Impact of node density and TTL in vehicular delay tolerant networks: performance comparison of different routing protocols
by Kevin Bylykbashi; Evjola Spaho; Leonard Barolli; Fatos Xhafa
International Journal of Space-Based and Situated Computing (IJSSC), Vol. 7, No. 3, 2017

Abstract: In this work, we evaluate the performance of different routing protocols in vehicular delay tolerant networks (VDTNs). We study the impact of vehicles density and TTL on the network performance. The simulations are conducted with the opportunistic network environment (ONE) simulator. The performance is analysed using delivery probability, overhead ratio, average latency and average number of hops metrics. The simulation results show that the increase of node density improves the network performance. In dense network scenario, the performance of epidemic and maxprop routing protocols is better because the number of opportunistic contacts between nodes increases. For spray and wait, the performance is not improved since it uses a maximum of two hops to deliver bundles. Hence, in dense networks, a bundle may have a significant delay because it can only be delivered when a relay or source node have an opportunistic contact with the destination. The increase of ttl from 30 to 120 min does not improve the performance of three routing protocols in both scenarios. Multiple-copy protocols perform better in terms of delivery probability compared with single-copy protocol. The single-copy protocol uses the highest average number of hops and higher average latency compared with multiple-copy protocols.

Online publication date: Wed, 03-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Space-Based and Situated Computing (IJSSC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com