Thornthwaite-Holzman model for a wide range of daily evaporation rates
by Jaber Almedeij
International Journal of Water (IJW), Vol. 11, No. 4, 2017

Abstract: This study employs meteorological data from a weather station located in a coastal desert area in Kuwait, with a wide range of temperature, relative humidity, wind speed and evaporation measurements. The data have been used to test the well-known theoretical aerodynamic model of Thornthwaite-Holzman. The results show that the performance of this model is satisfactory for evaporation rates up to 10 mm/day, but there is an obvious systematic shift in accuracy beyond that from 10 to 40 mm/day. It is noted that the specific humidity difference proposed in the original model was assumed to have a linear correlation with evaporation rates. The study suggests modifying this assumption to become rather of a power form. The modification produced acceptable results based on subjective statistical criteria. This modification will help in extending our ability for analysing hydrological problems in different environments of high or low evaporation rates.

Online publication date: Mon, 20-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Water (IJW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com