current reward by a configurable factor
(usually 1.20 for the whole job multiplied by 1.30 for each item not completed)

• the absolute difference in rewards is at least greater than a configurable limit
(usually 2,000)

• the new job ends later than the committed job and the steps available are at least a
configurable limit (usually 63)

The criteria really mimic a lot those used in the new_jobs procedure and the SPEC
system and try to assert that the new job can be finished with higher reward and no more
risk than the committed job. It is expected that the new_jobs procedure which will run
later will select the new job and schedule it. A flaw of this logic is that it does not
consider the location of the agents and the time needed to complete the current job vs. the
time needed for the new job, but in any case in such a dynamic and fluid simulation
world it might be more beneficial to delay a bit and deliver for a new job with higher
benefit as much as it is risky to loose the current reward.

A good drop_jobs is essential to good performance, but evaluation of the
implementation at the matches showed that it kicked in rarely and had minimal benefit. In
order for drop_jobs to be more effective, it should also have the capability to just drop a
job even if a new job replacement is not available (or a new separate procedure be used
for this functionality). This is the case when a partial delivery is needed to finish the job
and the end time is soon approaching and no agent is yet scheduled for this delivery or
the agents scheduled cannot really make it until the end time. In this case, a precious slot
in the committed jobs database is held for many steps (perhaps 30–50) and this prohibits
the system from working profitably on a new job.

4.3 explore_jobs

explore_jobs runs for all available agents (not busy) and all available shops (shops which
are not covered already by a minimum configurable limit of agents, usually 2).

A list is created with one entry for each available shop with the total distinct items
that can be completed and the total item amount and volume of all items of all jobs

 The Flisvos-2016 multi-agent system 49

(committed and new) that can be bought. For a shop that has been visited by agents the
latest inventory is used. For shops that have never been visited an estimation is made as a
configurable percentage of the amount of all items (usually 50% for the total amount and
40% for the distinct items). This list is sorted so that shops that have highest total distinct
items, amount and volume for committed jobs are first and then follow those for new jobs.
The first shop in this list is considered to be explored by available agents. Then this shop
is removed and the loop is repeated for the next shop in the list until there are no more
shops or no more available agents.

Within the loop for each shop, certain key factors are computed for each available
agent and an agent is chosen with the lowest value for all factors (i.e., the factors are
simply a composite sort key). The factors are, from first to last

• percentage of available agent capacity that has to be used for items needed for
committed jobs, this percentage is not used exactly as is but is rounded to a multiple
of a factor (usually 25%) so that all agents are sorted in buckets/classes of capacity
usage (it is wrong to choose entirely on small differences in capacity)

• 0/1 if ‘not in shop’/’in a shop’ already, thus giving preference to agents not in a shop

• amount of available capacity (the negative value is used so higher available capacity
sorts lower; added on day 2 of contest)

• ratio of steps to go to the shop/available battery charge, this expresses in effect the
number of steps as a percentage of the range of the agent (added on day 2 of contest,
on day 1 just the number of steps was used).

If the agent chosen happens to be already in this shop, then this shop is ignored. An extra
check is done that the agent is not in any shop or if it is in another shop, then it is not a
single one (alone) and there are items in the shop under evaluation to complete committed
jobs. If the agent passes the check, it is scheduled to go to this new shop and is removed
from the list of available agents; if not, no more agents are considered.

As is easily seen the key factors are: if the agent is in shop or not, if there is real
estimated benefit in visiting this shop (benefit in items towards completing committed
jobs), and agent capacity. This configuration tries to setup agents able to carry the highest
load for committed jobs first and minimise unnecessary moves, especially moves where
two or more agents exchange their position within their shops, because if a new good job
arrives and there is no available agent to buy items (because it is moving), then there is
delay in completing the job which is the worst thing in the performance measure of the
system. Agent range is really the last factor because this is an exploration step but
certainly cannot be ignored in the case of a committed job when an agent is needed to
move to a shop to buy items and complete it.

Some tweaking in the order and choice of factors could be considered of course, such
as specifying the range before available capacity (since in practice most items are needed
in small quantity and since after first selection based on capacity percentage and the in
shop flag, then range begins to matter a lot) and also expressing it in classes (or buckets
of value, e.g., range 0–9 as value 0, range 10–19 as value 1, etc.). Unfortunately, there
was no time to test effectively such variations. A correct test would have team A to
compete against B and team B change each time the factors and compare the results. All
tests would need to start with all agents at the same position and all items, shop
inventories, and facility locations be the same every time. But it was not known how to

 50 E.I. Sarmas

setup this, and the limited development time excluded this fine tuning exploration.
Instead, tests were run where team A and B run the same code and the logs were
examined for the agent distribution on shops by both teams (with target of making it even
and matched to load capacity) and the number of total explores done (with target of
minimising them). The tests could never be exhaustive of course and were guided by
human intuition.

4.4 complete_jobs/new_jobs

Both call a procedure core_setup_jobs with a flag that selects an initial list of jobs to be
only committed jobs or new jobs (for new jobs it runs only if the current number of
committed jobs is up to a configurable limit, usually 3).

core_setup_jobs runs for all available agents (not busy) a preparation step for each
job and item and finds out

• which agents have already on board the item needed for the job and only if the agent
can goto to the delivery storage facility within the steps left for the job

• which agents inside a shop can buy the item and only if the agent can goto to the
delivery storage facility within the steps left for the job.

These lists have an entry for each agent and item and are sorted in order by:

• multiples of steps to go to the delivery facility (usually 10) so the agents are
considered in classes and not absolutely by exact number of steps (accuracy is not
that good for such exactness and the exact smallest number of steps should not be the
sole factor in choosing an agent to deliver jobs) Note: 1

• amount of item towards the job (negative number is used so that it sorts lower)

• cost per item (or 0 in the case of items on board)

• agent name.

Note: 1: it was added later in the friendly matches. In the contest this was not available
and the sort was only by cost and amount of item first (in this order and the amount was
the true value and not the negative value). This order was chosen so that the small
amount items on board are consumed first and agents may not get full on leftover items
(since the dump action was not implemented), but it may lead to more than one agents
work on the same item and contest experience proved that it was not really needed much
as the item amounts were small and there were few leftover items anyway.

A new delivery task for an agent starts always in a shop if it has to buy an item or
anywhere if all the items are on board already. Starting with the initial list of jobs, a loop
runs corresponding to the pseudocode in Figure 6 and with an exhaustive search finds for
each job the best plan to complete it (partially or fully), then creates a priority list of the
jobs from which a top-priority job is chosen to commit to, and the loop repeats with the
remaining jobs until the limit of committed jobs is reached.

 The Flisvos-2016 multi-agent system 51

Figure 6 Core_setup_jobs

Notes: Note: 1: the logic to get the partial amount that fits within the agent’s
available capacity was not available during the contest (the item was just not
considered at all).
Note:2: available on day 2; in retrospect, this step should be done only for new
jobs since for committed jobs it could severely restrict their chance to complete
them faster or at all.
Note:3: available on day 2.

The priority list gives preference first to jobs that complete immediately or have the
highest numbers of completed items, then to those of higher benefit (reward – buy cost),
and then to jobs with more steps available until completion. The highest-priority entry
(the first one in the sort order) is selected as a job to be scheduled. Specifically for each

 52 E.I. Sarmas

agent in the on_board and buy lists of this job a new piece entry is made in the jobs db, a
buy action is queued for agents buying, a service/charge action is queued in case the
agent has no charge, and then a goto task (by creat) to the delivery facility is queued (all
these are skipped if the agent happens to be already there, e.g., for a previous delivery).
Finally, the agent is removed from the list of available agents and the job is removed
from the list of jobs too.

The agents used in the schedule are not available for later jobs which may not be
scheduled and thus get delayed. So the selection order of jobs is important. In no way
does the system do a search (exhaustive or A* or any other graph search) for a best
overall plan considering all possibilities for job orders and agents that can be used (e.g., it
cannot use a single agent for many jobs or it may use more agents than necessary in rare
situations). For a single job the algorithm is able to schedule many agents each with many
items or even a single agent with all the items (with a mixture of on board items and
items to buy) in the fastest and most reliable way (reliable in the sense that there is less
risk of delayed completion).

Unfortunately, there was a shameful bug in the implementation and during the contest
the priority list consisted of the same values for all jobs (the values of the last job), so no
real ordering was done. The situation was saved from being disastrous by the fact that
usually there were few potential jobs competing at the same time. Nevertheless, this bug
had an impact and this was proved by the greatly improved performance in subsequent
friendly matches when it had been fixed.

5 Conclusions

The system described was finished in two months by one person and had great
performance in the contest and an unbeatable performance in the following friendly
matches after the bug fixes and improvements discussed before.

If we try to describe it using multi-agent terminology, we can say that it is a
goal/utility-based multi-agent system [Russell and Norvig, (2009), section 2.4; Dix,
2012] utilising a perceive-think-act control loop updating the state of the agent’s world
and embodying heuristics and decision algorithms to generate a whole plan of many
actions or a single action.

The planning of the system is embodied in explore_jobs and core_setup_jobs. Both
work together. The first explores shops and attaches agents to shops to be ready for their
next job. The second schedules job delivery action sequences when it is appropriate using
effectively those agents in shops. An extra benefit of using this double setup of
exploration and job scheduling is that the exact inventory of the shop is known and
correct decisions using availability of items can be made.

Both use a heuristic-type selection algorithm enhanced with a search algorithm for a
single job in core_setup_jobs. The heuristic is in the form of a priority queue with a
specifically designed priority order that mirrors the performance measure. The
performance measure is money, but since the team competes in the scale of time for a
limited number of jobs (not only number of jobs available but also number of high
benefit jobs it can complete successfully), it is important to make a good selection of jobs
to work on and complete them fast. Therefore, the performance measure includes all
these criteria in an appropriate manifestation in all priority queues referred before and in
the job selection process.

 The Flisvos-2016 multi-agent system 53

The above resemble a lot the machinery of heuristics of scheduling algorithms
especially those used in job shop scheduling [Pinedo and Chao, (1999), chapters 3, 5].
Indeed, the contest scenario is mostly a scheduling problem (minus the assembly action).
This machinery uses a composite dispatching rule (or priority rule) as used in
explore_jobs and a combination of an exact search solution for a smaller sub-problem
and a composite dispatch rule for the greater problem as used in core_setup_jobs.

Finally, it was learned that domain knowledge is very important in designing a
multi-agent system and that most work is careful software engineering.

Acknowledgements

I wish to thank the organisers and sponsors for a very interesting contest and I am eager
to see the next year revisions and hopefully participate again.

References
Behrens, T., Dix, J., Köster, M. and Schlesinger, F. (2011) Multi-Agent Programming Contest 2011

Edition Evaluation and Team Descriptions [online] https://www.in.tu-clausthal.de/fileadmin/
homes/techreports/ifi1202behrens.pdf (accessed January 2017).

Boscoe, F.P., Henry, K.A. and Zdeb, M.S. (2012) ‘A nationwide comparison of driving distance
versus straight-line distance to hospitals’, The Professional Geographer, Vol. 64, No. 2,
pp.188–196, doi: 10.1080/00330124.2011.583586 [online] https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3835347 (accessed November 2016).

Dix, J. (2012) Lecture Notes: Multiagent Systems I, Clausthal TU [online] https://www.in.tu-
clausthal.de/uploads/media/Multiagent_Systems_I-2012.pdf (accessed November 2016).

Hess, A.V. and Woller, O.G. (2013) Multi-Agent Systems and Agent-Oriented Programming, BSc
Thesis, Technical University of Denmark, DTU, Lyngby [online] http://www2.imm.dtu.dk/
pubdb/views/edoc_download.php/6608/pdf/imm6608.pdf (accessed January 2017).

Hindriks, K.V. and Dix, J. (2013) ‘GOAL: a multi-agent programming language applied to an
exploration game’, in Shehory, O. and Sturm, A. (Eds.): Research Directions Agent-Oriented
Software Engineering, pp.112–136 [online] https://multiagentcontest.org/publications/
AppliedGOAL.pdf (accessed January 2017).

Intellect (2012) [online] https://pypi.python.org/pypi/Intellect/ (accessed November 2016).
Jensen, R. and Buch, B. (2014) Multi-Agent Programming in Jason, BSc Thesis, Technical

University of Denmark, DTU, Lyngby [online] http://www2.imm.dtu.dk/pubdb/views/
edoc_download.php/6798/pdf/imm6798.pdf (accessed January 2017).

Köster, M., Schlesinger, F. and Dix, J. (2012) The Multi-Agent Programming Contest 2012 Edition
Evaluation and Team Descriptions [online] https://www.in.tu-clausthal.de/fileadmin/homes/
techreports/ifi1301koester.pdf (accessed January 2017).

Nau, D. (2013) ‘Game Applications of HTN Planning with State Variables’, Keynote talk at ICAPS
Workshop on Planning in Games 2013 [online] http://www.cs.umd.edu/~nau/papers/
nau2013game.pdf (accessed November 2016).

Pibil, R., Novak, P., Brom, C. and Gemrot, J. (2011) ‘Notes on pragmatic agent-programming
with Jason’, Ninth International Workshop on Programming Multi-Agent Systems (ProMAS
2011), pp.55–70 [online] http://artemis.ms.mff.cuni.cz/main/papers/jason-lessons-revised-
final_01.pdf (accessed January 2017).

Pinedo, M. and Chao, X. (1999) Operations Scheduling with Applications in Manufacturing and
Services, Irwin/McGraw-Hill, Singapore.

pyDatalog (2016) [online] https://sites.google.com/site/pydatalog/ (accessed November 2016).

 54 E.I. Sarmas

Pyhop (2016) [online] https://bitbucket.org/dananau/pyhop/ (accessed November 2016).
Russell, S.J. and Norvig, P. (2009) Artificial Intelligence: A Modern Approach, 3rd ed., Pearson.

Appendix

Questionnaire by the organisers

1.1 Participants and their background

What was your motivation to participate in the contest?
I had participated in the past in similar ACM Queue ICPC challenges, which
always excited me, and while I was researching about Clausthal TU in
Wikipedia and saw a mention of this contest I made a decision on a whim to
participate!

What is the history of your group?
The group was new.

What is your field of research? Which work therein is related?
I am not a professional researcher (unfortunately) though I keep in close touch
with advancements in Computer Science and Mathematics and was once IEEE
Computer Referee. I have many interests and AI is one of them.

1.2 The cold hard facts

How much time did you invest in the contest (for programming, organising your group,
other)?

A rough estimate is 250 man hours.

How many lines of code did you produce for your final agent team?
4,200 for contest days and 4,500 for friendly matches.

How many people were involved?
One.

When did you start working on your agents?
The first create date of project files is 20/6/2016 and the first backup was on
28/6/2016.

1.3 Strategies and details

What is the main strategy of your agent team?
It’s twofold: to select jobs and complete them as fast as possible using inactive
agents holding items or stationed in a shop where they can buy items, and then
to spread any remaining inactive agents over shops so that they are ready for
future jobs.

 The Flisvos-2016 multi-agent system 55

How does the team work together? (coordination, information sharing, …)
There is no specific coordination programmed rather common code (as a
common mind) is run that makes decisions for all agents. There is implicit
coordination by predicting what other agents will do and arbitrating agent work
by their rank.

What are critical components of your team?
The good working of the code implementing the strategy expressed before.

Can your agents change their behaviour during runtime? If so, what triggers the changes?
There is no specific programmed or reflex behaviour except when there is a
planned sequence of actions in order to deliver towards a job. This can be
dropped when it is decided that a new job has more benefit to work on it than
the current job.

Did you make changes to the team during the contest?
Yes, there were some changes from first to second day. They were not effective
(mainly because of a serious bug that was not noticed).

How do you organise your agents? Do you use e.g., hierarchies? Is your organisation
implicit or explicit?

There are no hierarchies. All agents do the same tasks.

Is most of your agents’ behaviour emergent on an individual or team level?
Most of the behaviour is emergent on a team level.

If your agents perform some planning, how many steps do they plan ahead?
Planning is for a task. The longest is a delivery task when inside a shop with
buy items, call_breakdown_service, goto charging station, charge, goto
delivery station, deliver_job, for a total of 9 actions (for 4 buys) where each one
takes one or many simulation steps.

If you have a perceive-think-act cycle, how is it synchronised with the server?
Perceive starts with request-action and its percept payload and then follow
think and act within the allowed time limit; and the cycle repeats.

1.4 Scenario specifics

How do your agents decide which jobs to fulfil?
The decision is made using a few criteria based on efficacy (how complete the
job can be delivered), benefit (reward – buy cost), and number of available
steps.

Do your agents make use of less used scenario aspects (e.g., dumping items, putting items
in a storage)?

No.

Do you have different strategies for the different roles?
No, all vehicle roles function the same.

 56 E.I. Sarmas

Do your agents form ad-hoc teams for each job?
No, there is a single team really. The fact that at certain times a few agents
work for the same job does not constitute an ad-hoc team really.

What do your agents do when they do not pursue any job?
They either stay idle inside a shop or they move to a shop with job potential
that matches better their load capacity and in a way that all agents are evenly
spread over all shops.

1.5 And the moral of it is …

What did you learn from participating in the contest?
I verified many software engineering teachings and how difficult it is to
properly make a 4,000+ line code work right and updated knowledge on many
algorithms. I also confirmed for the nth time that there is always a competitor
with similar or same strategy.

What are the strong and weak points of your team?
The strong point is that it is efficient and adaptable. The weak point is that
some design/configuration decisions depend on the simulation environment.
This is a weak point but not an inadequacy as an agent system is designed for a
specific environment.

How viable were your chosen programming language, methodology, tools, and
algorithms?

The chosen language was perfect as it enabled quick development and code
refactoring. The fact that it is slower than other common languages was no
problem as it is still fast enough and when it got slow it forced a reviewing and
improving of the algorithms. The methodology was good as it could handle the
scenario well.

Did you encounter new problems during the contest?
None.

Did playing against other agent teams bring about new insights on your own agents?
Yes, definitely! It’s different when playing, the mind is more productive.

What would you improve if you wanted to participate in the same contest a week from
now (or next year)?

The one week improvements have already been implemented. The one year
improvements have also been described at specific places. The main design
would rather stay the same.

Which aspect of your team cost you the most time?
The initial setup of threaded agents, xml message handling, networking code,
and locking took precious time at the start of the project and later with various
code refactorings. The same for the jobs database. Also, all these amounted to
about a quarter of the total code.

 The Flisvos-2016 multi-agent system 57

What can be improved regarding the contest/scenario for next year?
For the contest: friendly matches before and after the contest, it should be
stated more specifically what is allowed/forbidden for the agent
implementations and the matches, e.g., restarts, remote control, use of web-
services, etc.

For the scenario: a single feature relating to a specific research area should be
promoted and the rest of the scenario should stay exactly the same (the idea is
to promote a specific research but not make participation very costly for
teams).

Really some random ideas: require totally independent agents and require
communication through some protocol of peer-to-peer communication (or
localised broadcast only; this is a capability needed much in the future, e.g.,
connected cars), I would like to see the concept of cooperation between
opponent teams promoted and rewarded too (yes! but I had no time to think of
a good scenario enhancement for this purpose).

Why did your team perform as it did? Why did the other teams perform better/worse than
you did?

For this team, it’s the cumulative result of a robust implementation and a good
overall design that is matched to the simulation environment (a design utilising
not the best but good and effective solutions). For the other teams, I cannot
really reason about their performance, but excluding the element of
randomness/luck (which is strong indeed), there is a feeling that some
performed worse because the code was not reliable or because they did not
judge well the simulation environment and they did not tune their agents (i.e.,
their agents were not able to select the best actions, e.g., unnecessary use of
assembly). Some teams performed better because they were faster in
completing many of the same jobs as this team, and so they had good or better
effective planning.

