Winglet design and analysis for low-altitude solar-powered UAV
by Ali Ihsan Gölcük; Dilek Funda Kurtulus
International Journal of Sustainable Aviation (IJSA), Vol. 3, No. 1, 2017

Abstract: One of the most important factors affecting the aerodynamic performance of the aircraft is lift-induced drag caused by wingtip vortices. This study describes the winglet design and analysis for solar-powered unmanned air vehicle (UAV). The motivation of this study is designing elliptical winglet to explore efficient shapes using multiple winglet parameters such as cant angle, sweep angle, taper ratio, toe angle and twist angle. The aim was to investigate the performance of parameters that constitute the winglet and to find the best elliptical winglet design which has the highest L/D ratio according to design parameters by using computational fluid dynamics. The aerodynamic characteristics of lift coefficient (CL), drag coefficient (CD) and lift to drag ratio (L/D) were compared for 39 different winglet models for cruise conditions of UAV. Analyses showed that, elliptical winglet increased L/D ratio on the order of 8.32% compared with the baseline wing.

Online publication date: Fri, 21-Jul-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sustainable Aviation (IJSA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com