Experimental study and prediction on impact scratching of single abrasive for K9 glass
by Chen Li; Feihu Zhang; Xiaoshuang Rao; Bing Leng
International Journal of Nanomanufacturing (IJNM), Vol. 14, No. 1, 2018

Abstract: The orthogonal test L16 (43) was designed, and the impact scratching experiment for K9 glass was carried out by using Vickers diamond indenter on the DMG ULTRASONIC 70-5 linear. The three-dimensional morphology of the surface for glass was observed by scanning electron microscope (SEM), which was compared with that in the quasi static state. The strain rate of the grinding process was obtained by choosing the contact zone length as the impact contact length, which was the evaluation Index of impact. The relationships between strain rate and the depth of radial crack, strain rate and the depth of transverse crack, strain rate and normal scratching force were first analysed. The results showed that the depth of radial of crack, the depth of transversal crack and the normal scratching force decreased with the increase of strain rate. The two-layer BP neural network was established, which took the strain rate as input variables. The depth of radial crack, the depth of transversal crack and normal scratching force were predicted and the errors were within 10%, which indicated that the prediction results of BP neural network were reliable.

Online publication date: Tue, 09-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com