Effect of electrolyte temperature on Faradaic effect in electrochemical microdrilling
by M.A.H. Mithu; G. Fantoni; J. Ciampi
International Journal of Precision Technology (IJPTECH), Vol. 7, No. 1, 2017

Abstract: Electrochemical micromachining (ECµM) is an emerging non-conventional manufacturing technology suitable for the fabrication of micro-sized components on a wide range of electrically conductive materials. This study emphasises on the effects of electrolyte temperature on the Faradaic effect during electrochemical microdrilling on nickel plates by a cylindrical microtool made of tungsten. A short cylindrical microtool of 43 µm in diameter near to the tool tip and 53 µm mean diameter was selected, and allowed to machine on nickel plate. During machining, only the electrolyte temperature was varied keeping all the other parameters constant. The shape and size of the fabricated microholes, machining time, actual material removal rate, non-Faradaic non-transient effect and the number of short circuits are considered as response factors. Experimental results confirm that the material removal rate and machining time, respectively, increases and decreases with an increase in the electrolyte temperature. It is also observed that both the side gap ratio and the taper angle increase with the electrolyte temperature.

Online publication date: Tue, 13-Jun-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Precision Technology (IJPTECH):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com