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Abstract: Studies in computational cancer genomics have been faced with the 
challenge of increasing prediction accuracy of molecular datasets. Here we 
outline how a feature selection method combined with machine learning may 
help overcome this challenge for BRCA microRNA-Seq datasets, BRCA 
RNA-Seq and mRNA microarray datasets, and BLCA microRNA_seq and 
RNA_seq datasets. We used three different computational approaches: (a) 
support vector machine, (b) decision tree and (c) k nearest neighbours, and two 
different feature selection methods: (a) Fisher feature criterion and (b) infinite 
feature selection. Our computational approaches performed consistently better 
with RNA_seq datasets rather than with miRNA_seq or RNA_array datasets. 
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1 Introduction 

Rapid advancement in biotechnology has raised an urgent need for developing new 
computational methods with prediction accuracy for the analysis of cancer genomics 
datasets. Many solutions including subtype classification methods have been developed 
and implemented for the purpose, yet achieving prediction accuracy for cancer 
classifications still remains a challenge in many instances. 

RNA-Seq data, which unveil transcripts that correspond to existing but to be 
determined genomic sequences, has emerged as a powerful tool in new biomarker 
discovery. Compared to microarray, RNA-Seq had technological and practical 
advantages such as unbiased detection of novel transcripts due to low background noise 
and unique identification of genomic regions, resulting in a broader dynamic range of 
genomic profiling with no upper limit (Carter et al., 1990). Thus, RNA-Seq-based gene 
expression analysis has become routine, which makes RNA-based clinical assays for 
cancers possible and common. 

On the other hand, downstream computational analysis of RNA-seq data remains 
complex because the technology generates a staggering amount of data. However, 
machine learning (ML) algorithms have in many cases been developed for the less 
definitive microarray datasets. Recently researchers have begun to focus on applying 
such existing algorithms to new datasets (Kim et al., 2015). An example involves the 
works of Kim (Kim et al., 2014) and others who comparatively studied accuracies of 
miRNA versus mRNA datasets. 

Here, we outline how RNA-seq datasets as new biomarkers are utilised to 
discriminate tumour tissues from normal ones using existing machine learning 
algorithms. These algorithms combine the support vector machine (SVM) (Nouretdinov 
et al., 2011), k-nearest neighbours (kNN) (Weinberger et al, 2006), decision trees (DT) 
with two feature selection methods; the Fisher score (Fisher), and so-called infinite 
feature selection (IFS) (Roffo et al., 2015). 

2 Materials and methods 

2.1 Materials 

Breast invasive carcinoma (BRCA) and Bladder urothelial carcinoma (BLCA) datasets 
were downloaded in June of 2016 from The Cancer Genome Atlas (TCGA), a 
comprehensive source of cancer datasets, available at http://cancergenome.nih.gov/. We 
downloaded a total of 832 BRCA miRNA_seq data sets with 1046 genes, which were 
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generated from Illuminahiseq_miRNAseq platform, and separated them into 87 normal 
and 745 tumour samples. We also downloaded a total of 1212 BRCA RNA_seq datasets 
with 20531 genes, which were generated from Illuminahiseq_RNAseq platform, and 
separated them into 98 normal and 1114 tumour samples. We matched RNA_seq samples 
with miRNA_seq ones, ending up with 745 tumour and 87 normal samples. 

In addition, we also downloaded 533 BRCA microarray tumour and 57 normal 
samples with 17814 genes, which were generated from Agilentg4502A platform. For 
BLCA, we downloaded 410 tumour and 19 normal samples with 1046 genes of 
miRNA_seq and 408 tumour and 19 normal samples with 20531 genes of mRNA_seq 
datasets. By matching miRNA_seq and RNA_seq, we obtained 405 tumour and 19 
normal samples. All datasets were transformed to log2, and genes with zero raw values 
were eliminated. Consequently, we obtained 12951 RNA_seq and 193 miRNA_seq 
genes with 745 tumour and 87 normal for BRCA_seq and 12544 RNA_seq and 207 
miRNA_seq genes with 405 tumour and 19 normal samples for BLCA. For biomarker 
discriminators and feature selector, we used Matlab packages, and R-packages 
(https://cran.r-project.org). 

2.2 Methods 

We employed two feature selection methods. One is Fisher score, which selects features 
computed by 2 2 2( ) /( )A B A B      where A  indicates mean score of class A and σA 

indicates standard deviation. The other method is infinite feature selection (IFS), an 
unsupervised method that computes a central measure on a graph consisting of all 
possible feature subsets (Roffo et al., 2015). The measurement is (1 )ij ij ija c     

where max( ( ), ( )),ij i j    ( ) ( )1 | ( , ) |i j
ijc Spearman f f   f’s are features and 'ijc s  

are Spearman ranking correlation. α represents loading coefficients. Then, the common 
genes obtained from top 20 genes of both Fisher and IFS methods were used to select 
meaningful biomarkers. 

First, with respect to BRCA sequence data sets, we randomly selected 87 samples 
from 745 tumour samples, matching to normal datasets of 87 samples, and separated 
these into two groups of size 44 and 43. We randomly separated two groups of size 44 
and 43 size out of the normal samples. Consequently, we used 88 samples (44 tumour 
and 44 normal) as training data and 86 samples (43 tumour and 43 normal) as test data. 
Second, we selected top 20 genes using either Fisher or IFS methods and verified the test 
classes using the features. All experiments for discrimination were performed 30 times. 
In the case of BLCA, the procedures were as the same as BRCA performance, except that 
training and test sample size are 20 and 18, respectively. 

3 Results and discussion 

As mentioned above, we selected diagnostic signatures based on two feature selection 
methods, Fisher score (Fisher) and infinite feature selection (IFS). We tested three 
machine learning classifiers consisted of support vector machine (SVM), decision tree 
(DT), and k- nearest neighbours (kNN). 
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3.1  Comparison of feature selection methods based-on  
miRNA sequence datasets. 

We tested two feature selection methods to obtain meaningful markers. The feature-
selected gene sets from each method are presented in Table 1. The two different methods 
produced three common genes such as let-7c, miR-145, and miR-200c. 

Table 1 A list of genes selected from fisher score (Fisher FS) or infinite feature selection 
(infinite FS) in miRNA_seq datasets 

Fisher FS Infinite FS 

‘hsa-mir-10b’ ‘hsa-mir-96’ ‘hsa-mir-1307’ ‘hsa-mir-199a-1’ 

‘hsa-mir-21’ ‘hsa-mir-183’ ‘hsa-mir-379’ ‘hsa-mir-200c’ 

‘hsa-mir-139’ ‘hsa-mir-141’ ‘hsa-mir-151’ ‘hsa-mir-203’ 

‘hsa-mir-145’ ‘hsa-mir-182’ ‘hsa-mir-146b’ ‘hsa-mir-93’ 

‘hsa-mir-99a’ ‘hsa-mir-3199-2’ ‘hsa-mir-181a-1’ ‘hsa-mir-25’ 

‘hsa-mir-100’ ‘hsa-mir-28’ ‘hsa-let-7c’ ‘hsa-mir-451’ 

‘hsa-let-7c’ ‘hsa-mir-497’ ‘hsa-mir-28’ ‘hsa-mir-103-1’ 

‘hsa-mir-125b-1’ ‘hsa-mir-429’ ‘hsa-mir-150’ ‘hsa-mir-30d’ 

‘hsa-mir-200a’ ‘hsa-mir-200c’ ‘hsa-mir-145’ ‘hsa-mir-29a’ 

‘hsa-mir-195’ ‘hsa-mir-125b-2’ ‘hsa-mir-142’ ‘hsa-mir-455’ 

Notes: Genes in bold represents overlapping genes that are commonly selected from 
both Fisher and Infinite feature selection methods in miRNA datasets. 

 

The common genes were found to be cancer-related genes. Wang (Wang et al., 2009) 
proposed the role of miR-145 as an inhibitor of breast cancer cell growth. In support of 
Wang’s study, we found that mir-145 expression was greater in normal samples than in 
tumour ones. Unlike previous studies reporting miR-200c as an inhibitor of breast cancer 
growth, however, we found that miR-200c expression based on miRNA-seq datasets 
appeared to be upregulated in activated breast cancer (Figure 1b). Sun (Sun  
et al., 2016) suggested that let- 7c inhibits the oestrogen receptor of Wnt signalling by 
binding in the 3 UTR in breast cancer. In an agreement with Sun’s argument, we also 
found that RNA-Seq of let-7c was substantially lower in tumour sample than in normal 
samples (Figure 1c). 

Figure 1 Comparison of miRNA-Seq datasets between tumour samples (green) and normal (red); 
(a) miRNA-145, (b) miRNA-200c, and (c) let-7c. The x-axis represents samples, and  
y-axis represents base 2 logarithm of miRNA-seq levels 

 

 (a) miRNA-145 (b) miRNA-200c (c) let-7c 
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In addition, we were interested in exploring common biomarkers from two different 
datasets. For common biomarkers, we selected top 20 ranked genes generated from 
Fisher feature selection method based on both RNA_seq and microarray datasets, and 
marked ten common genes in bold that were found in both datasets, as shown in Table 2. 
Among them, COL10A1 (Kim et al., 2010), MMP11 (Ma et al., 2009; Paik et al., 2006), 
NEK2 (Hayward et al., 2004), FIGF (Ma et al., 2009), SDPR (Ma et al., 2009), and 
SPRY2 (Lo et al., 2004; Qian et al., 2009) were previously identified as breast cancer 
related genes. LRRC3B (Kim et al., 2008), ADAMS5 (Mochizuki and Okada, 2007), 
CAV1 (Williams and Lisanti, 2005), CA4 and RP17 (Carter et al., 1990) were identified 
as oncogenic genes. 

Table 2 Top 20 genes selected from Fisher feature selection in RNA_seq or RNA microarray 
datasets 

RNA_seq RNA microarray 

‘MMP11’ ‘SPRY2’ ‘MMP11’ ‘WDR51A’ 

‘COL10A1’ ‘PAMR1’ ‘COL10A1’ ‘FIGF’ 

‘FIGF’ ‘NEK2’ ‘CA4’ (RP17) ‘IGSF10’ 

‘CA4’ (RP17) ‘TMEM220’ ‘TSLP’ ‘SDPR’ 

‘ADAMTS5’ ‘CPA1’ ‘LRRC3B’ ‘NEK2’ 

‘SDPR’ ‘CAV1’ ‘MME’ ‘FXYD1’ 

‘CEP68’ ‘CD300LG’ ‘SPRY2’ ‘CAV1’ 

‘PPP1R12B’ ‘HIF3A’ ‘COL11A1’ ‘KLHL29’ 

‘LRRC3B’ ‘MESTIT1’ ‘HOXA4’ ‘ADAMTS5’ 

‘DMD’ ‘LOC572558’ ‘CXCL2’ ‘MAMDC2’ 

Notes: Genes in bold represents overlapping genes that are commonly selected from 
both RNA_seq and RNA microarray datasets in Fisher feature selection. 

 

3.2 Computational analysis for BRCA datasets 

From 832 RNA_seq datasets, we randomly selected 87 tumour datasets and balanced to 
87 normal data sets. Then, each 44 samples out of the tumour and normal datasets, 
respectively, were selected for training datasets. In test datasets, we randomly selected 43 
tumour and 43 normal samples from the remaining data. A base 2-logarithm 
transformation was applied to normalise the variances of RNA-seq datasets. 

We performed each machine learning method 30 times, with 20 features selection 
from each time. IFS-based genes selected repeatedly more than 20 times included A1BG, 
A2LD1, A2M, and MMP11. Fisher method-based genes selected repeatedly more than 
20 times included ADAMTS5, CEP68, MMP11, PPP1R12B, and SDPR. 

While performing mRNA_arrary datasets 30 times, we selected 20 genes each time. 
IFS- based common genes included COL10A1, CREB3L1, ELMO2, PNMA1, and 
RPS11, whereas Fisher-based common genes included CA4, COL10A1, MMP11, and 
TSLP. COL10A1 was a common gene selected by both feature selection methods based 
on mRNA_array, whereas MMP11 was a common gene selected by both feature 
selection methods based on RNA_seq (refer to Figure 2). 
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Figure 2 (a) A overlapping gene, COL10A1, that are commonly selected from both IFS and 
Fisher selection methods in mRNA_array datasets. (b) A overlapping gene, MMP11, 
that are commonly selected from both IFS and Fisher selection in RNA_seq 

 

(a) COL10A1 

 

(b) MMP11 

Figure 3 represents the results of the feature selection methods and classification 
methods. Red, blue and green bars indicate RNA_seq, miRNA_seq, and mRNA_array, 
respectively. The results are expressed as the averages in 30-time performance. To assess 
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selection accuracy of each performance, leave-one-out-cross validation was performed. 
Note that each bar indicates feature selection and classifier methods. For example, 
IFS_SVM represents SVM classification based on infinite feature selection, while 
Fisher_kNN represents k-nearest neighbour based on Fisher score selection. As 
implemented, kNN method used a fixed choice of k = 3. 

Figure 3 Comparison of the accuracies performed by feature selection and machine learning 
classifiers based on BRCA datasets. Red, blue, and green bars indicate the results of 
RNA_seq, miRNA_seq and mRNA_array respectively. Oblique pattern bars represent 
best performance using random feature selection 

 

Limited to the three machine learning methods, DT performance was worse than any of 
the other methods, as illustrated in Figure 3. Comparing the three different datasets used 
in both feature selection methiods, RNA_seq datasets performed better than any of the 
other datasets. RNA_seq datasets were well performed with both SVM and kNN with 
both feature selection methods. Accuracy performance was better with RNA_seq datasets 
than with microarray datasets. 

3.3 Computational analysis for BLCA datasets 

We tested three machine learning methods with two feature selection methods for BLCA 
datasets. The results are presented in Figure 4. Among 405 tumour samples and 19 
normal samples, we randomly selected 19 tumour samples and assigned to ten training 
and nine test subjects, balancing to ten training and nine test subjects randomly selected 
from 19 normal samples. 

As results, all machine learning methods performed better with RNA_seq datasets 
than with miRNA_seq datasets. The genes selected repeatedly more than 20 times while 
performing Fisher feature selection 30 times included mir-106b, mir-130b, mir-133a-1, 
mir- 148b, mir-21, mir210, mir-331, mir345, and mir-671. The genes selected repeatedly 
more than 20 times while performing IFS methods 30 times included let-7a-1(2,3),  
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let-7b(c,d,e), let-7f-1(2). There were no common genes from random selection. The 
results of random feature selection were 0.7698 (kNN) and 0.7620 (DT) based on 
miRNA_seq and 0.7725 (kNN), and 0.6833(DT) based on RNA_seq. 

Figure 4 Comparison of RNA_seq and miRNA_seq accuracies performed by feature selection 
and machine learning algorithms based on BLCA. Red and blue bars indicate the result 
of RNA_seq and miRNA_seq respectively. Oblique pattern bars represent best 
performance using random feature selection 

 

4 Conclusions 

We studied three classification algorithms of SVM, kNN, and DT combined with two 
feature selection methods for classifying BRCA and BLCA patients from normal 
subjects. In both BRCA and BLCA datasets, classification accuracies based on RNA_seq 
datasets are better and stable than those based on miRNA_seq. DT-based classification 
performances are worse than those of kNN or SVM for both BRCA and BLCA datasets. 
In addition, we found ten common genes between microarray and RNA_seq BRCA 
datasets, and they included six breast cancer-related genes and four cancer-related genes. 
We also found three common genes selected repeatedly by both Fisher and IFS selection 
methods, and they included miRNA-145, miRNA-200c, and let-7c. With respect to 
miRNA-145 and let-7c, we found that their expression levels were downregulated in 
cancerous tissues as compared to non-cancerous ones, which were in agreement with 
those of previous findings (Sun et al., 2016; Wang et al., 2009). Interestingly enough, 
however, we found that miR-200c was upregulated in cancerous tissues as compared to 
non-cancerous ones, which was contradictory to the findings of Song’s study (Song et al., 
2015). For this reason, further study will be necessary to resolve the controversy 
regarding the association direction between this gene and cancer. 
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