Effects of some calculation parameters on the computational modelling of temperature, velocity and gas volume fraction during steady-state operation of an aqueous homogeneous reactor
by Daniel Milian Pérez; Daniel E. Milian Lorenzo; Carlos A. Brayner De Oliveira Lira; Carlos R. García Hernández; Lorena P. Rodríguez Garcia; Manuel Cadavid Rodríguez
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 11, No. 1, 2017

Abstract: This paper is part of the ongoing efforts to contribute to the thermal-hydraulic analysis of one of the most promising alternatives to produce medical isotopes and meeting current and future demand for 99Mo: the use of Aqueous Homogeneous Reactors (AHRs). In this paper, the effects of some calculation parameters like mesh refinement, time step size, turbulence models, transient schemes and numerical advection scheme on the computational modelling of key parameters of an AHR steady-state operation have been investigated. For this purpose, a 75 kWth AHR conceptual design based on the ARGUS reactor, six meshes, five time step sizes, three different models for solving flow problems, three numerical advection schemes and the available transient schemes were used in the simulations. The numerical simulations were carried out using the Computational Fluid Dynamic (CFD) code ANSYS CFX 14. The results of the CFD simulations allow developing a detailed and improved CFD model of the AHR core on which the effects of the investigated calculation parameters are quantifiable.

Online publication date: Mon, 10-Jul-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com