
   

  

   

   
 

   

   

 

   

   54 Int. J. Service and Computing Oriented Manufacturing, Vol. 3, No. 1, 2017    
 

   Copyright © 2017 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Multi-objective machining parameter optimisation for 
residual stress based on quantum cat swarm 

Guohai Zhang 
School of Agricultural Engineering and Food Science, 
Shandong University of Technology, 
Zibo 255000, Shangdong, China 
Email: guohaizhang@163.com 

Huibin Sun* 
Key Laboratory of Contemporary Design and  
Integrated Manufacturing Technology, 
Ministry of Education, 
Northwestern Polytechnical University, 
Xi’an, Shaanxi, 710072, China 
Email: sun_huibin@nwpu.edu.cn 
*Corresponding author 

Abstract: Residual stresses greatly affect parts’ performances, lives, fatigue 
strengths, corrosion resistance, etc. Due to the lack of analytical models, 
machining parameter optimisation for better residual stresses is still a problem. 
In this paper, a multi-objective machining parameter optimisation method is 
proposed. Based on the support vector machine, the machining parameters’ 
nonlinear relationships with the surface roughness and the residual stress are 
investigated. The cutting time consumption, surface roughness and absolute 
residual stress are the objectives, while the cutting speed, feed rate, axial 
cutting depth and the radial cutting deep are variables. The cutting power and 
cutting torque are constraints. The multi-objective cat swarm optimisation is 
designed to solve the problem, while the quantum computation is used to 
improve its performance. An experimental study is presented to verify the 
method. Some Pareto solutions are obtained with good convergence and 
diversity. Compared with the empirical machining parameters, the material 
removal rate, surface roughness and residual stress are optimised greatly. 
Compared with non-dominated sorting genetic algorithm II, the algorithm’s 
precision and effectiveness are also verified. 
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1 Introduction 

Inevitably, residual stresses always remain in machined parts. Undesirable residual 
stresses dramatically affect parts’ performances, lives, fatigue strengths, corrosion 
resistance, etc. (Li and Wang, 2017). Then, great efforts should be made to control 
residual stresses. Optimising machining parameter is a feasible option (Masoudi et al., 
2015). In fact, machining parameter optimisation for better residual stresses is facing the 
following barriers. 

1 The relationship between machining parameters and residual stresses is so complex. 
No analytical model is available to precisely decide machining parameters’ effects 
on residual stresses (Masoudi et al., 2015). Then, how to build the relationship is a 
problem that must be solved prior to optimisation. Machining parameters based on 
handbooks or operators’ experience are arbitrary or not optimised. Due to the lack of 
analytical models, machining parameters optimised by the empirical formulas are not 
reliable enough (Zhang et al., 2009). 

2 Machining parameter optimisation is a typical multi-objective optimisation problem 
(MOP) when two or more objectives are considered synchronously. Material 
removal rate, machining cost, tool wear (Padhi et al., 2016), surface quality (Bhavsar 
et al., 2015), cutting forces (Kara and Budak, 2015), cutting fluid consumption (Jiang 
et al., 2015), carbon emissions (Lin et al., 2016) and energy consumption (Albertelli 
et al., 2016), etc., should be considered concurrently. It is impossible to optimise all 
objectives most at the same time (Padhi et al., 2016), because some conflicts may 
exist among these objectives (Tiwari et al., 2015). Optimising one objective may 
deteriorate another one. For example, improving surface quality increases machining 
time, cost and energy. In addition, it is very difficult to compare two solutions 
optimised in different dimensions (Zhang et al., 2015). No quantitative trade-off can 
be found between them. Although the MOP can be simplified as a single-objective 
one by weighting each objective differently, the selection of weights is arbitrary 
when no unified rule can be used (Li et al., 2016). The normalisation methods also 
come with confusing evaluation thresholds. 

3 According to the Pareto rule, some non-dominated solutions can be obtained for such 
a MOP (Sethanan and Neungmatcha, 2016), rather than the unique optimum. Then 
an efficient algorithm is needed to find out the non-dominated solutions with good 
diversity and convergence (Asokan et al., 2003). To improve the searching ability, 
some multi-objective optimisation algorithm were developed on the basis of genetic 
algorithm (GA) (Sahali et al., 2015), ant colony optimisation (ACO), particle swarm 
optimisation (PSO) (Rao et al., 2016), neuro-fuzzy (Sohrabpoor et al., 2016), 
artificial neural network (ANN) (Maity and Mishra, 2016) and grey relational 
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analysis (Kuram and Ozcelik, 2013; Patel, 2015) too. The algorithm’s convergence 
and the results’ diversity are key issues to be addressed (Zain et al., 2011). 

In summary, machining parameters’ effects on residual stresses are confusing. Machining 
parameter selection is an MOP. Without precise mathematical models, how to take 
multiple objectives into account is still a problem. New optimisation algorithm should 
also be developed to resolve Pareto solutions with improved convergence and diversity. 

To advance the study in this field, this paper puts forward a multi-objective 
machining parameter optimisation model. The absolute residual stress is optimised 
together with material removal rate and surface roughness. The multi-objective quantum 
cat swarm optimization (CSO) is developed to solve this problem. An example is also 
presented to verify the proposed model and algorithms. 

The rest of this paper is organised as follows. Section 2 proposes the multi-objective 
machining parameter optimisation model. In Section 3, the multi-objective quantum CSO 
(MQCSO) is discussed in detail. An experimental study is demonstrated in Section 4, 
which is followed by concluding remarks in Section 5. 

2 Multi-objective machining parameter optimisation model 

Normally, cutting speed, feed rate and cutting depth are key machining parameters that 
affect machining efficiency and quality. They are machining parameter optimisation 
variables and denoted as follows. 

1 Cutting speed (mm/s) means the maximum peripheral speed of the cutter. Its value 
can be calculated by the following equation. 

(mm/s)
1,000 60c
πDnv =

×
 (1) 

where D (mm) is the diameter of the cutter and n (rpm) is the spindle speed. 

2 feed rate fm (mm/min) 

3 axial cutting depth ap (mm) 

4 radial cutting depth ae (mm). 

Therefore, a machining parameter solution is a vector denoted as x = (vc, fm, ap, ae). 
Optimised machining parameters improve efficiency and better surface integrity. 

Here, the cutting time consumption, surface roughness and absolute residual stress are 
alternative approaches to these goals. They are objectives of the machining parameter 
optimisation problem. 

1 The material removal rate (MRR) is defined as the removed material volume divided 
by the machining time. It can be calculated by the following equation. 

3(cm / min)
1,000

m p ef a a
Q

⋅ ⋅
=  (2) 
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Obviously, the more MRR is, the more machining efficiency will be. To transform the 
maximum problem to a minimum problem, the cutting time consumption of 1 cm3 
material is used. It equals to the reciprocal of Q and is denoted by f1(x) as follow. 

3
1

1 1,000( ) (min/ cm )
m p e

f x
Q f a a

= =
⋅ ⋅

 (3) 

2 Surface roughness 

As an important surface integrity factor, surface roughness is very important due to 
its effects on friction, stress, corrosion resistance, etc. Here, the minimum surface 
roughness Ra is regarded as the second objective and denoted by f2(x). Machining 
parameters’ effects on surface roughness are very complex. When the cutting speed 
vc increases, the surface roughness is decreasing. The surface roughness is not a 
monotonic function of feed rate fm and axial cutting depth ap. The radial cutting 
depth affects the surface roughness greatly. In fact, it is very difficult to build a 
precise mathematical model to describe the relationship between surface roughness 
and the machining parameters. Here, an approximation model is built on the basis of 
support vector machine (SVM). The cutting speed vc, the feed rate fm, axial cutting 
depth ap and radial cutting depth ae are the inputs, while the roughness Ra is the 
output. Based on experimental works, the model is trained by training examples. 
Parameter selection is a significant issue for SVM. Limited by the length and 
considering this work’s main contribution, this problem is not included in this paper. 

3 Absolute residual stress 

Residual stress is very important, especially for thin-wall parts. A large residual 
stress benefits fatigue life and corrosion resistance, but small residual stress 
improves the size stability. Here the minimum absolute residual stress |σ| is 
considered.as the third objective and denoted by f3(x). 

Normally, the residual stress is decreasing when the cutting speed vc rises or when the 
feed rate fm decreases. The effects of axial cutting depth ap and radial cutting depth ae on 
residual stress are not very dramatic. Therefore, high spindle speed and small feed rate 
result in small surface stress. In fact, it is very difficult to build a precise mathematical 
model to describe the relationship between the residual stress and machining parameters. 
Here, an SVM-based approximation model is built too. The machining parameters are the 
inputs, while the residual stress is the output. 

In summary, the final optimisation objective is presented as follow. 

( ) ( ) ( ) ( )( )1 2 3min , ,f x f x f x f x=  (4) 

where f1(x), f2(x) and f3(x) are cutting time consumption, surface roughness and absolute 
residual stress respectively. However, inevitable conflicts exist among these three 
objectives. For example, a large radial cutting depth decreases cutting time and 
deteriorates the surface roughness at the same time. A large feed rate saves cutting time 
and increases the absolute residual stress too. As a typical MOP, it is very difficult to 
optimise three objectives synchronously. A balance or a trade-off among them is needed. 
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In order to make the machining parameters feasible, the following constraints apply. 

1 Cutting speed should be limited in a range as follow. 

min max

1,000 60 1,000 60c
πDn πDnv≤ ≤

× ×
 (5) 

where nmin and nmax are the minimum and maximum spindle speeds. 

Feed rate fm should be limited in a range as follow. 

min maxmf f f≤ ≤  (6) 

where fmin and fmax are the minimum and maximum feed rates. 

Axial cutting depth ae should be limited in a range as follow. 

min maxp p pa a a≤ ≤  (7) 

where apmin and apmax are the minimum and maximum axial cutting depth. 

Radial cutting depth ae should be limited in a range as follow. 

min maxe e ea a a≤ ≤  (8) 

where aemin and aemax are the minimum and maximum radial cutting depth. 

2 The cutting power drawn from the spindle motor should not exceed the limitation. 

1 max4
( ) 0

6 10
tm cF vg x ηP= − ≤
×

 (9) 

Here, Ftm is the maximum tangential cutting force which can be decided by the 
empirical formula a b c d

tm c m p eF k v f a a= ⋅ ⋅ ⋅ ⋅  (Altintas, 2012), while coefficients a, b, c, 
d and k can be looked up in manuals. Pmax and η are the maximum spindle motor 
power and the efficiency respectively. 

The cutting torque should not exceed the limitation. 

2 3
( ) 0

2 10
tm

T
F Dg x M= − ≤
×

 (10) 

where MT is the maximum torque of the spindle motor. 

In summary, the multi-objective machining parameter model involves four variables, 
including the cutting speed vc, feed rate fm, axial cutting depth and radial cutting 
depth ae. They make a vector as x = (vc, fm, ap, ae).The cutting time consumption 
f1(x), surface roughness f2(x) and absolute residual stress f3(x) are the objectives. 
Some constraints are used to make every solution meaningful. 
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3 Multi-objective quantum CSO 

CSO imitates the behavior of cats (Orouskhani et al., 2013). Based on the unique seeking 
mode and tracing mode, the convergence speed of CSO is significantly better than GA, 
PSO, etc. (Hadi and Sabah, 2014). Quantum computation makes direct use of quantum-
mechanical phenomena, such as superposition and entanglement, to perform operations 
on data. It is believed to improve the computing ability and store capacity. In this work, 
the quantum computation is used to improve CSO’s performance. Prior to solving the 
machining parameter optimisation problem, the mapping relationship between elements 
in the problem and CSO is shown in Figure 1. 

Figure 1 Mapping relationship between the problem and CSO 

 

3.1 Quantum CSO 

3.1.1 Coding and initialisation 

Suppose the population size is nPop. A cat is mapped to a structural body that includes 
position (Quantum state or real number), label and fitness. Assuming the length of a 
quantum is k, the total length of all quantum is n = 4k. The i-th cat’s position quantum is 
given as 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 2 2 1 3 3 1 41

1 1 2 2 1 3 3 1 4

i k i k i k i k i k i ki ik

i ik i k i k i k i k i k i k

α α α α α αα α
β β β β β β β β

+ + +

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

… " " "  (11) 
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where 1

1

i ik

i ik

α α
β β
⎡ ⎤
⎢ ⎥
⎣ ⎦

" , 
( )

( )

( )

( )

1 2

1 2

i k i k

i k i k

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

"
α α

β β
, 

( )

( )

( )

( )

2 1 3

2 1 3

i k i k

i k i k

α α

β β
+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

"  and 

( )

( )

( )

( )

3 1 4

3 1 4

i k i k

i k i k

α α

β β
+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

"  are quantum codes of cutting speed vc, feed rate fm, axial cutting 

depth ap and radial depth ae respectively. They can be used to get real values of these 
variables. 

With the 50/50 possibility, initial aim (1 ≤ m ≤ n) is 1/ 2  or 1/ 2−  respectively. 
This rule applies to initial βim (1 ≤ m ≤) either. The constraint 2 2 1im imα β+ =  applies. Then 
the cats’ quantum states are initialised. To translate the quantum codes to binary codes, a 
random decimal p in the range [0, 1] is used. If p is smaller than (aim)2, the square of the 
1st dimension’s probability amplitude, aim is set as 0. Otherwise, it is 1. The binary codes 
can also be translated to real values. For example, suppose the binary code of the cutting 
speed vc is bkbk–1 … bj … b2b1, while bj (1 < j < k) is 0 or 1. If vcmax and vcmin are the 
maximum and the minimum cutting speeds, the real value of cutting speed can be 
calculated by the following equation. 

max min1
min 2

2 1

k
c ci

c c i k
i j

v vv v b −

=

⎛ ⎞ −
= + ⋅ ⋅⎜ ⎟⎜ ⎟ −⎝ ⎠

∑  (12) 

Similarly, the binary codes of feed rate fm, axial cutting depth ap and radial cutting depth 
ae can be translated to real numbers too. The translation procedure is described by  
Figure 2. The real numbers are used to calculate each cat’s fitness and find the optimum. 

Figure 2 The translation from binary to real number 
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3.1.2 Judgment of cats’ modes 

The mixture ratio (MR) dictates the joining of seeking mode with tracing mode. This 
parameter decides the ratio of cats in tracing mode. The cat numbers in seeking mode 
num_seek and tracing mode num_track can be calculated by using the population nPop 
size and MR. Seeking mode and tracing mode describe the local searching and the global 
searching abilities respectively. A flag is used to identify whether a cat is in seeking 
mode or tracing mode. If the flag is 1, the cat is in seeking mode. Otherwise, it is in 
tracing mode. 

3.1.3 Evolution of cat swarm 

The cat swarm approximates the optimum machining parameters by evolution. In each 
iteration, a cat in seeking mode duplicates itself j times, where j is the size of the seeking 
memory pool (SMP). According to the fitness and selecting probability, a mutated cat is 
selected as the result of the seeking mode. 

Here, cats move via the quantum rotation. The Hadamard quantum gate u is used to 
update the i-th cat in the t-th iteration by the following equation. 

( ) ( ) ( )
( ) ( )

1 11
1

1 1 1

cos sin

sin cos

t tt t t
ij ijij ij ijt

ijt t tt t
ij ij ijij ij

θ θα α α
u θ

β β βθ θ

+ ++
+

+ + +

⎡ ⎤Δ − Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥= Δ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (13) 

where 1(1 , 1 )t
ijθ i nPop j n+Δ ≤ ≤ ≤ ≤  is a qubit angle increment of cat i in the t + 1 

iteration. The Hadamard quantum gate is shown in Figure 3. 

Figure 3 The hadamard quantum gate 
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In seeking mode, the i-th cat’s position is updated on the basis of the qubit angle’ wave in 
a small range as 
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1
1

t
ijθ c π rand+Δ = ⋅  (14) 

where c1 is a constant in the range (0, 1). 
In tracing mode, the qubit angle increment of cat i in iteration j is 

( )1
2 1 1t t

gj ijij ijθ θ c rand θ θ i nPop j n+Δ = Δ + ⋅ ⋅ − ≤ ≤ ≤ ≤  (15) 

where c2 is a constant, θgi is the possibility angle of the global optimum cat, θij is the 
possibility angle of the cat. Initially, (θgi – θij) ∈ [–π, π] is true. 

The population evolution finishes when every cat completes the seeking mode and 
the tracing mode. The machining parameters are updated either. The global optimum can 
be found if each cat’s fitness is calculated. The algorithm ends when the predefined 
iterations finish. The cat position with the maximum fitness is selected as the optimum 
machining parameters. 

3.2 Multi-objective quantum CSO 

In order to optimise multiple objectives synchronously, the MQCSO is studied. The 
optimum machining parameters are included in the Pareto front. The Pareto-layer and the 
niche methods are combined to solve the MOP. The penalty functions are designed 
according to the constraints. 

1 Multi-objective optimisation method based on the Pareto-layer and niche 

Suppose ( ) ( ) ( )( )
1 2 3[ , , ]u u uu Tf f f f=  and ( ) ( ) ( )( )

1 2 3[ , , ]v v vv Tf f f f=  are fitness vectors of 
solution x(u) and x(v) respectively. The domination relationship between vectors 

( ) ( ) ( )( )
1 2 3[ , , ]u u uu Tf f f f=  and ( ) ( ) ( )( )

1 2 3[ , , ]v v vv Tf f f f=  is defined as 
( ) ( ) ( ) ( )[1, 2, 3], [1, 2, 3],u v u v

i i j ji f f j f f∀ = ≤ ∧∃ = < , denoted by ( ) ( )u vf f≺ . It means 
that vector f(u) dominates vector f(v). Therefore, solution x(u) can replace solution x(v) if 
the latter is the best position in history or the global best position. 

2 Niche 

Based on each optimisation objective, all cats are sorted in order. Assuming MAXlt 
and MINlt are the maximum and the minimum finesses of the i-th objective in the t-th 
iteration. fitlt(i) is the fitness of the l-th objective of the i-th cat in the t-th interation. 
fitlt(i)′ and fitlt(i)′′ are respectively the fitness of two cats that are adjacent to the i-th 
cat in the t-th iteration. The niche crowding distance of the i-th cat in the l-th 
objective is 

( ) ( ) ( )
, 1, 2, .lt lt

lt
lt lt

fit i fit i
D i l n

MAX MIN

′′ ′−
= =

−
…  (16) 

According to the niche theory, the more individuals are around, the poor diversity 
can be seen. Cats in sparse areas are more liable to survive than those in crowding 
areas because they have lower crowding distances. 
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3 Selection based on Pareto and niche 

Suppose p(v) is the v-th cat in the population P(t) = {p1, p2, …, Ppopsize}. The current 
population is pu and the population in the 1-st iteration is p1. The selection steps are 
listed as follows. 
a Initialise the population by setting Pu = P(t) and u = 1. 
b Calculate the niche crowding distances in population Pu. 
c Sort cats and find out the u-th Pareto layer PSu = {(pi, bi)}, where pi is a  

non-dominated solution in population Pu and bi is the niche crowding distance of 
pi. 

d Sort cats in PSu by bi in ascending order and assign rank (v + s) to the s-th cat, 
where s = 1, 2, …, |PSu|. 

e Calculate v = v +|PSu|, u++, Pu = Pu–1–PSu–1. If Pu ≠ Ø , go to Step c. 
f Calculate each cat’s survival possibility according to prob (p(v)) = q (1–q)v–1,  

v = 1, 2, …, popSize, where q is the possibility selection parameter. 

4 Fitness function 

According to equation (4), the machining time, surface roughness and absolute 
residual stress are going to be minimised. A calibration is needed to transform the 
objectives into fitness functions according to the following formula. 

( )( )maxF k f x f ξ= − + +  (17) 

where k is the selection possibility. It not only widens the searching range to improve 
the population’s diversity, but also decreases the searching range to better the 
convergence. ξ also benefits the population’s diversity by providing the worse cats 
evolution chances. 

According to the experimental results, the maximum values of three objectives are 
Tmax = 4,167min, Ramax = 13μm and |σ|max = 140MP. The fitness functions are 

1( ) 4,2001F f x= − +  (18) 

2 2100 ( ) 150F f x= − +  (19) 

3 3 ( ) 160F f x= − +  (20) 

The constrained optimisation problem is transformed into an unconstrained one by 
considering the cutting power constraint and the cutting torque constraint as penalty 
functions. Based on equations (9) and (10), the fitness functions are amended as 
follows when the penalty functions are included. Function f1(x) is divided by 10 to 
adjust its contribution to F1. 

1 1 2( ) /10 4,200 10 ( ) 10 ( )1F f x g x g x= − + − −  (21) 

2 2 1 2100 ( ) 150 10 ( ) 10 ( )F f x g x g x= − + − −  (22) 

3 3 1 2( ) 160 10 ( ) 10 ( )F f x g x g x= − + − −  (23) 
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4 Experimental study 

In order to verify the multi-objective machining parameter optimisation method, some 
machining experiments are done. The setup of the experimental platform is given in 
Table 1. 

The surface roughness and residual stress testers are shown in Figures 4 and 5 
respectively. 

In order to make an accurate and comprehensive analysis within reasonable 
experiment times and complexity, an orthogonal experimental plan is designed. As Table 
3 shows, cutting speed (vc), feed rate (fm), axial cutting depth (ap) and radial cutting depth 
(ae) are considered to make the four-factor and three-level plan. Because D10 cutting 
tools are used, cutting speeds 94.2 m/min, 125.7m/min and 157.1 m/min mean spindle 
speeds 3,000 r/min, 4,000 r/min and 5,000 r/min respectively. Measured surface 
roughness (Ra) and residual stress (σ) are also given in Table 2. 

Table 1 Setup of the experimental platform 

Name Description Memo 

Machine tool Carver WMS1200H 3-axis, max power 10 kw 
Cutting tool Eco-BRGM-4E-D10.0 Φ10 mm 
Work piece Aluminium alloy 7075  
Roughness tester TA620  
Residual stress tester Proto LXRD MG2000 Target material: Cr, voltage: 25kv, 

current: 30mA, exposure time: 1s, 
exposure number: 10, focal spot 

diameter: 1mm, bragg angle: 139, Range 
of flicker: β ± 25. 

Figure 4 Roughness tester (see online version for colours) 
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Figure 5 Residual stress tester (see online version for colours) 

 

Table 2 Orthogonal experimental plan and results 

 vc/m/min vf/m/min ap/mm ae/mm Ra/μm σ/MPa 

01 94.2 0.4 0.5 4 0.788 –63.0 
02 94.2 0.6 0.3 4 0.338 –75.6 
03 94.2 0.6 0.5 2 0.617 –52.4 
04 94.2 0.6 0.5 6 0.729 –44.6 
05 94.2 0.6 0.7 4 0.614 –38.5 
06 94.2 0.8 0.5 4 0.778 –47.4 
07 125.7 0.4 0.3 4 0.307 –43.8 
08 125.7 0.4 0.5 2 0.335 –47.0 
09 125.7 0.4 0.5 6 0.461 –46.2 
10 125.7 0.4 0.7 4 0.815 –18.5 
11 125.7 0.6 0.3 2 0.452 –42.0 
12 125.7 0.6 0.3 6 0.542 –64.1 
13 125.7 0.6 0.7 2 0.417 –53.2 
14 125.7 0.6 0.7 6 1.034 –24.7 
15 125.7 0.8 0.3 4 0.462 –48.5 
16 125.7 0.8 0.5 2 0.432 –42.7 
17 125.7 0.8 0.5 6 1.047 –43.2 
18 125.7 0.8 0.7 4 0.921 –1.2 
19 157.1 0.4 0.5 4 0.561 –8.3 
20 157.1 0.6 0.3 4 0.453 –26.9 
21 157.1 0.6 0.5 2 0.606 –16.7 
22 157.1 0.6 0.5 6 0.611 –43.4 
23 157.1 0.6 0.7 4 0.881 –14.4 
24 157.1 0.8 0.5 4 0.985 –21.4 
25 125.7 0.6 0.5 4 0.560 –16.9 
26 125.7 0.6 0.5 4 0.559 –14.6 
27 125.7 0.6 0.5 4 0.558 –18.9 
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SVM-based models are built to approximate machining parameters’ effects on surface 
roughness and absolute residual stress. In Figure 6(a), the relationship between the 
surface roughness and cutting speed is used to test the precision. The predicted results 
agree with the measured results well. Statistical results show that the root mean square 
(RMS) errors are no more than 9.98498 × 10–2 μm. In Figure 6(b), the relationship 
between the residual stress and cutting speed is shown. The predicted results agree with 
the measured results well. The RMS errors are no more than 1.48356 MPa. Similar 
results found with other parameters verify the model’s precision. 

Figure 6 Results of surface roughness and residual stress by using SVM (a) surface roughness 
and cutting speed (b) residual stress and cutting speed (see online version  
for colours) 
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The MQCSO is implemented in MATLAB 2012. The population size is 80 and MR is 
0.3. The Pareto front obtained after 100 iterations is presented in Figure 7. The algorithm 
shows good convergence. 

Figure 7 The Pareto front after 100 iterations (see online version for colours) 
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Pareto solutions in Figure 7 are listed in Table 3. 
According to Figure 7, the Pareto solutions show good diversity. They can be selected 

as the ultimate solutions according to specific requirements. For example, to minimise the 
cutting time consumption, solution 1 and 5 are recommended. Their cutting time 
consumptions are less than 700 min. Solution 3, 4 and 13 have better surface roughness, 
which is less than 0.4. The absolute residual stresses of solution 8 and 15 are the least, 
15.8MPa. Systematically, solution 2, 7, 11 and 12 are recommended when all three 
objectives are balanced. 
Table 3 Some Pareto solutions 

No. vc/m/min fm/m/min ap/mm ae/mm f1(x)min/cm3 f2(x)µm MPa 
1 157.1 0.45 0.57 5.92 664.8 0.699 23.4 
2 157.1 0.51 0.42 5.98 780.4 0.497 41.3 
3 157.1 0.40 0.43 5.98 966.8 0.383 30.7 
4 157.1 0.40 0.43 5.98 952.8 0.395 30.0 
5 154.9 0.51 0.50 5.92 653.4 0.660 38.1 
6 157.1 0.44 0.51 5.00 892.8 0.611 21.9 
7 157.1 0.42 0.51 5.94 799.6 0.556 24.1 
8 157.1 0.41 0.59 4.38 951.5 0.688 15.8 
9 157.1 0.42 0.57 5.92 704.3 0.672 20.5 
10 157.1 0.42 0.56 5.91 723.5 0.652 20.7 
11 157.1 0.43 0.51 6 765.2 0.568 25.9 
12 157.1 0.40 0.48 5.98 853.9 0.494 25.3 
13 157.1 0.43 0.42 5.97 933.5 0.394 34.4 
14 157.1 0.41 0.59 4.38 951.5 0.688 15.8 
15 157.1 0.40 0.58 5.98 709.9 0.677 17.8 
16 157.1 0.44 0.51 4.93 904.1 0.611 21.7 

Solution 7, 12, 1, 10, 3 and 13 are selected randomly to do machining experiments. The 
machined surfaces’ roughness and residual stress are measured. The comparison between 
the predicted results and the measured results is shown in Table 4. 
Table 4 The comparison results 

No. 
f2(x): Ra/µm  f3(x): |σ|/MPa 

Predicted Measured Error  Predicted Measured Error 

1 0.699 0.673 3.72%  23.4 21.7 7.26% 
3 0.383 0.363 5.22%  30.7 29.2 4.89% 
7 0.556 0.563 -1.26%  24.1 22.9 4.98% 
10 0.652 0.637 1.50%  20.7 21.5 -3.86% 
12 0.494 0.472 4.45%  25.3 24.5 3.16% 
13 0.394 0.412 -4.57%  34.4 36.2 -5.23% 
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According to Table 4, the proposed machining parameter optimisation method is shown 
high precision. The relative roughness error and absolute residual stress error are no more 
than 6% and 8% respectively. The precision of proposed method is verified. 

Moreover, a machining experiment is also done with a group of empirical machining 
parameters. The empirical cutting speed, feed rate, axial cutting depth and radial cutting 
depth are vc = 113.04 m/min, fm = 0.6 m/min, ap = 0.5 mm and ae = 4 mm respectively. 
According to equation (3), the cutting time consumption is 833.3 min. The measured 
surface roughness and absolute residual stress are Ra = 0.638 µm and |σ| = 64.7 MPa 
respectively. Obviously, most optimised solutions have better surface roughness, while 
all of them have less absolute residual stress. The effectiveness of proposed method is 
verified. 

In addition, the non-dominated sorting GA II (NSGA-II) (Li et al., 2015) is also used 
to solve the problem. Both NSGA-II and MQCSO run 10 times with the maximum 
iteration number 100 and the population size 50. Regarding to NSGA-II, the crossover 
rate is 0.8 and the mutation rate is 0.3. MQCSO’s MR is 0.3. The average time 
consumptions for 50 Pareto solutions are compared in Table 5. Obviously, MQCSO 
consumes less time and uses less iteration to achieve the same goal. 
Table 5 Comparison between NSGA-II and MQCSO 

 Average time consumed Average iteration number 
NSGA-II 74.41s 8.1 
MQCSO 65.53s 5.3 

Although the approach shows great potential in machining parameter optimisation, some 
limitations still exist. For example, machining parameters’ contributions to residual 
stresses are still vague, because residual stresses are caused by many factors. The model 
may be improved to consider coolant, lubrication, time, carbon emission, and so on. 
Otherwise, new methods may be introduced to deal with such a complex situation either. 
Moreover, machining parameters should be optimised for specific part structures and 
machining features. More attention could be paid to weak-rigidity parts with thin-wall 
features. 

5 Conclusions 

In order to solve the machining parameter optimisation problem, the multi-objective 
machining parameter optimisation model and algorithm are proposed and shown in the 
following conclusions. 

• The multi-objective machining parameter optimisation method optimises cutting 
time consumption, surface roughness and absolute residual stress systematically, 
while cutting power and spindle torque constraints apply. 

• The SVM-based models approximate the machining parameters’ effect on the 
surface roughness and the residual stress well. 

• Improved by the quantum computation, the multi-objective CSO solves the problem 
with good convergence and diversity. 
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• The proposed method is shown good performance in multi-objective machining 
parameter optimisation. Experimental study verifies the proposed method’s precision 
and effectiveness. 

In the future, more factors can be considered to improve the multi-objective machining 
parameter optimisation model’s feasibility and practicability. For example, coolant, 
lubrication or carbon emission can be involved. Additional work to deal with specific 
thin-wall features should also be explored. 
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