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Abstract: This paper examines expanding the range of manoeuvrability, ease 
of motion and improving the mobility system of Mars rovers. The focus of the 
research is on the enhancement of rover’s speed and mobility under numerous 
constraints imposed by rugged and difficult-to-navigate terrains that include 
abrupt change of ground level, soft soil, obstacles and rocks. The article 
presents a study and simulation of the dynamic response of a free fall of a 
quarter vehicle model with rigid wheel on a soft soil. A simplified form of 
Bekker’s equation is incorporated in the numerical solution of the governing 
equations of motion. The response of the dynamic interaction of rigid wheel 
and soft soil has three stages: sinkage stage, equilibrium stage and pullout from 
soil stage. The rigid body mode of the dynamic response is required to let the 
sprung mass pullout the rigid wheel from soft soil. The simulation results 
demonstrate that the first three stages of the first fall are the most significant. 
They have larger sinkage, larger resistance force and larger amplitude of 
dynamic response. The existence of damping reduces the magnitudes and 
prevents the unsprung mass from pulling out the wheel from the soil. The 
normal force on the rigid wheel for this case can be approximated and replaced 
by a triangle-shaped distribution. The simulations results conform to the 
theoretical counterparts. 
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1 Introduction 

Driving planetary exploration rovers across the surface of the planet is an extremely 
challenging and complicated operation. Although the mission planners carefully decide 
on a safe routs for the rover avoiding obstacles of any kind that might get in its way. 
Eliminating all possible pitfalls scenarios might not be possible; however, elimination the 
likelihood or devising tools to remedy some of these scenarios is a must. The Spirit and 
Opportunity rovers were designed to explore at least a 600 m from the landing location 
(Townsend et al., 2014). Naturally, one of the future missions in preparation for the 
ultimate goal of human mission to Mars is to expand the exploration areas. In a recent 
paper by Toups et al., (2016), the authors described the current status of the zones on 
which human would likely land and live on the Martian surface; these zones are termed 
as ‘Exploration Zones’ (EZ); according to NASA, the Exploration Zones are area located 
within a 100 km from the landing site (Toups et al., 2016). Consequently, more 
challenges have to be faced and have to be addressed. Although the mission planners 
carefully select the routes through which the rovers traverse; however, increasing the 
exploration area would definitely require increasing the traversing speed. For example, 
Opportunity and its twin Spirit average speed is one centimeter per second (0.3937 inches 
per second). One of the undesirable scenarios that are likely to happen during any 
exploration mission is falling down on a soft soil during motion. The likelihood of such a 
scenario is high considering the fact that these rovers traverse on unknown terrains during 
planetary missions. The cost and efforts associated in the development, deployment and 
operating of these rovers dictate maximising the time available for exploration process. 
Thus, understanding the dynamics of falling on the plant’s soft soil is the first step in the 
investigation of how to get the rover back in track. As mentioned above, the need for 
exploration of a wide area on planets surfaces requires the use of high-speed rovers; 
naturally, this would increase the chances of falling to lower levels. This case motivates 
the study of the dynamic response of such a fall on a soft soil and to understand the 
dynamic mechanics of a rigid wheel penetration into soft soil.  

Wheel sinkage governs the dynamics and mobility of planetary vehicles. Planetary 
vehicles have metal rigid wheels to sustain the low temperatures on planets. In general, 
the size of rovers and their wheels are relatively small. High-speed motion of any vehicle 
encounters a fall down to a lower level of terrain. The fall becomes more severe 
especially if the ground is a soft soil. The gained knowledge of the interaction between 
rigid wheels - soil enhances the design of future planetary vehicles. 
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The theoretical investigation presented in this manuscript is part of an undergoing 
bigger scope project at the university. The long-term objectives of this project are to 
enhance the maneuverability and traction of a smart robot on uneven, soft soil similar to 
the terrains encountered in planetary exploration missions. This is an ongoing research 
area motivated by NASA’s ambitions to inhabit the Red Planet by the year 2030s. The 
proposed research is focused on investigating methods to enhance the stability of the 
rover on loose soil using special wheel profile designed to increase the soil compactness 
along the rover’s path. 

The focus of the current stage of the project is to experimentally investigate the 
interaction of robot’s wheels with soft soil during steering and turning around curves.  
To accomplish this task, a sand testbed is being designed to imitate the soft soil terrain on 
the plant’s surface. The testbed is designed to allow measurements of the torques and 
forces between the wheels and the loose soil while moving forward, backward, or during 
steering when changing direction. The testbed is also designed to allow tilting right and 
left, which enables testing the rover’s performance on uneven terrain.  

Based on the experimentally validated optimal wheel features of the previous stage, 
the second major stage the project which will be carried out. The tasks will involve the 
design and build of a smart robot. From the manoeuvrability point of view, the smart 
robot is designed such that it can move simultaneously and independently in translation 
and rotation. The design enables the forward and the backward motions without changing 
wheels’ direction, and it can also spin about a point, and drive a long any curve, or turn in 
any sharp angle. 

2 Wheel-soft soil interaction mechanics 

Off-road performance, efficiency and mobility of manned and unmanned vehicles rely 
primarily on the interaction between running wheels and soil. The mobility of the vehicle 
is a function the thrust and resistance forces produced at the interface. Moving on a soft 
soil tracks is not only a function of the state of the wheel, like road-vehicles applications, 
but also on the state of the soil underneath. 

The field of terramechanics covers the interaction mechanics between wheel and soft 
terrain. The earlier studies in this field were focused on heavy duty machinery for 
agricultural and military applications (Bekker, 1956, 1960, 1969). Based on Bekker’s 
findings, many studies, both theoretical and experimental, have been conducted to study 
the interaction mechanics of rigid wheel and soft soil for off-road vehicles. An explicit 
analytical form to estimate the wheels sinkage in a soft terrain was presented by Ding  
et al. (2015). Simulation and experimental validation terramechanics model for small-
wheeled vehicles was presented by Meirion-Griffith et al. (2014) and Meirion-Griffith 
and Spenko (2014). Numerical simulations’ results of the soil-wheel interaction were 
presented by Wakui and Terumichi (2010). There are many other similar studies that 
addressed this subject such as Meirion-Griffith and Spenko (2014), Taheri et al. (2015), 
Wong, (1983, 2014), Zhang et al. (2009) and Ziani and Biarez (1990). 

In 1956 Bekker (1956) derived the analytical relationship of the normal stress σ 
exerted on a point on the rim of a wheel as function of the depth of point sinkage z for 
sandy soil; it represents the depth that a wheel will sink into the soil; thus, it signifies, and 
the resistance it will face during driving. The relationship is given by 
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( )1 2σ ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

nzk k b
b

 (1) 

and the shear stress τ represents the traction that the wheel will generate when driven on 
the soft soil terrain. The relationship is given by 

( ) ( ) ( )/
o tan 1τ θ σ φ −= + ⋅ − j kc e  (2) 

where the sinkage exponent, n, signifies the nonlinear behavior of the curvature of the 

pressure-sinkage curve for a soil deformation, [ ]1 ,k KPa  and 2 3 ⎡ ⎤
⎢ ⎥⎣ ⎦

KNk
m

 are the pressure 

sinkage moduli, r is wheel radius [m], b is wheel width [m], j shear deformation distance, 
φ is internal friction angle [deg], k is the shear deformation modulus and co is the soil 
cohesion. 

Based on previous experiments using sand to represent the soft soil terrain, it has 
been shown that the location of the maximum normal stress is a function of the slip I 
(Senatore and Iagnemma, 2014), where the slip is defined as  

actual traveling speed1  
wheel linear speed

= −i  (3) 

The angular position of the maximum normal stress, θm, on a rim of rigid wheel has been 
thoroughly investigated by many researchers (Senatore and Iagnemma, 2014; Wong & 
Reece, 1967). As shown in Figure 1, θm is given by a linear relationship 

( )m 1 2 1θ θ= +c c i  (4) 

Figure 1 Free body diagram of driven rigid wheel on soft soil, profiles of normal and shear 
stresses 

 
Soruce: Shibly et al. (2005) 

where 1c  and 2c  are the coefficients that define the relative location of the maximum 
normal stress and θ1 is the angular location of during rotation of the wheel, each point on 
the contact surface of the rim and the soil has sinkage z. The sinkage is determined as the 
difference between the vertical projections of the locations of the point of interest and the 
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first contact point which leads to the conclusion that the sinkage z is a function of angular 
position θ and the radius of the wheel, r.  

The normal stress distribution given in Eq. (1) can be expressed as a function of the 
angular position θ using the unique relationship between sinkage and angular location of 
any point on the wheel’s rim. 

Substituting this relation into Eq. (1) gives the distribution of the normal stress along 
the contact surface as  

( ) ( ) ( )1 1 2 1cos cosσ θ θ θ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

n
nrk k b

b
 (5) 

( ) ( ) ( )2
2 1 2 1 1 m 1

m 2

cos cosθ θσ θ θ θ θ θ
θ θ

⎡ ⎤⎛ ⎞+⎛ ⎞= + − − −⎢ ⎥⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎣ ⎦

nnrk k b
b  

(6) 

Equation (5) is defined in the range m 1 ,θ θ θ≤ ≤  while Eq. (2) is defined in the range 

2 mθ θ θ≤ ≤  as illustrated in Figure 1. The stress indices in the equations are referred to 
the zone number. 

The normal stress around the wheel’s rim starts from zero at the free surface, at the 
starting point of the contact area, increases toward a maximum value and then decreases 
back to zero at the end of contact with soil as demonstrated by Harnisch et al. (2005), 
Hathorn et al. (2014), Law and Wong (1994), Meirion-Griffith and Spenko (2011b, 
2013), Wong and Reece (1967) and Ziani and Biarez (1990). This stress distribution is 
divided into two zones as shown in Figure 1. 

Determination of the total shear deformation distance j of a point on the wheel’s rim 
which slips in soft soil was introduced by Harnisch et al. (2005), Wong and Reece (1967) 
and Yong and Windisch (1970) as 

( )j wheel axiscos 1 1 cosω θ ω θ= − = − −⎡ ⎤⎣ ⎦v r v r i  (7) 

( )
10

1 1
θ

θ

θ θ= = − −⎡ ⎤⎣ ⎦∫ ∫
t

jj v dt r i cos d  

( ) ( )1 11 sin sinθ θ θ θ= − − − −⎡ ⎤⎣ ⎦j r i  (8) 

Upon substitution of this expression into Eq. (2), the shear stress during slippage can be 
expressed as 

( ) ( ) ( )( )1 11 sin sin

o tan 1
θ θ θ θ

τ θ σ φ
− − − − −⎡ ⎤⎣ ⎦⎛ ⎞

= + ⋅ −⎜ ⎟
⎝ ⎠

r i
kc e  (9) 

where oc  is the soil cohesion, φ  is the angle of internal friction and  k is the shear 
modulus coefficient.  

Another approach was taken to determine the shear deformation distance j by 
considering the path of any point on the wheel’s rim as cycloid and is function of the 
slippage (Janosi, 1961; Salama and Vantsevich, 2013; Taheri et al., 2014; Wulfsohn and 
Upadhyaya, 1991) [5]. The result is more complicated expression. In this work, the shear 
deformation distance j given in Eq. (7) is adopted. 
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Upon determination of the normal and shear stresses profiles, the forces and the 
torques that act on the contact surface of a rigid wheel during driving on a soft terrain can 
be determined by integration as follows:  

The horizontal component of the stresses are integrated to give the horizontal force 
xF , 

( ) ( )
1 1

2 2

x cos sin
θ θ

θ θ

τ θ θ θ σ θ θ θ
⎛ ⎞

= ⋅ − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫F rb d d  (10) 

While the vertical components of the stresses to give the vertical force zF ,  

( ) ( )
1 1

2 2

z cos sin
θ θ

θ θ

σ θ θ θ τ θ θ θ
⎛ ⎞

= ⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫F rb d d  (11) 

and finally the shear stress on the contact area to give the torque T, as follows: 

( )
1

2

2
θ

θ

τ θ θ= ⋅∫T r b d  (12) 

The nonlinearity of j expression in the shearing stress formula in Eqs. (9)–(11) forced 
numerical integration in order to determine the forces and torque. In this case, there is no 
closed-form solution for the forces and torque that act on a wheel while interacting with 
soft soil. The absence of closed-form solution prevents mathematical operation of the 
wheel equilibrium equations which is needed for the online wheel-soil interaction 
prediction as it happens in the case of planetary missions. The online soil characteristics 
prediction requires another approach of forces and torque evaluation (Shibly et al., 2005).  

A previous work on reformulation of the basic mechanics of a rigid-driven wheel on a 
soft terrain was introduced by Iagnemma et al. (2002) and Shibly et al. (2005). 
Recalculating the stress distribution around the rim of a driven rigid wheel that is based 
on the experimental data given in Law and Wong (1994) and redrawing of the normal 
and shear stresses distributions on a Cartesian Coordinates axis yields pattern very close 
to a triangular distribution as illustrated in Figure 2.  

Figure 2 (a) and (b) Normal stress and shear stress distribution around the rim of driven rigid 
wheel on soft terrain for different values of n. (c) and (d) the same as in (a) and (b) with 
the stress equivalent distribution (see online version for colours) 

 
Source: Shibly et al. (2005) 
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Least-squares regression analysis of the stresses distribution around the rigid wheel 
during interaction with a soft soil leads two expressions for the normal and shear stresses 
shown in Eq. (13). The objective of these modification is extend the triangular 
approximate stress distribution shown in dashed lines in Figure 2 so that the areas under 
real normal and shear stress distribution curves for a given soil index n and the modified 
approximate distribution are equal as depicted in Figure 3. The two modifying factors for 
the normal stress and shear stress distribution were found as function of the soil exponent 
n, respectively, as 

nsfac 0.49 1.6683= − +n  

ssfac 0.1381 0.815= +n  (13) 

Figure 3 Stress distribution and its equivalent distribution around the rim of driven rigid wheel 
on soft terrain for different values of soil exponent n. (a) Normal stress and (b) Shear 
stress (see online version for colours) 

 

The relative error of the stresses distribution areas for various exponential soils n is 
shown in Figure 4. The maximum relative error is obtained by Eq. (13), and the true 
stress distribution is less than 0.4%. 

Figure 4 Relative error of the equivalent stress distribution with the modified height around the 
rim of driven rigid wheel on soft terrain for different values of n (see online version for 
colours) 
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These results would justify using the approximate triangular normal and shear stresses 
distributions. This observation has been investigated and adopted by several researchers 
such as Meirion-Griffith and Spenko (2011a), Vincent (1961), Wulfsohn and Upadhyaya 
(1991), and Ziani and Biarez (1990). 

The normal force zF  shown in Figure 1 can be found by integration of the normal 
stress and the sheer stress acting on the rim of a rigid wheel that is interacting with soft 
soil to give the normal force as 

( ) ( )( ) ( ) ( )( )
1 m

m 2

z 1 1 2 2cos sin cos sin
θ θ

θ θ

σ θ θ τ θ θ θ σ θ θ τ θ θ θ
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫F rb d d  (14) 

Due to the nonlinearity in the normal stress and shear stress expressions formula given in 
Eqs. (5), (6) and (9), the integration has to be carried out numerically. The stress 
distribution can be approximated by an equivalent triangle, which has the same area and 
the same maximum stress value with 1θ  as its base. Based on this approximation, the 
equivalent stresses distribution that acts on the wheel contact surface with soft soil has 
been developed. Consequently, a new closed-form formulation of the rigid wheel-soft 
soil interaction mechanics has been developed. A comparison between these two 
approaches was compared with conventional formulations for analysis of forces and 
torques that act on the wheel. The results of the comparison shown graphically were very 
closely correlated. An experimental validation of the theoretical results was presented 
(Shibly et al., 2005).  

3 Stresses and forces analysis 

As mentioned in the previous section, the equivalent triangular distribution for the two 
stress zones depicted in Figure 1 yields a linear stress distribution. The equivalent stress 
distribution Sni and Sti of normal stress σ and shear stress τ are triangles with two sides are 
defined by 

( ) ( )1 2
1 nm 2 nm

1 m 2 m

,   n nS S S Sθ θ θ θθ θ
θ θ θ θ

− +
= =

− +
 (15) 

and 

( ) ( ) ( )1 2 m
1 tm 2 tm 2 2

1 m 2 m 2 m

,   θ θ θ θ θ θθ θ θ
θ θ θ θ θ θ

− + −= = −
− + +t t tS S S S S  (16) 

where the indices 1 and 2 refer to the right and left sides relative to the maximum stress 
respectively. 

Based on the above stress and force analysis, the dynamic response of the rover after 
free fall in soft soil is investigated. Such a scenario is expected in any planetary 
exploration mission, as well as unmanned and manned ground vehicles. Depending on 
the severity of the fall, the vehicle undergoes different stages that involve sinkage of the 
rotating rigid wheel in the soil, pulling out from the soil as described before. To simplify 
the analysis of the wheel-soft soil interaction, the wheel is assumed to be clamped to 
prevent it from rotation. Such a simplification facilitates the study of dynamic behavior of 
the rover. This arrangement is similar to the interaction of walking robot foot and a soft 
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soil. The shape of the foot in this study is circular and has the same radius as of the 
wheel. Using this assumption, the normal stress during sinkage stage as function of  
the wheel sinkage has symmetric distribution in both sides of the vertical direction, and 
the location of maximum stress is at the lowest point of the wheel as shown in Figure 5.  

Figure 5 (a) Free body diagram of rigid wheel on soft soil and (b) Equivalent triangular 
distribution of normal stresses (see online version for colours) 

 

The equivalent distribution in this case is an isosceles triangle where 2 1 m, 0θ θ θ= − = . 
Upon substitution of the equivalent stress distribution and evaluating the integral of the 
normal stress, it can be found as  

( )
1

z 1
0

2 cos
θ

σ θ θ θ
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∫F rb d  (17) 

The vertical force z  F can then be found by substitution of Eqs. (15) and (16) into Eq. (17) 
as 

1
z m

1

1 cos2 θσ
θ

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

F rb  (18) 

The fitted straight line to the parenthetical expression in Eq. (18) as θ  varies between 0 
and 45°, has a 0.98 gradient; consequently, the expression can be further simplified as 
shown in Eq. (19). 

1
1

1

1 cos2 0.98θ θ
θ

− ≅  (19) 

From geometry shown in Figure 5: 

m
11 cosθ− = z

r
 (20) 

Equating Eqs. (19) and (20), a more simplified relationship between the entry angle 1θ  
and a maximum sinkage mz  

m
1 ,  where 2.0408θ = =fz f

r
 (21) 

Then, the normal force zF  can be obtained as 
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m
z mσ= fzF rb

r
 (22) 

The maximum value of normal stress is at θ = 0°. Upon substitution in Eq. (4) to get 

( ) ( ) ( )m 1 1 2 10 1 cosσ σ θ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

n
nrk k b

b
 (23) 

After considerable simplifications, the normal force can be obtained as 

( ) ( )
1
2

z 1 2 m1
+

−

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠

n
n

fr
F k k b z

b
 (24) 

The last expression of the vertical force zF  shows that the normal force is a function of 
the sinkage mz  during penetration in the soil. This function is highly nonlinear, and it can 
be further simplified. For a specific wheel-soil parameters, the coefficient of the sinkage 
has constant value zk  which is defined as follows: 

( )1 2 1−

⎛ ⎞⋅
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
z n

f r
k k k b

b
 (25) 

zk  can be defined as the stiffness modulus of the soil in the vertical direction, and then 
Eq. (25) can be rewritten as function of the sinkage and the soil exponent n as 

( )
1
2

z z m
+= nF k z  (26)  

Based on the above simplifications, the normal sinkage resistance force zF  as function of 
the sinkage mz  for various values of soil sinkage exponent n is shown in Figure 6. 
Typical values of different terrain soils can be found in Wong (2010), for example. The 
general trend of the stiffness modulus zk  is to increase as the soil sinkage increases. 

Figure 6 Normal sinkage resistance force of soil as function of sinkage for various values of soil 
exponent n (see online version for colours) 
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4 Kinematic model of four wheels rover 

Four-wheel planetary vehicle (rover) has a mechanical structure (suspension) between its 
platform and the four wheels. In this work, a simplified quarter-car vehicle model is 
considered. The linear model captures basic performances of rover such as body 
displacement, body acceleration and wheel displacement. The model has a lumped 
sprung mass sm  representing one quarter of the rover body mass attached to a rigid wheel 
through a mechanical suspension. The rigid wheel is modelled as another lumped 
unsprung mass usm  with radius r. The proposed suspension system is modelled as a 
vertical linear spring with high stiffness sk  and a linear damper with low damping 
coefficient s c . The proposed schematic model is shown in Figure 7. 

Figure 7 Dynamic model of quarter rover 

 

5 Dynamics response analysis 

The dynamic response of the rover caused by its free fall on soft ground starts at the time 
that the wheel touches the ground and ends when the wheel leaves the ground starting the 
second cycle of oscillation.  

The dynamic equation of motion of a quarter rover at the instant of first ground 
contact starts with zero initial positions and with initial velocity equal to the final 
velocities of the free fall.  

Using Newton’s second law for the sprung mass sm , and for the wheel, usm , the 
governing equations of motion for the model under consideration are obtained as shown 
in Eqs. (27) and (28).  

( ) ( )
¨

ss s s us s s us s+ − + − =m z c z z k z z m g  (27) 

( ) ( )
¨

usus s us s s us s us z+ − + − = −m z c z z k z z m g F  (28) 

These equations can be expressed in matrix form as  
¨
+ + =M Z CZ KZ F  (29) 
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Where: 

s s s s s s s

us us s s s s us

0
, , , , 

0
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦z

z m c c k k m g
Z M C K F

z m c c k k m g F
 (30) 

The damping coefficient of the rover structure system is considerably small; therefore, it 
can be assumed that it will not have a significant effect on the natural frequencies of the 
suspension structure and can be neglected for the purpose of determining the eigenvalues 
and eigenvectors (Clough and Penzien, 1975). Based on this approximation, the 
eigenvalues and eigenvectors of the proposed model: 

( )2 0ω− =det K M  (31) 

The eigenvalues and the associated eigenvectors of the simplified model can be obtained, 
respectively, as 

2 2 s s us
1 1 2 2

s us

0, , where  is the reduced mass, 
k m m

m m
λ ω λ ω μ μ

μ
= = = = =

+
 (32) 

The associated eigenvectors are, respectively,  

s
1 2

us

1.00 1.00
,  ,  where 

1.00
φ φ η

η
⎧ ⎫ ⎧ ⎫

= = =⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭

m
m

. (33) 

This combination of eigenvalues and eigenvectors shows that the first normal mode 
shapes the two masses move in-phase as a rigid body, while the second normal mode 
shapes the two masses move out of phase with amplitude ratio of η. 

Considering the conditions at the end of phase two and solving the equation of motion 
to achieve the condition for the occurrence of the third phase, the condition for the 
acceleration of the mass ms should have acceleration as shown in Eq. (34). 

¨

s
11
η

⎛ ⎞≥ +⎜ ⎟
⎝ ⎠

z g  (34) 

The equations of motion are solved numerically, and the simulation results for velocity, 
displacement and the normal sinkage resistance force are shown in Figures 8–10, 
respectively. 

Figure 8 depicts the displacement of the rover body and the wheel at successive 
stages of the interaction for a given set of parameters that include soil exponent n and the 
wheel width. Point 1 in part a of the figure represents the instant at which the wheel 
touches the soft soil. At this point, the system has an initial velocity of the free falling 
body, and the datum for the displacement is taken to be zero at this point. Point 2 denotes 
the maximum sinkage of the wheel at which the wheel velocity is zero as shown in  
Figure 9. Point 3 represents the beginning of the second cycle of the response; at this 
point, the system starts to pull out of the soil and then go back again at point 4. Note that 
the depth of sinkage decreases with time. Part b of Figure 8 characterises the response of 
the same system considered in part a, however, considering a small damping coefficient. 
Note that the oscillatory behaviour of the unsprung mass is almost suppressed.  
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Figure 8 The displacements of the sprung mass zs and the wheel zus during time, (a) undamped 
system and (b) damped system (0.3 damping ratio) (see online version for colours) 
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Figure 9 The velocities of the sprung mass vs and the wheel vus vs time. (a) undamped system 
and (b) damped system (0.3 damping ratio) (see online version for colours) 

 

Figure 9a illustrates the velocities of the sprung and the unsprung masses neglecting the 
damping. Part b of Figure 9 shows the velocities considering a lightly damped system.  

Figure 10 depicts the resistance forces zF  for a particular set of the system 
parameters. As expected, the value of the resistance force decreases as the intensity of the 
interaction between the wheel and the soil decreases. As shown, part a represents an 
undamped case, and part b represents the lightly damped case. 
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Figure 10 The normal resistance force as function of time for, (a) undamped system and  
(b) damped system (0.3 damping ratio) (see online version for colours) 

 

To investigate the effect of damping on the sinkage resistance force zF , two more 
simulations were carried out as shown in Figure 11. The effect of the increase in the 
damping coefficient is evident on the value of the sinkage resistance force as shown.  
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Figure 11 (a) Damped system 0.7 damping ratio and (b) overdamped system (see online version 
for colours) 

 

6 Results and discussion 

Comparing the coefficient zk  and the normal sinkage resistance force zF  for a two 
different values of soil exponent n , the first ratio and the second ratio are obtained as 
shown in Eqs. (35) and (36) respectively  

( )
( ) ( ) 1 2z

z

2
1

−= n nk n
b

k n
 (35) 
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the two ratios for soil coefficients value 1 20.2 , 1.6 = =n n and wheel width of 
0.06  =b m was found to be 51.36 for the coefficient z ,k  the ratio of normal sinkage 

resistance force z  F for a sinkage value of =b/2, (at maximum difference between normal 
forces) is only 0.379 times. This means that the soil exponent n has a significant effect on 
the coefficient zk  though this effect is been minimised in the formula of the normal 
sinkage resistance force.  

The relative deviation from a straight line behaviour of the soil normal sinkage 
resistance force as function of sinkage depth is very large. The intersecting point occurs 
at sinkage value equal to the wheel width b. At this point, the effect of the soil exponent n 
is nullified. Therefore, the soil reaction during sinkage may be considered as a non-linear 
spring with constant coefficient of stiffness z .k  

The interaction between the rigid wheel (unsprung mass) and soft soil has three 
stages. At each stage, the force zF  is different. During the first stage, between points 1 
and 2 as depicted in Figure 9a, where the wheel penetrates in the soft soil until it reaches 
its maximum sinkage at zero velocity. At this stage, the sinkage resistance force zF  
reaches its maximum value and is calculated according to the expression given in Eq. 
(26). The second stage starts at maximum sinkage and ends at the instant of 
disengagement from the soil, between points 2 and 3 as illustrated in Figure 9a. The 
wheel velocity at this stage is zero, and the normal force on the wheel is the reaction 
force to all other forces that act on the wheel. The third stage starts when the sprung mass 
has acceleration as given in Eq. (34) be able to pull up the unsprung mass (wheel), then 
the wheel losses contact with the soil and it is between points 3 and 4 as shown in Figure 
9a. During this stage, the normal force is zero and the system starts to vibrate according 
to its two eigenvectors with an initial condition equal to the motion parameters at the end 
of stage 2.  

It can be noticed that there is a significant effect of the rigid body mode at the starting 
of stage 3. This mode helps in pulling up the wheel from the sinkage as shown in  
Figure 9. 

At the first stage, the penetration linearly increases with time as shown in Figure 9, 
and the wheel penetration speed is influenced by the normal projection of soil stresses on 
the wheel’s rim, and the suspension forces are caused by the sprung mass, which are 
pushing down in the direction of motion.  

The first fall makes the soil more compact, as a result, the soil parameters are 
changed and the sinkage is much less than the first time, and it is harder to penetrate in. 
In case, the wheel is not bouncing back that the sprung mass will continue to vibrate 
about its final position.  

The damping in the suspension dissipates energy and reduces the oscillation speed 
which results in a longer wheel-soil penetration time and earlier occurrence of successive 
penetrations as shown in Figures 10 and 11. 

Adding damping to the system reduces the vibration of both sprung mass and 
unsprung mass (wheel) significantly. Also the maximum value of the force in the second 
sinkage is much less than the first one. The damper is very essential if the fall occurs on 
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earth as it is expected, but in space, it is preferred not to have damper and let the masses 
bounce up to have the wheel bouncing up and to get released from the soil.  

The normal force behaviour during sinkage and contact with soil happens during very 
short time, and it has a geometric-shaped resemblance to any impulsive force during 
collision of two objects; therefore, a future work is to replace the sinkage force with an 
impulse applied to the wheel during contact with the soil. 
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