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Abstract: In the analysis of actual data, it is important to determine whether 
there are clusters in the data. This can be done using one of several methods of 
cluster analysis, which can be roughly divided into hierarchical and 
nonhierarchical clustering methods. Nonhierarchical clustering can be applied 
to more types of data than can hierarchical clustering (see e.g., Saito and 
Yadohisa, 2006), and hence, in this paper, we focus on nonhierarchical 
clustering. In nonhierarchical clustering, the results heavily depend on the 
number of clusters, and thus it is very important to select the appropriate 
number of clusters. Bozdogan (1986) and Manning et al. (2009, Section 16.4.1) 
used formal information criteria, e.g., Aakaike’s information criterion (AIC) 
and so on, for selecting the number of clusters. In this paper, we verify that 
such formal information criteria work poorly for selecting the number of 
clusters by conducting numerical examinations. Hence, we extend a formal 
AIC by adding a new penalty term, and search for an additional penalty with an 
acceptable selection-performance through numerical experiments. 

Keywords: Aakaike’s information criterion; AIC; cluster analysis; information 
criterion; k-means procedure; multivariate linear regression model;  
non-hierarchical clustering. 
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1 Introduction 

In practice, we often determine whether clusters exist before further analysing a data set. 
However, this is highly intuitive, and a formal cluster analysis is one way to avoid 
subjectivity. 

In a cluster analysis, n individuals with p-dimensional data are divided into several 
clusters. This can be done with either hierarchical clustering or non-hierarchical 
clustering. We will briefly illustrate these methods in the Section 2. Further details of 
cluster analysis can be found in the literature (e.g., Bijnen, 1973; Romesburg, 1984; 
Hastie et al., 2009; Everitt et al., 2011). Saito and Yadohisa (2006) points out that  
non-hierarchical clustering can deal with more types of data than can hierarchical 
clustering. Hence, in the present paper, we focus on non-hierarchical clustering. One 
popular method for non-hierarchical clustering is the k-means procedure that was 
proposed by MacQueen (1967). In non-hierarchical clustering, the number of clusters 
must be decided by the user, and, since the results are strongly affected by this, it is 
important to choose appropriately. 

The number of clusters is often selected in an arbitrary manner or by an empirical 
rule, which may be based on a scatter plot or on various properties of the data. Bozdogan 
(1986) and Manning et al. (2009; Section 16.4.1) used formal information criteria, e.g., 
Aakaike’s information criterion (AIC; Akaike, 1973), Bayesian information criterion 
(BIC; Schwarz, 1978) and consistent AIC (CAIC; Bozdogan, 1986) for selecting the 
number of clusters. Unfortunately, such formal information criteria work poorly for 
selecting the number of clusters. We will verify such a fact through numerical 
experiments. This may be caused from an undervaluation of a penalty term of a formal 
information criterion. Hence, we extend a formal AIC by adding a new penalty term 
‘αn(k – 1)’, where k is the number of clusters and α is some nonnegative value. Since it is 
very difficult to obtain a theoretical best value of α, through numerical experiments, we 
search for a value of  which maintains an acceptable selection-performance. 

The remainder of the present paper is organised as follows: In Section 2, we briefly 
illustrate cluster analysis and several cluster criteria for the clustering of data. In  
Section 3, we show the relationship between cluster analysis and the multivariate linear 
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regression model. Adding the new penalty term αn(k – 1), we extend a formal AIC. In 
Section 4, we verify that formal information criteria work poorly for selecting the number 
of clusters and search for a value of α which maintains an acceptable  
selection-performance by conducting numerical experiments. In Appendix, we prove the 
useful and equivalent conditions for renewing clusters for each cluster criterion. 

2 Cluster analysis 

Let yi, i = 1, …, n, be a p-dimensional data vector, where n is the number of individuals. 
One of various cluster analysis methods is often used to determine the clusters that exist 
in y1, …, yn (see, e.g., Hastie et al., 2009, Section 14.3). 

These methods can be roughly divided, as follows: 

• Hierarchical clustering: initially, each data point is regarded as a cluster, so there are 
n clusters. A clustering method is then used to combine clusters until there is only 
one cluster. 

• Non-hierarchical clustering: the number of clusters is determined prior to beginning 
the cluster analysis. The data points y1, …, yn are divided into clusters either 
randomly or by using one of various methods. The contents of each cluster are then 
evaluated using some cluster criterion, and the process is repeated until convergence 
is reached. 

In general, non-hierarchical clustering can be applied to more types of data than can 
hierarchical clustering (see, e.g., Saito and Yadohisa, 2006). We note that the k-means 
procedure (MacQueen, 1967) is popular method for non-hierarchical clustering. 

For non-hierarchical clustering, various cluster criteria have been proposed for 
renewing clusters (see, e.g., Marriott, 1982; Krzanowski and Marriott, 1995), and we will 
begin by introducing them. Let k be the number of clusters, let nj be the number of 
individuals belonging to the jth cluster. Here, we note that n = n1 + "  + nk. Moreover, let 
Cj be the set of indices of the individuals in the jth cluster. For example, consider a 
clustered set in which k = 2, y1, y2, and y4 belong to the first cluster; and y3 and y5 belong 
to the second cluster. Then, n1 = 3, n2 = 2, C1 = {1, 2, 4}, and C2 = {3, 5}. In the present 
paper, we always assume nj ≥ 1 for all j; that is, each cluster includes more than one 
individual. In addition, let G(k) = {C1, …, Ck} and: 

( )( ) ( )( ) ( )

1

, ( ) ,
j

k
k k

j i i jj j
i C j

W y y y y W G k W
∈ =

′= − − =∑ ∑  

where ( )k
jy  is the sample mean in the jth cluster, i.e., ( ) / .

j

k
i jj i C

y y n
∈

=∑  Using Wj and 

W(G(k)) , Table A1 in Appendix lists the various cluster criteria that been proposed 
previously. We note that Wj (j = 1,…, k) and W(G(k)) are symmetric matrices. In 
particular, we assume that G(k) ∈ ( ),kG  where ( )kG  denotes a set of cluster partition 
such that det W(G(k)) ≠ 0 for any G(k) and k when we use (ii) or (v) in Table A1, 
Appendix. When we use other criteria, we assume det(Wj) ≠ 0 (j = 1, …, k) instead of 
assuming det(W(G(k))) ≠ 0. If we assume this, we obtain det(W(G(k))) ≠ 0. This fact 
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means that we obtain det(W(G(k))) > 0 for any G(k) and k [see, e.g., Lütkepohl, (1996), 
p.55]. 

Of the cluster criteria listed there, (i) and (ii) are the most frequently used, since they 
are very simple. Criteria (iii) to (vi) were proposed by Krzanowski and Marriott (1995), 
and we will refer to any of these six as CC(W(G(k))). The algorithm for performing non-
hierarchical clustering with any of the criteria CC(W(G(k))) is as follows: 

1 Choose k, and select a cluster criterion CC(W(G(k))). 

2 Divide y1, …, yn into k clusters, either randomly or by using a non-hierarchical 
clustering method, such as the k-means procedure. 

3 Move yr, which is in the sth cluster, into the tth cluster (s ≠ t) if ( ( ( )))CC W G k′   
< CC(W(G(k))) holds for the selected criterion, where ( )G k′  = {C1, …, Cs – 1, ,sC′   
Cs + 1, …, Ct – 1, ,tC ′  Ct + 1, …, Ck}, sC ′  is derived by deleting r from Cs, and tC ′  is 
derived by adding r into Ct. Here, we note that sC ′  = Cs \ {r} and tC ′  = Ct ∪ {r}. 
When yr is moved from the sth cluster into the tth cluster, we renew G(k), Cs, and Ct as 

( ),G k′  ,sC′  and ,tC′  respectively. 

4 Repeat the previous renewal procedure until the selected CC(W(G(k))) converges to 
a minimum value. This produces the optimal clustering ˆ ( ).G k  That is, the optimal 

clustering ˆ ( )G k  is derived from ( ) ( )ˆ ( ) arg minG k kG k ∈= G CC(W(G(k))) for the 
selected cluster criterion and the given k. 

Marriott (1982) showed the variation that occurred when the rth individual yr is added to 
the jth cluster. Using this result, we derive the equivalent conditions with ( ( ( )))CC W G k′  
< CC(W(G(k))) for each cluster criterion in Appendix. When we use this equivalent 
condition, we can easily check that the renewal condition is satisfied or not. 

3 Criterion for selecting the number of clusters 

3.1 Relationship between cluster analysis and the multivariate linear regression 
model 

Prior to proposing our new information criterion for selecting the number of clusters k, 
we will clarify the relationship between cluster analysis and the multivariate linear 
regression model. 

In the cluster analysis under the provided k, we can assume that yi will derived from 
the following model independently when i ∈ Cj (j = 1, …, k): 

( ) ( 1, , ),k
i ijy ξ ε i n= + = …  (1) 

where ( )k
jξ  ( 1,..., )j k=  is an unknown p-dimensional vector which means that the 

unknown centre vector of the true jth cluster population, and ε1, …, εn are independent  
p-dimensional error vectors with the mean 0p and some covariance matrix, where 0p is a 
p-dimensional zero vector. Let ( )r

je  be an r-dimensional standard basis vector in which 
the jth element is one and the other elements are zero. By using the standard basis vector 
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as a vector of dummy variables, i.e., ( ) ( )k k
i jx e=  when i ∈ Cj (i = 1, …, n, j = 1, …, k), the 

model (1) can be rewritten as: 
( )( )Ξ ( 1, , ),kk

i iiy x ε i n′= + = …  (2) 

where ( ) ( )( )
1Ξ ( , , )k kk

kξ ξ ′= …  is a k × p matrix. Here, if we assume that εi ~ Np(0p, Σ), 
where Σ is an unknown p × p covariance matrix with det(Σ) ≠ 0, the model (2) can be 
expressed as: 

( )( ) ( )Ξ , ,k k
n p nY N X I× ∑⊗∼  (3) 

where ( ) ( )( )
1 1( , , ) , ( , , ) ,k kk

n nY y y X x x′ ′= =… …  and ⊗ indicates the Kronecker product 
[for the definition of the Kronecker product, see, e.g., Muirhead, (1982), p.73]. In the 
cluster analysis, we can assume that all clusters have more than one individual. This 
means that all the basis vectors ( ) ( )

1 , ,k k
ke e…  should appear in ( ) ( )

1 , ,k k
nx x…  when k is 

provided. Hence, we naturally assume that rank(X(k)) = k. Needless to say, the matrix X(k) 
also expresses a cluster partition when the number of clusters is k as well as G(k). 

Here, we will consider a method for determining a cluster partition by maximising the 
log-likelihood function of (3). It is well known that the log-likelihood function of the 
model (3) is given by: 

( )

{ } ( ) ( ){ }( )
( ) ( )

( ) ( ) 1 ( ) ( )

Ξ , Σ ,
1 log(2 ) log det(Σ) tr Ξ Σ Ξ .
2

k k

k k k k

g Y X

np π n Y X Y X− ′= − + + − −
 

By maximising the above log-likelihood function with respect to (Ξ(k), Σ), maximum 
likelihood estimators of Ξ(k) and Σ under the fixed X(k) are derived as: 

( ) ( )

( ) ( ){ }

1( ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) ( ) ( )

Ξ̂ ,
1Σ̂ .

k k k k k

k k k k k k
n

X X X X Y

X Y I X X X X Y
n

−′ ′

−′ ′

=

′= −
 

These imply the maximum log-likelihood under the fixed X(k) as: 

( ) ( )( )
( )( ){ }{ }

{ } ( )( ){ } ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

ˆ ˆΞ , Σ ,

ˆlog(2 ) log det Σ
2

ˆlog(2 ) 1 log( ) log det Σ .
2 2

k k k k k

k k

k k k

g X X Y X
n p π p X

np nπ n n X X

= − + +

= − + − − = L

 (4) 

Then, we have: 

( ) ( )( ) ( ) ( )Ξ , Σ , .k k kg Y X X≤ L  

This indicates that the cluster partition maximising the log-likelihood function of the 
model (3) is X(k) maximising ( )( ).kXL  Hence, the optimal cluster partition derived from 
the maximisation of the log-likelihood function of the model (3) is given by 
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( )
( )

( ) ( )
Μ( , )

ˆ arg max ,
k

k k
X n k

X X
∈

= L
 

 (5) 

where M(n, k) is the set of all full-rank n × k matrices of which the row vectors are one of 
( ) ( )
1{ , , }.k k

ke e…  Note that –np{log(2π) + 1 –log(n)} / 2 in (4) is independent of X(k) and 
log(x) is a strictly monotonically increasing function with respect to x. Thus, the equation 
in (5) can be rewritten as: 

( ){ }
( )

( ) ( )
Μ( , )

ˆ ˆarg min det Σ .
k

k k
X n k

X n X
∈

=
 

 

Note that the number of individuals belonging to the jth cluster nj is presented by: 

( )( ) ( )

1

,
n

k k
j i j

i

n I x e
=

= =∑  

where I(A) is an indicator function i.e., I(A) = 1 if A is true and I(A) = 0 if A is not true. 
Then, we derive: 

( ) ( )
( )

( )

( )
( )

( )

( ) ( )
1

1( ) ( )
1

1 ( ) ( )

( )
1 1

1
1

1 ( )

Ξ̂ diag , ,

diag , , .

k k
iin

k k
k

i k k
ii k

k
in

k
i kk i k

I x e y
X n n

I x e y

I i C y y
n n

I i C y y

−

=

−

=

⎛ ⎞′=
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟′=⎝ ⎠

⎛ ⎞′′⎛ ⎞∈
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟′∈ ′⎝ ⎠ ⎝ ⎠

∑

∑

… #

… # #

 

This indicates that: 

( ) ( )( ) ( )( ) ( )( ) ( )

1

Σ̂ ( ) .
j

k
k kk k

i ij j
j i C

n X y y y y W G k
= ∈

′= − − =∑∑  

This fact means that a method for determining a cluster partition by maximising the 
loglikelihood of the model (3) with respect to X(k) is equivalent to that by minimising 
det(W(G(k))) with respect to G(k). From this fact, we can see that 

( ) ( ) ˆˆ ˆΣ ( ) ( ( )).k kn X W G k=  

3.2 Formal information criterion for selecting the number of clusters 

In the previous subsection, we show that a method for determining a cluster partition 
G(k) by minimising det(W(G(k))) is equivalent to that by maximising the log-likelihood 
function of the ordinary multivariate linear regression model (3). Hence, a selection 
method of the number of clusters based on the minimisation of an information criterion 
comes immediately to mind. By neglecting the constant term, an information criterion in 
the model (3) is given by: 

( ) ( )( ){ }( ) log det ( ) ( ),IC G k n W G k m k= +  
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where m(k) is a positive constant expressing a penalty for the complexity of the model (3) 
which depends on the number of clusters but is independent of the cluster partition. Since 
the optimal cluster partition ˆ ( )G k  is derived from the minimisation of det{W(G(k))}, the 
optimal number of clusters is obtained by minimising IC(G(k)) as: 

( ) ( )
( ) ( )

ˆ ˆarg min IC ( ) arg min min IC ( ) ,
G k kk k

k G k G k
∈∈ ∈

= =
GK K

 

where K  denotes the candidate number of clusters; for example, {1, 2, 3, 5, 10, 15}.=K  

Hence, ˆIC( ( ))G k  is regarded as a criterion for selecting the number of clusters. 
If we regard the cluster partition as a hyper parameter, the number of independent 

parameters in the model (4) is p{k + (p + 1) / 2}. Then, famous four information criteria, 
AIC proposed by Akaike (1973), Bayesian information criterion (BIC) proposed by 
Schwarz (1978), a consistent AIC (CAIC) proposed by Bozdogan (1987), and a  
bias-corrected AIC (AICC) proposed by Bedrick and Tsai (1994), may be used as 
IC(G(k)). The formal AIC, BIC, CAIC and AICC of the model (4) are given as follows: 

( ) ( )( ){ } 1AIC ( ) log det ( ) 2 ,
2

pG k n W G k p k +⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (6) 

( ) ( )( ){ } 1BIC ( ) log det ( ) log( ) ,
2

pG k n W G k p n k +⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (7) 

( ) ( ) 1CAIC ( ) BIC ( ) ,
2

pG k G k p k +⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (8) 

( ) ( )C 2 ( 1) 1AIC ( ) AIC ( ) .
1 2

p k p pG k G k k
n k p

+ + +⎛ ⎞= + +⎜ ⎟− − − ⎝ ⎠
 (9) 

For more details of the AIC, see, e.g., Konishi and Kitagawa (2008), and Rao et al. 
(2008). Needless to say, the above four criteria are frequently used for selecting 
explanatory variables in the multivariate linear regression model. 

Recall that det(W(G(k))) in each criterion is corresponding to the cluster criterion (ii) 
in Table A1. Hence, we should not use the formal information criteria ˆAIC( ( )),G k  

ˆBIC( ( )),G k  ˆCAIC( ( ))G k  and C ˆAIC ( ( ))G k  as a criterion for selecting the number of 
clusters if a cluster criterion other than (ii) is used for determining the cluster partition. 

3.3 New AIC-type criterion for selecting the number of clusters 

In the previous subsection, we illustrated the formal information criteria in (6), (7), (8) 
and (9) for selecting the number of clusters. Unfortunately, it is not expected that the 
formal information criteria work well for selecting the number of clusters. In general, a 
probability to cause the false partition in k-means clustering does not converge to 0 even 
when k ≥ k*, where k* is the true number of clusters. This will imply that: 

( )( ){ } ( )( )( ){ }*ˆ ˆlog det ( ) log det ( ) ,pn W G k n W G k O n as n− = → ∞  
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for all k ∈ K \ {k*}. We illustrate the reason why the above equation is derived through a 
simple example, i.e., k* = 1, k = 2, p = 1 and the true model is N(0, 1). Since we consider 
the case of p = 1, i.e., an univariate case, ˆ( ( ))W G k  becomes scalar. Hence we use 

ˆ( ( ))w G k  instead of ˆ( ( )).W G k  Needless to say, ˆ ˆdet( ( ( ))) ( ( )).w G k w G k=  Let y1, …, 1ny  
be observations which belong to the first cluster and 1 1, ,n ny y+ …  be observations which 

belong to the second cluster where n = n1 + n2. Then, ˆ( (2)) /w G n  is given by: 

( ) ( ) ( )
1 2

1

2 21 2(2) (2)
1 2

1 21 1

1 1 1ˆ (2) ,
n n

i n i
i i

n nw G y y y y
n n n n n +

= =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= − + −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑ ∑  

where 
1 2

1
(2) (2)

1 2
1 21 1

1 1,    .
n n

i n i
i i

y y y y
n n +

= =

= =∑ ∑  

In this case, the distributions of 11, , ny y…  and 1 1, ,n ny y+ …  will converge to the half 
normal distributions and nj / n (j = 1, 2) will converge to 1 / 2. Notice that the variance of 
the half normal distribution is 1 – 2 / π. It follows from this variance and the law of large 
numbers that: 

( )1 1 2 1 2 2ˆ (2) 1 1 1 .
2 2

p
w G as n

n π π π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞→ − + − = − → ∞⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Moreover, it is clear that ˆ( (1)) / 1.
p

w G n→  Hence, we derive: 

( ){ } ( ){ }{ }
( ){ } ( ){ }

1 ˆ ˆlog (2) log (1)

2ˆ ˆlog (2) log (1) log 1 1.0123.
p

n w G n w G
n

w G n w G n
π

−

⎛ ⎞= − → − ≈ −⎜ ⎟
⎝ ⎠

 

This indicates ˆ ˆlog{ ( (2))} log{ ( (1))} ( )pn w G n w G O n− =  as n → ∞. Furthermore, we 

know that ˆlog{det( ( ( 1)))n W G k +  is smaller than ˆlog{det( ( ( )))n W G k  at almost all cases. 

Therefore, the maximum value in K  tends to be chosen as k̂  by ˆAIC( ( )),G k  
ˆBIC( ( )),G k  ˆCAIC( ( ))G k  and C ˆAIC ( ( )),G k  because the orders of these penalty terms 

are smaller than O(n). 
This defect will be improved by using an penalty term of which the order is O(n). 

Here, clustering the data is equivalent to assigning a value of 0 or 1 to k – 1 parameters 
for each individual. Since the individual belongs to the lth cluster when all k – 1 
parameters are zeros, only k – 1 parameters can be chosen; that is, we will regard that 
there are k – 1 independent parameters for each individual. This means that there are new 
n(k – 1) independent parameters, which correspond to the location of the n individuals. In 
the present paper, we try using this term in order to be penalised on the number of 
clusters. 
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However, we note that the weight for the new parameter n(k – 1) may not be equal to 
2, which is the weight for the present parameter (Ξ(k), Σ). Hence, we will let α be a 
nonnegative tuning parameter, and we propose the following AIC-type criterion: 

( ) ( )AIC ( ) AIC ( ) ( 1).G k G k n k= + −α α  (10) 

Note that AIC(G(k) | 0) = AIC(G(k)), and AIC(G(k) | 2) corresponds to the criterion when 
the weight for the new parameters coincides with that for the present parameters. In the 
numerical studies presented in the next section, we will chose α. It is reasonable to expect 
that more clusters will be selected when α is small, and that fewer will be selected when 
α is large. 

4 Numerical studies 

4.1 Simulation 

In this subsection, we evaluate the performance of the proposed criterion for selecting k 
by presenting the results of some simulations. 

Let Dp = diag(1, …, p) be a p × p diagonal matrix, and let Δp(ρ) be a p × p matrix in 
which the (i, j)th element is ρ|i – j|. Then Y, which is the data, is generated from Nn × p(Θ, Σ* 
⊗ In) for each repetition, where * 1/2 1/2Σ Δ ( ) ,p p pD ρ D=  *1 *1Θ 5 ( 1 , , 1 )

kn nkδ θ θ′ ′ ′= …  is an  
n × p matrix, δ is a scale parameter, and 1r is an r-dimensional vector in which each of 
the elements is one. Here, θj (j = 1, …, k*) controls a p-dimensional vector at the true 
center of each true cluster. We set the θj as follows: θ1 = 0p, ( )

2 sin( ),p
iθ e i′ =  

( )
3 log(( 1) 1),p i

iθ e i′ = − + +  and ( )
4 ( 1) 0.5( 1, , ).p i

iθ e i p′ = − + = …  We note that δ controls 
the scale of Θ. The candidate number of clusters was set to {1, 2, 3, , 10},= …K  and the 
weight for the new penalty term α was set to 0, 0.1, 0.5, 1, 1.5, and 2. 

In each iteration, the data Y is was divided into ( )k ∈K  clusters by using the k-means 
procedure; we used the ‘kmeans’ function in the R programming language. The clustered 
data were renewed based on based on ˆdet( ( ( ))).W G k  Note that ˆdet( ( ( )))W G k  is also in 

the first term of ˆAIC( ( ) | )G k α  in (10) and the formal other criteria that are in  

Section 3.2. Using the clustering results, ˆ( ( ))W G k  was derived for each k. Then, 
ˆAIC( ( ) | )G k α  was also derived for each α. In order to compare with the formal criteria 
ˆBIC( ( )),G k  ˆCAIC( ( )),G k  and C ˆAIC ( ( ))G k  in Section 3.2 for selecting the number of 

clusters, we select k by using these criteria and ˆAIC( ( ) | )G k α  for several α. 

We select k̂  by minimising each criterion; the result of clustering ˆˆ ( )G k  is also 
derived in each repetition. The results from each criterion are compared by using the 
predicted error (PE), defined as follows: 
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( ){ } { }( )
( ) ( ){ }{ }

1ˆ ˆ ˆ ˆ( ) ( ) * ( ) ( )

1ˆ ˆ( ) ( )

1 1ˆ ˆ ˆ ˆPE log det Σ ( ) log(2 ) tr Σ Σ ( )

1 ˆ ˆ ˆ ˆtr Σ ( ) ,

k k k k

k k

X π X
p p

Y Y X
np

−

−

= + +

′+ − −M M
 

where ˆ ˆ( ) ( )ˆ ˆΘ, Σ ( )k kX=M  is obtained by 1 ˆˆ( ( )),n W G k−  ˆ ˆ ˆ ˆ( ) ( ) ( ) 1 ( )ˆ ˆ ˆ ˆ ˆ( ) ,k k k kY X X X X Y′ ′−=  

and ˆ( )ˆ kX  is derived from the cluster results ˆˆ ( )G k  for each repetition. Here, the 
expectation of above PE is the risk function. The idea of formal criteria is selecting model 
which makes the risk function smaller. After 10,000 repetitions, the average PE values 
and the probability (%) of correctly selecting the number of clusters were used for 
comparing these criteria. This average values of PEs are regarded as the risk function’s 
value. 

We present the (rounded) results in Tables 1 to 14. In Tables 1 to 7, for each case, the 
minimum value is in bold, and next smallest value is in italics. In Tables 8 to 14, for each 
case, the maximum value is in bold, and next largest is in italics. That is, in each table, 
the best score is in bold, and the second best is in italics. In these tables, for simplicity, 

ˆBIC( ( )),G k  ˆCAIC( ( )),G k  and C ˆAIC ( ( ))G k  are written as BIC, CAIC, and AICC, 
respectively. 

We first consider the results based on the PEs that are listed in Tables 1 to 7. We will 
focus on the results for k* = 2, as shown in Tables 1 and 2. As δ increases, the results for 

ˆAIC( ( ) | )G k α  (α = 0.5, 1, 1.5, 2) almost always decrease. The results for the other 
criteria also tend to decrease as δ increases, at least in some situations. The results for 

ˆAIC( ( ) | )G k α  (α = 1, 1.5, 2) almost always decrease as ρ increases. We note that the 

results for ˆAIC( ( )),G k  ˆAIC( ( ) | 0.1),G k  ˆBIC( ( )),G k  ˆCAIC( ( )),G k  and C ˆAIC ( ( ))G k  
almost always follow the same tendencies as ρ increases. However, in several situations, 
the results for the other criteria tend to increase as ρ increases. Comparing all results 
based on PEs in k* = 2, we see that ˆAIC( ( ) |1)G k  always yields the best results, followed 

by ˆAIC( ( ) |1.5).G k  Furthermore, both ˆAIC( ( ) | 2)G k  and ˆAIC( ( ) | 0.5)G k  work well in 

almost every situation. On the other hand, ˆAIC( ( ))G k  and other the criteria cannot be 
used directly for selecting the number of clusters based on the PE values with k* = 2. 

Next, we will focus on the PEs when k* = 4, which are shown in Tables 3 to 7. The 
results of ˆAIC( ( ) | 2)G k  are small when ρ = 0.95. The results of ˆAIC( ( ) |1)G k  and 

ˆAIC( ( ) |1.5)G k  are also small when ρ = 0.95, except in the case (n1, n2, n3, n4, δ) =  
(30, 50, 30, 30, 1). As δ increases, the results for all criteria are similar as the case of  
k* = 2 in many cases. The results for ˆAIC( ( ) | 2)G k  decrease somewhat as ρ increases, 

and the results for ˆAIC( ( ) |1.5)G k  decrease in many cases. As similar as k* = 2, several 
criteria have the same tendencies as ρ increases in almost always. We note that in all 
situations considered, either ˆAIC( ( ) | 0.5)G k  or ˆAIC( ( ) |1)G k  gave the best results. As 

when k* = 2, we see that ˆBIC( ( )),G k  ˆCAIC( ( )),G k  C ˆAIC ( ( ))G k  and ˆAIC( ( ))G k  cannot 
be used directly to select the number of clusters. 
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Table 1 PEs based on each criterion (k* = 2; 1 / 2) 
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Table 1 PEs based on each criterion (k* = 2; 1 / 2) (continued) 
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Table 2 PEs based on each criterion (k* = 2; 2 / 2) 
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Table 3 PEs based on each criterion (k* = 4; 1 / 5) 
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Table 3 PEs based on each criterion (k* = 4; 1 / 5) (continued) 
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Table 4 PEs based on each criterion (k* = 4; 2 / 5) 
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Table 4 PEs based on each criterion (k* = 4; 2 / 5) (continued) 
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Table 5 PEs based on each criterion (k* = 4; 3 / 5) 
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Table 5 PEs based on each criterion (k* = 4; 3 / 5) (continued) 

 

ˆ
A

IC
(

(
)|

)
G

k
α

 
 

Th
e 

va
lu

es
 o

f α
 

 

(n
1, 

n 2
, n

3, 
n 4

) 
p 

δ 
ρ 

0 
0.

1 
0.

5 
1 

1.
5 

2 
BI

C
 

C
AI

C
 

AI
C

C  

0.
25

 
7.

50
 

7.
46

 
3.

66
 

3.
66

 
4.

65
 

4.
65

 
7.

50
 

7.
50

 
7.

50
 

0.
5 

7.
00

 
6.

97
 

3.
45

 
3.

46
 

4.
63

 
4.

63
 

7.
00

 
7.

00
 

7.
00

 
0.

5 

0.
95

 
6.

81
 

6.
70

 
2.

98
 

2.
86

 
2.

90
 

4.
60

 
6.

77
 

6.
76

 
6.

81
 

0.
25

 
5.

00
 

4.
98

 
3.

36
 

3.
48

 
3.

51
 

3.
64

 
5.

00
 

5.
00

 
5.

00
 

0.
5 

5.
43

 
5.

38
 

3.
49

 
3.

46
 

3.
51

 
3.

60
 

5.
43

 
5.

42
 

5.
43

 

2 

1 

0.
95

 
4.

38
 

4.
26

 
3.

22
 

3.
17

 
3.

19
 

3.
32

 
4.

34
 

4.
32

 
4.

38
 

0.
25

 
4.

48
 

4.
45

 
3.

96
 

3.
97

 
4.

37
 

4.
71

 
4.

46
 

4.
43

 
4.

48
 

0.
5 

4.
76

 
4.

73
 

3.
80

 
3.

80
 

4.
33

 
4.

56
 

4.
74

 
4.

72
 

4.
76

 
0.

5 

0.
95

 
3.

00
 

2.
97

 
2.

82
 

2.
77

 
2.

89
 

3.
42

 
2.

97
 

2.
96

 
3.

00
 

0.
25

 
4.

39
 

4.
37

 
3.

82
 

3.
85

 
4.

00
 

4.
05

 
4.

37
 

4.
36

 
4.

39
 

0.
5 

4.
22

 
4.

21
 

3.
65

 
3.

67
 

3.
75

 
3.

87
 

4.
21

 
4.

20
 

4.
22

 

(5
0,

 3
0,

 5
0,

 3
0)

 

5 

1 

0.
95

 
2.

71
 

2.
66

 
2.

15
 

2.
17

 
2.

18
 

2.
24

 
2.

67
 

2.
62

 
2.

71
 

0.
25

 
6.

71
 

6.
70

 
3.

69
 

3.
49

 
4.

56
 

4.
56

 
6.

71
 

6.
71

 
6.

71
 

0.
5 

7.
63

 
7.

61
 

4.
01

 
3.

94
 

4.
55

 
4.

55
 

7.
63

 
7.

63
 

7.
63

 
0.

5 

0.
95

 
6.

15
 

6.
06

 
3.

15
 

3.
18

 
3.

18
 

4.
52

 
6.

13
 

6.
12

 
6.

15
 

0.
25

 
5.

16
 

5.
14

 
3.

47
 

3.
53

 
3.

59
 

3.
69

 
5.

17
 

5.
16

 
5.

16
 

0.
5 

5.
46

 
5.

40
 

3.
52

 
3.

51
 

3.
53

 
3.

67
 

5.
45

 
5.

45
 

5.
46

 

2 

1 

0.
95

 
4.

18
 

4.
12

 
2.

73
 

2.
84

 
2.

85
 

3.
30

 
4.

17
 

4.
17

 
4.

18
 

0.
25

 
4.

62
 

4.
59

 
4.

01
 

4.
04

 
4.

41
 

4.
69

 
4.

60
 

4.
58

 
4.

61
 

0.
5 

4.
54

 
4.

52
 

3.
78

 
3.

80
 

4.
16

 
4.

56
 

4.
52

 
4.

51
 

4.
54

 
0.

5 

0.
95

 
3.

01
 

2.
98

 
2.

87
 

2.
88

 
3.

00
 

3.
87

 
2.

99
 

2.
98

 
3.

01
 

0.
25

 
4.

39
 

4.
38

 
3.

82
 

3.
84

 
3.

98
 

4.
04

 
4.

38
 

4.
36

 
4.

39
 

0.
5 

4.
12

 
4.

11
 

3.
63

 
3.

65
 

3.
73

 
3.

89
 

4.
11

 
4.

10
 

4.
12

 

(5
0,

 3
0,

 5
0,

 5
0)

 

5 

1 

0.
95

 
2.

59
 

2.
56

 
2.

01
 

2.
01

 
2.

02
 

2.
05

 
2.

57
 

2.
54

 
2.

59
 



   

 

   

   
 

   

   

 

   

   20 I. Nagai et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6 PEs based on each criterion (k* = 4; 4 / 5) 
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Table 6 PEs based on each criterion (k* = 4; 4 / 5) (continued) 
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Table 7 PEs based on each criterion (k* = 4; 5 / 5) 
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Table 8 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 2; 1 / 2) 
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Table 8 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 2; 1 / 2) (continued) 
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Table 9 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 2; 2 / 2) 
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Table 10 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 1 / 5) 
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Table 10 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 1 / 5) (continued) 
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Table 11 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 2 / 5) 
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Table 11 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 2 / 5) (continued) 
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Table 12 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 3 / 5) 
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Table 12 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 3 / 5) (continued) 
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Table 13 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 4 / 5) 
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Table 13 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 4 / 5) (continued) 
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Table 14 Probability (%) of selecting correct number of clusters with each criterion  
(k* = 4; 5 / 5) 
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Furthermore, ˆAIC( ( ) | 0.5),G k  ˆAIC( ( ) |1),G k  and ˆAIC( ( ) |1.5)G k  work well when not 
only sample size is small but also it is large that are shown in Tables 2 and 7. 

Next, we consider the probability (%) of correctly selecting the number of clusters; 
this is shown in Tables 8 to 14. In the results in Tables 8 and 9, when k* = 2, 

ˆAIC( ( ) |1)G k  and ˆAIC( ( ) |1.5)G k  almost always select the correct number of clusters, 

and ˆAIC( ( ) | 0.5)G k  is always either the best or second best method, overall. Tables 10 to 

14 show the results when k* = 4. Based on these results, we see that ˆAIC( ( ) |1)G k  is 

almost always the best method, followed by ˆAIC( ( ) | 0.5)G k  through all situations. 
These results indicate the necessity of the term αn(k – 1), which is the parameter for 

the location of each individual. Further, from these results, we recommend using either 
ˆAIC( ( ) | 0.5),G k  ˆAIC( ( ) |1),G k  or ˆAIC( ( ) |1.5)G k  for selecting the number of clusters. 

4.2 An analysis of real data 

For a cluster analysis of actual data, we used the ‘iris’ data set (Fisher, 1936), which is 
built into the R language, and is frequently used as test data for cluster analysis. The iris 
data set has 150 individuals data points, which are based on three types of iris, and hence 
have three natural clusters. For each individual, the following information was recorded: 
sepal length, sepal width, petal length, petal width, and the name of the type of iris. For 
the various information criteria, we used the various length and width values to select the 
number of clusters (types). 

In order to compare the criteria, we selected the number of clusters independently for 
each trial. For each trial, we randomly deleted one individual from each group. Then, 
based on the remaining data, we selected the number of clusters by minimising each of 
the criteria. We note that each trail was based on the data from 147 individuals, and we 
repeated the clustering process 10,000 times. 

We set the candidate number clusters to be {1, 2, 3, 4, 5}.=K  When we used 
ˆAIC( ( ) | ),G k α  given in (10), we set α to be 0, 0.1, 0.5, 1, 1.5, 2. 

Table 15 The number of times each number of clusters was selected by each criterion for the 
‘iris’ data 

 ˆAIC( ( ) | )G k α  
BIC CAIC AICC 

α = 0 α = 0.1 α = 0.5 α = 1 α = 1.5 α = 2 
1 0 0 0 0 0 0 0 0 0 
2 0 0 0 1,648 10,000 10,000 0 0 0 
3 (= k*) 0 0 1,042 7,987 0 0 0 0 0 
4 973 1,516 3,858 365 0 0 1,091 1,577 973 
5 9,027 8,484 5,100 0 0 0 8,909 8,423 9,027 

In Table 15, we list how many times each candidate number of clusters was selected. 
Furthermore, as in Tables 1 to 14, for simplicity, ˆBIC( ( )),G k  ˆCAIC( ( )),G k  and 

C ˆAIC ( ( ))G k  are written as BIC, CAIC, and AICC, respectively. 
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ˆAIC( ( )),G k  ˆBIC( ( )),G k  ˆCAIC( ( )),G k  C ˆAIC ( ( )),G k  and ˆAIC( ( ) | 0.1)G k  tend to 
select a large number of clusters, and thus the data are divided more minutely. 

ˆCAIC( ( ))G k  selects fewer clusters than does ˆBIC( ( )),G k  and ˆBIC( ( ))G k  tends to select 

fewer than does ˆAIC( ( )).G k  Thus, overall, ˆAIC( ( ) |1.5)G k  and ˆAIC( ( ) | 2)G k  tend to 

select fewer clusters. Moreover, ˆAIC( ( ) |1)G k  selected the true number of clusters the 

most frequently. Thus, ˆAIC( ( ) |1)G k  is the best method for selecting the number of 

clusters, and, as can be seen in the table, the second best methods is ˆAIC( ( ) | 0.5).G k  

Thus, we recommend using ˆAIC( ( ) | 0.5)G k  or ˆAIC( ( ) |1)G k  for selecting the 
number of clusters. 

5 Conclusions 

In practice, prior to formally analysing a data set, it is common to begin by determining 
subjectively whether the data are clustered. This is then followed by a formal cluster 
analysis, which does not depend on the analyst’s intuition. It is well known that there are 
two types of cluster analysis methods: hierarchical and non-hierarchical. We briefly 
discussed these in Section 2. Compared to hierarchical clustering, non-hierarchical 
clustering can be applied to more types of data (Saito and Yadohisa, 2006), and so, in this 
paper, we have focused on non-hierarchical clustering. 

We note that for some non-hierarchical clustering methods, it is necessary for the user 
to provide the number of clusters, although there is no method for selecting this for an 
arbitrary data set. However, in Section 3 and (3), we showed the relationship between 
clustering analysis and maximum likelihood estimators in the multivariate linear 
regression model. Based on this relation, we guess that we can use the formal information 
criteria for selecting the number of clusters. However, when we use them, we often select 
the large number of clusters as shown in Table 15. Thus, adding the penalty parameter for 
the number of clusters, we proposed a new AIC-type criterion (10) for selecting the 
number of clusters. This criterion was derived by adding a new term n(k – 1) with the 
nonnegative weight α to the AIC in (6). 

By conducting numerical studies, we showed that the added term n(k – 1) is needed to 
reduce the predicted error and to select the correct number of clusters. By inspecting the 
simulation results, we recommend using ˆAIC( ( ) | 0.5),G k  ˆAIC( ( ) |1),G k  or 

ˆAIC( ( ) |1.5)G k  to select the number of clusters. Furthermore, from the results of 
analysing the ‘iris’ data set (using built in data set in the R language), we note that 

ˆAIC( ( ) |1)G k  is the best criterion for selecting the number of clusters. 

Based on numerical studies, we recommend using ˆAIC( ( ) | 0.5)G k  or ˆAIC( ( ) |1)G k  
for selecting the number of non-hierarchical clusters. 
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Appendix 

Prove of the renewal condition for the cluster criterion in non-hierarchical 
clustering 

In Section 2, we illustrated the cluster criterion for non-hierarchical clustering, and we 
then considered the cluster criteria that were listed in the following Table. 

Table A1 Cluster criteria for renewing clustered data 

(i) tr(W(G(k))) 
(ii) det(W(G(k))) 

(iii) ( )1

1

det
k

p
j

j

W
=
∑  

(iv) ( )
1

det j
k

n
j

j

W
=

∏  

(v) ( )( ){ } ( )
1

log det ( ) 2 log
k

j j
j

n W G k n n
=

− ∑  

(vi) ( ){ } ( )
1

log det 2 log
k

j j j
j

n W n n
=

⎡ ⎤−⎣ ⎦∑  

We now consider whether yr in the sth cluster moves to the tth cluster (s ≠ t), based on 
each criterion. Here, we recall some notation that was previously defined: G(k) = {C1, …, 
Ck}, Ci has the indices of the individuals in the ith cluster, ( )G k′ =  {C1, …, Cs – 1, ,sC′   
Cs + 1, …, Ct – 1, ,tC′  Ct + 1, …, Ck}, sC′  is derived by deleting r from Cs, and tC′  is derived 
by adding r to Ct. Note that ns ≥ 2, since nj ≥ 1 is always assumed. Then, the condition for 
moving yr in the sth cluster to the tth cluster is ( ( ( )))CC W G k′  < CC(W(G(k))) in  
each cluster criterion. In this section, letting a = {nt / (nt + 1)}1/2 ( )r ty y−  and  
b = {ns / (ns – 1)}1 / 2 ( ),r sy y−  we prove that, for each cluster criterion, this condition 
coincides with the renewal conditions listed in Table A2. 

The condition (11) is directly proved based on some simple result. Moreover, 
Yanagihara and Yoshimoto (2005) has already proposed the equivalent condition (12) is 
same as ( ( ( )))CC W G k′  < CC(W(G(k))) for (ii). In order to prepare some notations and 
relations, we touch these proved conditions. Further, using the corresponding equivalent 
condition for each cluster criterion, we can easily check ( ( ( ))) ( ( ( )))CC W G k CC W G k′ <  
is satisfied or not. 
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Table A2 The conditions for renewal of each cluster based on the corresponding CC(W(G(k))) 

CC(W(G(k))) Renewal condition  
(i) a a b b′ ′<  (11) 

(ii) 
( )

( ) ( ) ( )

1

1 1

( ) ( ) ( )

( ) ( )

a b W G k a b

a W G k ab ba W G k b

−

− −

′− +

′ ′ ′< −
 (12) 

(iii) ( ) ( )1 1det dett t s sa W a W b W b W− −′ ′<  (13) 

(iv) ( ) ( ) ( ) ( ) ( )1 11 11 det 1 dett sn n
t t s sa W a W b W b W+ − −− −′ ′+ < −  (14) 

(v) 

( )
( ) ( ) ( )

1

1 1

21 1

1 ( ) ( ) ( )

( ) ( )

1 11 1
s t

nn n
t

s s t

a b W G k a b

a W G k ab ba W G k b

n
n n n

−

− −

− +

′+ + +

′ ′ ′− −

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞< − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 
(15) 

(vi) 

( ) ( ) ( )1 11 1 1

21 1

1 1 det

1 11 1

s t

s t

n n
s t t s

n n
t

s s t

b W b a W a W W

n
n n n

− +− − −

− +

′ ′− +

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞< − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 (16) 

To begin, we prepare the relationship between W(G(k)) and ( ( )).W G k′  Here, we also 

recall that ( )( )
j

j i j i ji C
W y y y y

∈
′= − −∑  and 

1
( ( )) ,

k
jj

W G k W
=

=∑  where 

/ ,
j

j i ji C
y y n

∈
=∑  and nj is the number of individuals in the jth cluster. Note that the 

difference between G(k) and ( )G k′  is only the content of the sth cluster and the tth cluster. 

Furthermore, let ( )( ) ,
j

j i j i ji C
W y y y y′ ′ ′′∈

′= − −∑  where jy ′  is the sample mean of .jC′  

Here, ( , )y s t′ ′ ′ ′≠A A  is the same as .yA  Then, from the definition of W(G(k)) , we can see 
that: 

( ) ( )( )
,

1, ,

( ) ,
j

j s t

i j i j t s
j k i C

W G k y y y y W W

≠

′ ′
= ∈

′′ = − − + +∑ ∑
…

 (17) 

since ( )( ) ,
t

t i t i ti C
W y y y y′ ′ ′′∈

′= − −∑  ( )( ) ,
s

s i s i si C
W y y y y′ ′ ′′∈

′= − −∑  and y y′ =A A  for  

ℓ ≠ s, t. Since sC ′  and tC ′  are derived by deleting and adding r, we have 
/ ( 1)

s
s i si C

y y n′ ′∈
= −∑  and / ( 1)

t
t i ti C

y y n′ ′∈
= +∑  and we obtain the following results: 
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1
t t r

t
t

n y yy
n

′
+=
+

 (18) 

' ,
1

s s r
s

s

n y yy
n

−=
−

 (19) 

since /
s

s i si C
y y n

∈
=∑  and / .

t
t i ti C

y y n
∈

=∑  Hence, we can calculate tW ′  and sW ′  in 

equation (17) by using these results. 
Using (18), we derive ' ( ) / ( 1).i t i t r t ty y y y y y n− = − − − +  Then, the following result 

is obtained: 

( )( ) ( )( )

( )( )
2

1 1

1
,

t

t

t i t i t r t r t
i C

r t r t
i t i t

t ti C

t
r t r t

t

t

W y y y y y y y y

y y y yy y y y
n n

n y y y y
n

W aa

′ ′ ′ ′ ′
∈

∈

′ ′= − − + − −

′− −⎧ ⎫⎧ ⎫= − − − −⎨ ⎬⎨ ⎬+ +⎩ ⎭⎩ ⎭

⎛ ⎞ ′+ − −⎜ ⎟+⎝ ⎠
′= +

∑

∑  

since a = {nt / (nt + 1)}1 / 2 ( ),r ty y−  ( )( ) ,
t

i t r t pi C
y y y y O

∈
′− − =∑  and ( )

t
r ti C

y y
∈

−∑  

( ) ,i t py y O′− =  where Op is a p × p zero matrix. By a similar calculation, using (19), we 
derive: 

( )( ) ( )( )

( )( )
2

1 1

1
,

s

s

s i s i s r s r s
i C

r s r s
i s i s

s si C

s
r s r s

s

s

W y y y y y y y y

y y y yy y y y
n n

n y y y y
n

W bb

′ ′ ′ ′ ′
∈

∈

′= − − − − −

′− −⎧ ⎫⎧ ⎫= − + − +⎨ ⎬⎨ ⎬− −⎩ ⎭⎩ ⎭

⎛ ⎞ ′− − −⎜ ⎟−⎝ ⎠
′= −

∑

∑  

since b = {ns / (ns – 1)}1 / 2 ( ),r sy y−  ( )( ) ,
s

i s r s pi C
y y y y O

∈
′− − =∑  and 

( )( ) .
s

r s i s pi C
y y y y O

∈
′− − =∑  

From (17), these results imply: 

( ) ( )( ) ( ) .W G k W G k aa bb′ ′ ′= + −  

This directly shows that ( ( ( )))CC W G k′  < CC(W(G(k))) , which is based on (i), coincides 
with the renewal condition (11). 

Letting 1( ( )) ( ,  ){(1,  0) (1,  0) (0,  1) (0,  1)}( ,  ) ,E W G k a b a b− ′ ′ ′= + −  since 0 < 
det(W(G(k))) for any G(k) and k is assumed, the following equation holds: 
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( )( ) ( )( ) ( )det ( ) det ( ) det pW G k W G k I E′ = +  (20) 

Let λi be the ith eigenvalue of E, then 
1

det( ) (1 ).
p

p ii
I E λ

=
+ = +∏  From Lütkepuhl (1996, 

p. 65), the nonzero eigenvalues in λ1, …, λp are equal to υ1 and υ2, which are the 
eigenvalues of a 2 × 2 matrix 1{(1, 0) (1, 0) (0, 1) (0, 1)}( , ) ( ( )) ( , ).F a b W G k a b−′ ′ ′= + −  
Thus, det(Ip + E) = 1 + υ1 + υ2 + υ1υ2. Since υ1 and υ2 are eigenvalues of F, from the 
Cayley-Hamilton theorem, υ1 and υ2 are the solutions to the following quadratic equation: 

2 tr( ) det( ) 0.υ F υ F− + =  

Thus, from the relationship between the solution and the coefficients of the above 
equation, we obtain the following equations: 

( )
( ) ( ) ( )

1
1 2

1 1
1 2

tr( ) ( ) ( ) ( ),

det( ) ( ) ( ) .

υ υ F a b W G k a b

υ υ F a W G k ab ba W G k b

−

− −

′+ = = − +

′ ′ ′= = − −
 

Hence, we obtain: 

( )
( ) ( ) ( ) ( )1 1 1

det

1 ( ) ( ) ( ) ( ) ( ) .

pI E

a b W G k a b a W G k ab ba W G k b− − −

+

′ ′ ′ ′= + − + − −
 (21) 

We directly obtain that the renewal condition (12) coincides with ( ( ( )))CC W G k′  < 
CC(W(G(k))) based on (ii) (this was previously shown by Yanagihara and Yoshimoto 
(2005)). 

Using these results, we can prove ( ( ( ))) ( ( ( )))CC W G k CC W G k′ <  based on the 
cluster criterion (iii) is equivalent to the renewal condition (13). When we use the cluster 
criterion (iii), since it is organised as a summation of det(Wi)1/p, satisfying ( ( ( )))CC W G k′  
< CC(W(G(k))) coincides with satisfying 1/ 1/det( ) det( )p p

s tW W′ ′+  < det(Ws)1/p + 
det(Wt)1/p. This condition is equivalent to 1 < exp{det(Ws)1/p – 1/ 1/det( ) det( )p p

s tW W′ +  – 
1/det( ) }p

tW ′  = exp{(det(Ws) – det( )sW ′  + det(Wt) – det( )) / }.tW p′  Thus, we consider the 
condition that 0 < det(Ws) – det( )sW ′  + det(Wt) – det( ).tW ′  

From Schott (2005, Problem 7.14), the following equation holds: 

( ){ }1det( ) 1 tr det( ),P Q P Q P−+ = +  

for any non-singular matrix P and some appropriate dimensional matrix Q with rank  
(Q) = 1. Since , ,t t s sW W aa W W bb′ ′′ ′= + = +  rank ( ) 1,aa′ =  rank ( ) 1,bb′ =  and we 
assume Wi is always a non-singular matrix, we obtain: 

( ) ( ) ( )1det 1 det .t t tW a W a W−
′ ′= +  (22) 

( ) ( ) ( )1det 1 det .s ssW b W b W−
′′′= +  (23) 

Hence, we obtain: 
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( ) ( ) ( ) ( )
( ) ( )1 1

det det det det
det det .

s s t t

s t ts

W W W W
b W b W a W a W

′ ′

− −
′′

− + −
′ ′= −

 

From Schott (2005, Corollary 1.7.2), the following equation holds for any non-singular 
matrix R: 

( )
1 11 1

1
,

1
R cc RR cc R

c R c

− −− −
−

′′− = +
′−

 (24) 

for some vector c that is of suitable dimension, and such that R cc′−  is a non-singular 
matrix. We note that det( ) 0R cc′− ≠  is equivalent to 1 0c Rc′− ≠  (see, e.g., Siotani  
et al., 1985, A.1.3). 

Here, since s sW W bb′ ′= −  is assumed to be a non-singular matrix, we obtain 
11 0sb W b−′ ′− ≠  (see, e.g., Siotani et al., 1985, A.1.3). Thus, from (24) and det(Ws) ≠ 0, 

we have: 
1 1

1 1
1

.
1

s s
ss

s

W bb WW W
b W b

− −
− −
′ −

′
= +

′−
 

Hence, we obtain 1 1 1/ (1 )s ssb W b b W b b W b− − −
′′ ′ ′= −  and 1 1 11 (1 ) ( 0).ssb W b b W b− − −

′′ ′+ = − >  
Using this and (23), we see that the renewal condition 

1 10 det( ) det( )s t tsb W b W a W a W− −
′′′ ′< −  is equivalent to: 

( ) ( )
1

1
1

det det .
1

s
t t s

s

b W ba W a W W
b W b

−
−

′−

′′ <
′−

 

From (23) and 1 1 11 (1 ) ,ssb W b b W b− − −
′′ ′+ = −  we can prove the renewal condition (13) is 

equivalent to ( ( ( ))) ( ( ( ))),CC W G k CC W G k′ <  based on the cluster criterion (iii). 
Next, we prove that the renewal condition (14) is equivalent to ( ( ( )))CC W G k′   

< CC(W(G(k))) when we use the cluster criterion (iv). Recall that sC′  is derived by 
deleting r from Cs, and tC ′  is derived by adding r to Ct. Hence, since the  
differences between G(k) and ( )G k′  are in the sth and tth clusters, we obtain CC(W(G(k))) 
= det( ) det( )s tn n

s tW W z  and 1 1( ( ( ))) det( ) det( ) ,− +
′ ′′ = s tn n

s tCC W G k W W z  where 

,
1, ,

det( ) i

i s t

n
ti k

z W
≠

=
= ∏ …

 can be considered to be a constant. Note that z > 0, since det(Wi) 

> 0 for any i and G(k). Thus, the condition for ( ( ( ))) ( ( ( )))CC W G k CC W G k′ <  based on 
(iv) coincides with 1 1det( ) det( )s tn n

s tW W− +
′ ′  < det( ) det( ) .s tn n

s tW W  Since det(Wi) > 0 for 
any i and G(k) , from (22) and (23), this inequality is equivalent to: 

( ) ( ) ( ) ( )11 11 det 1 det .t sn n
t t ssa W a W b W b W+− −

′′′ ′+ < +  

Hence, since 1 1 11 (1 )ssb W b b W b− − −
′′ ′+ = −  and using (23), we can prove that (14) is 

coincides with ( ( ( ))) ( ( ( ))),CC W G k CC W G k′ <  based on the cluster criterion (iv). 
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Next, we prove that the renewal condition (15) coincides with ( ( ( )))CC W G k′  < 
CC(W(G(k))) when we use the cluster criterion (v). Based on (v), since G(k) and ( )G k′  
differ in the sth and tth clusters, we can express this condition as: 

( )( )( ) ( )( )( ){ }
( ) ( ) ( ) ( ) ( ) ( )( ){ }

log det ( ) log det ( )

2 1 log 1 1 log 1 log log .s s t t s s t t

n W G k W G k

n n n n n n n n

′ −

< − − + + + − +
 

The left-hand side in the above inequation is n log{det(Ip + E)}, from (20). On the other 
hand, the right-hand side is equal to 1 12 log{( 1) ( 1) }.s ts t n nn n

s t s tn n n n− −− +− +  Thus, the 
above inequality coincides with: 

( ) ( ) ( )
21 11 1det .

s t

s t

nn n
s t

p n n
s t

n nI E
n n

− +⎧ ⎫⎪ ⎪− ++ < ⎨ ⎬
⎪ ⎪⎩ ⎭

 

Hence, we obtain that the renewal condition (15) is equivalent to ( ( ( )))CC W G k′  < 
CC(W(G(k))), based on (v) from (21). 

Finally, we prove that ( ( ( ))) ( ( ( ))),CC W G k CC W G k′ <  based on the cluster criterion 
(vi), is equivalent to (16). Considering the difference between G(k) and ( )G k′ , this 
inequation is equivalent to: 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ){ }

( )( ) ( )( ) ( ) ( ){ }

1 log det 1 log det

2 1 log 1 1 log 1

log det log det 2 log log .

s s t t

s s t t

s s t t s s t t

n W n W

n n n n

n W n W n n n n

′ ′− + +

− − − + + +

< + − +

 

Using (23), we obtain 1det( ) (1 )det( ),s s sW b W b W−
′ ′= −  since 1 1 11 (1 ) .ssb W b bW b− − −

′′+ = −  
Furthermore, using (22), the above inequation is equivalent to: 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )

1

1

1 log 1 log det

1 log 1 log det

1 12 log 1 log 1 log 1 log 1 .

s s s

t t t

s s t t
s t

n b W b W

n a W a W

n n n n
n n

−

−

′− − −

′+ + + +

⎧ ⎫⎛ ⎞ ⎛ ⎞< − − − + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 

Then, since 1 1det( ) det( ),s sW W− −=  this inequation can be rewritten, as follows: 

( ) ( ) ( ){ }1 11 1 1

2

log 1 1 det

1 1 1log 1 1 .
1

s t

s t

n n
s t t s

n n
t

s t s

b W b a W a W W

n
n n n

− +− − −′ ′− +

⎡ ⎤+⎛ ⎞ ⎛ ⎞< − +⎢ ⎥⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Hence, we obtain that the renewal condition (16) coincides with ( ( ( )))CC W G k′  < 
CC(W(G(k))), based on (vi). 


