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Abstract: In this paper, we used a modified rescaled range analysis (MRS) to 
investigate the presence of long memory in three series of absolute yield 
spreads (AYS) of the Dow Jones Sukuk Indexes from March 1, 2011 to March 
1, 2016. The estimated Hurst exponents for the three series are significant and 
smaller than one providing strong evidence that long range dependence exists 
in Sukuk’s AYS and these can become stationary with fractional differencing. 
Based on these results, we fitted three ARFIMA models to Sukuk’s AYS and 
found that they have better explanatory power compared to the first-order 
ARIMA models. Furthermore, our 260 steps-ahead dynamic forecasting results 
show that the ARFIMA models are better for predicting future yield spreads. 
Such findings suggest to account for long memory in investing decisions and 
projecting future yields and spreads. Our results should be useful to Sukuk 
market participants whose success depends on the ability to forecast Sukuk’s 
yield spreads movements, and anticipate the prospective default risk. 
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1 Introduction 

One of the most helpful tools for investors to understand the market’s tendency and the 
direction the economy is going to take is yield spreads analysis (YSA). By definition, a 



   

 

   

   
 

   

   

 

   

   72 I. Bousalam and M. Hamzaoui    
 

    
 
 

   

   
 

   

   

 

   

       
 

yield spread is the difference between the quoted rates of return on two different 
investments, and the yield spread of financial instrument A over B is calculated by 
subtracting the annualised percentage return on investment (ROI) of financial instrument 
B from that of instrument A. The magnitude of this gap indicates the risk premium for 
investing in one investment product over another. In fact, when spreads widen between 
bond categories with different credit ratings, it implies that the market is factoring more 
risk of default on lower grade bonds. The anticipation of greater risk of default implies a 
slowing economy. On the other hand, a narrowing of spreads implies that the market is 
factoring in less risk. This might be due to higher expectation of economic growth 
(Simkovic and Kaminetzky, 2011). 

In this paper, we investigate the presence of long memory in the yield spreads of 
some indexes within the Dow Jones Sukuk Index (DJSI) family. A significant evidence 
of the presence of a long memory in the processes of the analysed yield spreads indicates 
that long-range dependence could serve as a forecasting tool in Islamic capital market to 
anticipate prospective default risk. 

Concretely, we fit an autoregressive (AR) fractionally integrated moving average 
(ARFIMA) model to three series of yield spreads. These are: 

1 yield spreads of the DJSI AA rated over the DJSI AAA rated 

2 yield spreads of the DJSI A rated over the DJSI AAA rated 

3 yield spreads of DJSI BBB rated over the DJSI AAA rated. 

The triple A rated DJSI is constantly the benchmark. Next, we compare the forecasting 
outcome of ARFIMA(p, d, q) model to that of other competing models (namely, 
ARIMA(p, d, q) and ARMA(p, q)) for the three series. 

1.1 Background of Sukuk and their indexes 

Sukuk is the Arabic name for financial certificates commonly referred to as Sharia 
(Islamic law) compliant bonds. Sukuk are defined by the Accounting and Auditing 
Organization for Islamic Financial Institutions (AAOIFI) as “securities of equal 
denomination representing individual ownership interests in a portfolio of eligible 
existing or future assets.”1 

The DJSI family is designed to measure the performance of global Islamic  
fixed-income securities (Sukuk). The indexes include US dollar-denominated  
investment-grade Sukuk issued in the global market that have been screened for Shariah 
compliance according to the index methodology. The indexes were created as a 
benchmark for investors seeking exposure to Shariah-compliant fixed-income 
investments. There exist 11 Dow Jones Sukuk indexes (DJSI) with different maturities 
and ratings, and these are calculated using market capitalisation methodology and are 
updated monthly.2 

It is noteworthy that Sukuk are the most active Islamic debt market financial 
instruments to date. Therefore, empirical study on Sukuk market behaviour in terms of the 
long range dependence will help both investors and issuers understand more the structure 
and price risk exposures of these instruments. Defining the best fitting ARFIMA model 
for yield spreads of different rated Sukuk is of paramount importance. We recall that this 
paper uses one main index (DJSI AAA rated) as the benchmark and three other indexes 
(DJSI AA rated, DJSI A rated and DJSI BBB rated) to calculate the Sukuk yield spreads. 
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1.2 ARFIMA framework 

Financial literature often notes that financial markets are not Gaussian in nature and tend 
to have sharper peaks and fat tails. Such evidence hinders the use of number of traditional 
methods based on Gaussian normality in providing accurate forecasts (Peters, 1994). 

Another key point explained by Peters (1994) is the fact that most financial markets 
have long memory feature. This means that events happening today on the market 
influence the future. In other words, the current data is correlated to past data with 
different varying degrees. 

One of the downsides of systems that work with short-memory is their inability to 
adequately explain long memory component of the markets. Traditional models 
describing short-term memory, such as AR(p), MA(q), ARMA(p, q), and ARIMA(p, d, 
q) use the last i values for making the forecast in univariate analysis, i.e., for these 
statistical methods, the lagged i observations are considered when predicting values of 
time i + 1. In order to overcome this issue, a set of models was developed and the most 
famous one is the so-called ARFIMA(p, d, q) introduced by Granger and Joyeux (1980). 

Baillie (1996) provided an excellent survey and review of the major econometric 
works on long memory processes, fractional integration, and their applications in 
economics and finance. More recent important contributions in this area, both from a 
theoretical and an empirical perspective include the papers below. In a theoretical 
framework, a list of few important contributions covers (Granger, 1980; Hosking, 1981; 
Lo, 1989; Sowell, 1992a, 1992b; Ding et al., 1993; Cheung and Diebold, 1994; Robinson, 
1995b, 1995a; Engle and Smith, 1999; Diebold and Inoue, 2001; Breitung and Hassler, 
2002; Dittmann and Granger, 2002). From an empirical perspective, long-memory 
models has also been impressively treated by Diebold and Rudebusch (1989, 1991b, 
1991a), Hassler and Wolters (1995), Bos et al. (2002), Van Dijk et al. (2002), Grech and 
Mazur (2004), Carbone et al. (2004), Di Matteo et al. (2005), Hyung et al. (2006), Choi 
and Zivot (2007), Di Matteo (2007), Matos et al. (2008), Alvarez-Ramirez et al. (2008), 
and Czarnecki et al. (2008), to name but a few.3 This non-exhaustive list of papers on the 
subject of long-memory models is not impressive given the fact that long memory 
forecasting in economics has been considered as one of the many important areas of 
research as it was stated by the Royal Swedish Academy of Sciences on the 
announcement of the Nobel Prize winners in Economics in 2003, Clive W.J. Granger and 
Robert F. Engle.4 

An ARFIMA model is a special case of ARIMA models and exhibits long memory 
when its fractional integration parameter d is greater than zero. Stationary long-memory 
models (0 < d < 0.5), also fractionally integrated ARMA (ARFIMA) models, have been 
considered by researchers in many fields and much studies were mainly motivated by the 
fact that the autocorrelation function (ACF) of many empirical times series declines at a 
slower rate than for an ARIMA model with finite orders and integer d. Also, the 
comparison of forecasting potential of fitted ARFIMA models against other time series 
model, has been a topic of various papers and a special issue. 

Indeed, Ray (1993a, 1993b) compared the seasonal ARFIMA models and standard  
(non-fractional) seasonal ARIMA models and found that higher order AR models are 
capable of forecasting the longer term well when compared with ARFIMA models. 
Following this later, Smith and Yadav (1994) investigated the cost of assuming a unit 
difference when a series is only fractionally integrated with d ≠ 1. 
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Over-differencing a series produces significant loss in forecasting performance  
one-step-ahead, with only a limited loss thereafter. In contrary, under-differencing a 
series is more costly with larger potential losses from fitting a mis-specified AR model at 
all forecast horizons. By using a rule which is similar to the test of (Öller, 1985), 
Andersson (2000) explored this issue and showed that misspecification strongly affects 
the estimated memory of the ARFIMA model. Man (2003) argued that a suitably adapted 
ARMA(2, 2) model can produce short-term forecasts that are competitive with estimated 
ARFIMA models. Man (2003) developed the multi-step-ahead forecasts of long-memory 
models which were compared by Bhansali and Kokoszka (2002). 

Researchers have developed many extensions of the ARFIMA models and compared 
their relative forecasting performance. For example, Franses and Ooms (1997) introduced 
the so-called periodic ARFIMA(0, d, 0) model where d can vary with the seasonality 
parameter. Ravishanker and Ray (2002) explored the estimation and forecasting of 
multivariate ARFIMA models. Baillie and Chung (2002) discussed the use of linear 
trend-stationary ARFIMA models, while Beran et al. (2002) extended this model to allow 
for nonlinear trends. Souza and Smith (2002) used different sampling rates, such as 
monthly versus quarterly data in order to investigate their effect on estimates of the  
long-memory parameter d. In a similar concern, Souza and Smith (2004) looked at the 
effects of temporal aggregation on estimates and forecasts of ARFIMA processes. In the 
context of statistical quality control, Ramjee et al. (2002) introduced a hyperbolically 
weighted moving average forecast-based control chart, designed specifically for  
non-stationary ARFIMA models. 

The remaining of this paper is organised as follows, Section 2 presents the ARFIMA 
model with its establishing procedure and describes the data, Section 3 presents the 
estimates for ARIMA vs. ARFIMA models and the forecasting results, and Section 4 
serves to conclude. 

2 Materials and methods 

2.1 The procedure of establishing an ARFIMA model 

The process of fitting an ARFIMA model to financial data is of three steps. The first one 
consists in testing for the presence of long-term memory in the time series, and 
determining the fractional differencing parameter d. Second, the fractional parameter d is 
imposed on the series to obtain an ARMA process. Thirdly, determining the other two 
parameters of ARFIMA(p, d, q) model, namely p and q. 

2.1.1 Fractional differencing and long memory 

Financial time series are mostly non-stationary, and the transformation of a  
non-stationary time series into a stationary one has long been an important issue in the 
field of time series analysis. Since modelling time series requires prior stationarity, a 
common standard practice that has been used by time series analysts was to consider 
differencing their time series to achieve stationarity. However, econometricians were 
somehow reluctant to accept this, believing that they may lose something of importance. 

Let’s consider an ARFIMA(0, d, 0) as an example. This process is expressed by  
(1 – L)dxi = εt and is called the fractional white noise. For d = 0, the process is a white 
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noise and its ACF decreases to zero very quickly. But, when d = 1, xi is a random walk 
whose ACF value is 1. This random walk is transformed to a white noise after a  
first-order differencing, and when d is non-integer, the ith element of the fractional 
differenced time series is actually the weighted sum of elements of xi, xi–1, …, x0 the 
original time series. The ith element of the fractional differenced time series is not only 
determined by xi and xi–1, but also influenced by all historical data ahead of xi, this is just 
the characteristic of long-term memory. 

2.1.2 Long memory analysis and determination of integration parameter d 

Scholars have been using various methods when testing for long memory, and the most 
popular ones are: rescaled range analysis (R/S), modified rescaled range analysis (MRS), 
and detrended fluctuation analysis (DFA). 

2.1.2.1 Rescaled range analysis 

The rescaled range analysis (R/S) was first proposed by Hurst (1951) while working as a 
water engineer in Egypt, and its purpose is to provide an assessment of how the apparent 
variability of a series changes with the length of the time-period being considered. The 
(R/S) analysis was later applied to financial time series by Mandelbrot and Van Ness 
(1968) and Mandelbrot (1971). 

The basic idea behind (R/S) analysis is that a range, which is taken as a measure of 
dispersion of the series, follows a scaling law. If a process is random, the measure of 
dispersion scales according to the square-root law so that a power in the scaling law is 
equal to 0.5. Such value is connected to Hurst exponent of 0.5 (Weron, 2002). 

The procedure of the (R/S) analysis, as explained by Weron (2002), consists in taking 
returns of the time series of length T and dividing them into N adjacent sub-periods of 
length υ while Nυ = T. Sub-periods are labelled as In with n = 1, 2, …, N. Also, each 
element in In is labelled rk,n with k = 1, 2, …, υ. For each sub-period, an average value is 
calculated and new series of accumulated deviations from the arithmetic mean values are 
constructed (the profile). 

The procedure follows in calculation of the range, which is defined as a difference 
between a maximum and a minimum value of the profile Xk,n, and a standard deviation of 
the original returns series for each sub-period In. Each range nIR  is standardised by the 
corresponding standard deviation nIS  and forms a rescaled range as: 
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00
1 1

max min
/ .n

n
n n

k k

k n n k n n
k nk n

I i i
I

I I

X X X X
RR S
S S

< << <
= =

⎡ ⎤
− − −⎢ ⎥

⎢ ⎥⎣ ⎦= =
∑ ∑

 (1) 

The process is repeated for each sub-period of length υ. We get average rescaled ranges 
(R/S)υ for each sub-interval of length υ. 

The length υ is increased and the whole process is repeated. We use the procedure 
used in recent papers so that we use the length υ equal to the power of a set integer value. 
Thus, we set a basis b, a minimum power pmin and a maximum power pmax so that we 
get υ = bpmin, bpmin+1, …, bpmax where bpmax ≤ T. 
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Rescaled range then scales as: 

( )/ ~ H
υR S cυ  (2) 

where c is a finite constant independent of υ (Di Matteo, 2007). A linear relationship in 
double-logarithmic scale indicates a power scaling (Weron, 2002). To uncover the 
scaling law, we use an ordinary least squares (OLS) regression on logarithms of each side 
of (2). We suggest using logarithm with basis equal to b. Thus, we get: 

log ( / ) ~ log log ,b υ b bR S c H υ+  (3) 

where H is Hurst exponent. 
Through Monte Carlo simulation, Hurst noted that if the underlying process is a 

random draw from a stable distribution, then H = 0.5. If H is greater than 0.5, there is 
evidence of persistent dependence (large values followed by large values and small 
values followed by small values) and if H is less than 0.5, an ergodic or mean reverting 
process is indicated. The infinite memory result implies that H will stabilise asymptotic to 
some value other than 0.5 and will maintain that value no matter how large the sample 
size. If 0 < H < 1 then we can conclude that the underlying time series has long memory. 

2.1.2.2 Modified rescaled range analysis  

The problem with estimating the Hurst exponent with regression analysis is that the 
regression coefficients may be biased as a result of autocorrelation. Furthermore, the 
traditional (R/S) value is not acceptable since tests of the statistical significance do not 
exist (Lo, 1991). Therefore, Lo (1991) developed a modified (R/S) statistic where nIS  is 
adjusted for short term dependence. The only difference between (R/S) and (R/S)’ values 
is at denominator of (1) which is as follows. 
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The process of calculations of ( / ) nIR S ′  is the same as ( / ) nIR S  except that the 
denominator of ( / ) nIR S ′  is the root of the sample variance nIS  augmented with weighted 
auto covariance up to a lag determined q. For q = 0, this is the same as the (R/S) statistic. 
This auto covariance part of denominator is non-zero for series exhibiting short-term 
memory and this makes the statistic robust to heteroscedasticity. 
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2.1.2.3 Detrended fluctuation analysis 

Peng et al. (1994) were the first to propose the DFA while examining series of DNA 
nucleotides. Compared to the (R/S) analysis examined above, DFA uses different 
measure of dispersion-squared fluctuations around trend of the signal. As DFA is based 
on detrending of the sub-periods, it can be used for non-stationary time series contrary to 
R/S. 

The advantages of DFA over above techniques are that it permits the detection of 
long range correlation embedded in seemingly non-stationary time series, and also avoid 
the spurious detection of apparent long-range correlation that are an artefact of  
non-stationary. 

The implementation of the DFA requires the time series to be integrated first so that: 

( )
1

( )
k

t
t

x k x x
=

= −∑  

where xt is the tth observation and x  the average value of the series. Next, the vertical 
characteristic scale of the integrated time series is measured. To do so, the integrated time 
series is divided into m non-overlapping time intervals of length n. In each time interval a 
line is fitted via OLS, which is called the local trend. The x coordinate of the straight line 
x segments is denoted by ˆ( ).x k  Then, the integrated time series x(k) is detrended by 
subtracting the local trend ˆ( )x k  in each time interval. 

ˆ( ) ( )x x k x k= −  

For a given interval size n, the characteristic size of fluctuation for this integrated and 
detrended time series is calculated by: 

( )2

1

1( )
N

i
i

F n x
N =

= ∑   

We repeat the above computation over all time scales to provide a relationship between 
F(n) and n. A power law relation between F(n) and n indicates the presence of scaling 
that is, F(n) ≈ na. The parameter a, called the scaling exponent or correlation exponent, 
represents the correlation properties of time series and is the same Hurst exponent. If  
a > 0.5, there are positive correlations in time series. 

2.2 ARIMA and ARFIMA models 

Once the non-stationary series are transformed to a stationary series by differencing, 
these could be next analysed and modelled like any other stationary time series. Yet, after 
modelling the differenced time series, the output series is transformed back to the original 
raw data by reversing the order of differencing. An ARIMA model predicts a value in a 
response time series as a linear combination of its own past values, past errors, and 
current and past values of other time series. The order of an ARIMA model is usually 
denoted by the notation ARIMA(p, d, q), where p is the order of the AR component, d the 
order of the differencing, and q the order of the moving-average (MA) process. 
Mathematically, the ARIMA model is written as: 
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Φ( )(1 ) Θ( )d
t tL L x L− = ε  (5) 

where 

L the lag operator or backshift operator (i.e., Lxt = xt–1), for all t > 1 

Φ(L) the AR operator, represented as a polynomial in the backshift operator such that 
Φ(L) = 1 – φ1L1 – φ2L2 – … – φpLp 

Θ(L) the MA operator, represented as a polynomial in the backshift operator where Θ(L) 
= 1 – θ1L1 – θ2L2 – … – θpLp 

εt a white noise with zero mean and finite variance 2.σε  

As for the ARFIMA process, two case scenarios are presented, the stationary and 
invertible ARFIMA, and the non-stationary ARFIMA. 

For the first stationary and invertible ARFIMA process, the expression given by (5) 
for the process xt is called a general fractional differenced zero means process, where d is 
the fractional differencing parameter. This process is both stationary and invertible if the 
roots of Φ(L) and Θ(L) are outside the unit circle, and d ∈ (–0.5, 0.5). The ARFIMA(p, d, 
q) process exhibits long memory when d ∈ (0.0, 0.5), intermediate memory when  
d ∈ (–0.5, 0.0), and short memory when d = 0 (Lopes et al., 2002). 

Now, for the second non-stationary ARFIMA process, we define the process (5) with 
the parameter d* = d + 1, where d ∈ (0.0, 0.5), yet and the model in (5) becomes: 

*Φ( )(1 ) Θ( )d
t tL L x L− = ε  (6) 

The process (6) is non-stationary when d* ≥ 0.5; however, it is still persistent. For  
d* ∈ (0.5, 1.0) it is level-reverting in the sense that there is no long-run impact of an 
innovation on the value of the process (Velasco, 1999). The level reversion property no 
longer holds when d* ≥ 1. 

2.3 Data description 

In this study, the yield spreads are measured as the difference between the quoted rates of 
return of the DJSI AA rated, the DJSI A rated, and the DJSI BBB rated in one hand, and 
the DJSI AAA rated in the other hand. We calculated three series of yield spreads of 
Islamic financial certificates (Sukuk) by subtracting the annualised percentage ROI (ROI) 
of DJSI AA, DJSI A, DJSI BBB from that of instrument DJSI AAA. Market yield is 
calculated as the difference between DJSIr,t and DJSIr,t–1 where subscript r is the rating 
and r ∈ {AAA, AA, A, BBB}. 

We analyse the value of 1,305 daily closing prices of the four DJSI (DJSIr,t) from 
March 1, 2011 to March 1, 2016. The data are available on 
(http://www.djindexes.com/sukuk/), and Figure 1 plots the indexes’ prices in level. 
Figure 1 shows that all indexes are following a slight increasing trend during the  
five-year period. Moreover, the curves of the DJSIAAA and the DJSIBBB are approximately 
very similar. This applies also to the DJSIAA and the DJSIA which progress following the 
same path. 
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Figure 1 DJSI in level 
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Note: Sample period is March 1, 2011–March 1, 2016 (1,305 days). 
Source: http://www.djindexes.com 

The calculation of yield spreads uses different formulas, and the most used measure by 
investors is the absolute yield spread (AYS) which calculates the absolute value of the 
difference between the (ROI) of two bonds. The other measures of yield spreads are 
relative yield spreads (RYS) and yield ratio (YT). The graphs (A), (B), and (C) within 
Figure 2 plot the AYS of the DJSIAA over DJSIAAA, the DJSIA over DJSIAAA, and the 
DJSIBBB over DJSIAAA respectively. 

Figure 2 AYSs of DJSI 
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Notes: (a) Absolute yield spreads (AYS) for the DJSIAA over DJSIAAA (b) (AYS) for the 
DJSIA over DJSIAAA (c) (AYS) for the DJSIBBB over DJSIAAA. Sample period is 
March 1, 2011–March 1, 2016 (1,305 days). 

Source: http://www.djindexes.com 
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Table 1 contains the values of the augmented Dickey-Fuller and Phillips-Perron statistics 
for unit root in the AYSs of the four DJSI. Thus, the null hypothesis is that the AYSs 
follow a non-stationary process, and the alternative hypothesis is that the AYS follow a 
stationary process. Using the unit root tests advocated by Dickey-Fuller and Phillips-
Perron, we reject the null hypothesis for the existence of a unit root for all AYS and we 
can conclude that these latter are stationary. 

Skewness is used to assess the symmetry of the distribution, the kurtosis for 
peakedness, and the fatness of the tails. If the skewness is positive, the distribution is 
skewed to the right, and if it is negative, the distribution is skewed to the left. The results 
for the skewness test, reported in Table 1, show that the distributions of daily AYS are all 
right-skewed. Also, as evidenced in Table 1, all AYS are leptokurtic, i.e., the excess 
kurtosis is positive. 

Next, the analysis of the distribution of Sukuk’ AYS are turned to the Jarque-Bera 
(JB) statistic introduced by Jarque and Bera (1980). The JB test can be employed to 
investigate the normality of AYS and it is asymptotically distributed as χ2 under the null 
hypothesis. If the value of J.B. test statistic is greater than the significance point of χ2, 
then the null hypothesis of normality is rejected. The results of the JB test presented in 
Table 1 may conclude that the hypothesis that empirical distributions of the three AYS 
are drawn from an underlying normal distribution is rejected. 
Table 1 Summary statistics, test results of augmented Dickey-Fuller (τ) and  

Phillips-Perron (Z) 

 Mean Std. 
dev. Skewness Kurtosis JB τ Z 

AYS of DJSIAA/DJSIAAA 0.2811 0.3827 3.911 27.98 37,013.35* –9.85a −34.38a 

AYS of DJSIA/DJSIAAA 0.1811 0.2165 3.478 24.19 26,872.48* –10.82a –35.10a 

AYS of DJSIBBB/DJSIAAA 0.2882 0.4202 5.489 53.88 146,301.80* –9.39b –37.96b 

Notes: AYS denotes absolute yield spreads, JB is the Jarque-Bera statistics all significant 
at 1% level of significance (*). aRefers to the significance of ADF and PP tests for 
the trend and the intercept at 1% level of significance, and bis for the significance 
of ADF and PP tests for the constant only at 1% level of significance. 

3 Results and discussion 

3.1 Long memory testing 

Since the three series of AYS are stationary, we adopt the MRS for testing long memory 
in AYS series. The MRS or (R′/Sn) are calculated following the method discussed in 
Subsection 2.1.2. For each sub-period of time horizon n, a modified rescaled range (R′/Sn) 
is computed. log(R′/Sn) are plotted against log(n) in Figure 2. 
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Figure 3 Plots of log(R′ / Sn) against log(n) (see online version for colours) 
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Applying an OLS regression on log(R′/Sn) as a dependent variable and log(n) as 
independent variable yielded in: 

( )log 1.174 0.516 log( ), for AYS of / ;n AA AAAR S n DJSI DJSI′ = +  

( )log 0.689 0.823 log( ),  for AYS of / ;n A AAAR S n DJSI DJSI′ = − +  

( )log 1.029 0.868 log( ),  for AYS of / .n BBB AAAR S n DJSI DJSI′ = − +  

The coefficients of log(n) are the Hurst exponents H, and based on the estimation results, 
these are all statistically significant at 1%, and they are smaller than one (H < 1) meaning 
that all series exhibit long memory. Following Peters (1994), the fractional differencing 
parameter d can be obtained by d = H – 0.5. Therefore, the differencing parameters for 
the three series are respectively: 0.016 for AYS of DJSIAA/DJSIAAA, 0.323 for AYS of 
DJSIA/DJSIAAA, and 0.368 for AYS of DJSIBBB/DJSIAAA. 

3.2 Imposing fractional integration on AYSs time series 

The estimation of fractional differencing parameters d for each AYS leads next to obtain 
the fractionally differenced time series following the formula: 

(1 )d
t ty L x= −  (7) 

where L is the backshift operator, yt is the fractional differenced time series, and xt is the 
initial series (Sukuks’ AYS). The fractional difference operator is described by: 
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2 3( 1) ( 1)( 2)(1 ) 1
2! 3!

d d d d d d dL dL L L− − −
Δ = − = − + − +  (8) 

Here Δd denotes fractional-differencing of order d. 

3.3 Specification of ARIMA and ARFIMA models 

Establishing ARIMA(p, d, q) and ARFIMA(p, d, q) models requires to determine 
parameters p and q, the orders of the AR model and the MA model respectively. 
Following the approach proposed by Box and Jenkins (1970), we plot the ACF and 
partial autocorrelation function (PACF) to decide which AR and/or MA components 
should be used in the model. Next, we estimate parameters p and q using exact maximum 
likelihood estimation method. The final step consists in checking for those two conditions 
on residuals: 

1 autocorrelation (Ljung-Box Q test) 

2 heteroskedasticity (LM-ARCH test). 

Plots of the ACF and PACF of the first-order differenced and the fractionally differenced 
series of Sukuks’ AYS appear in the appendices. 

As for the first-order differenced series of Sukuks’ AYS, one might notice that for the 
three series the ACF cut off after the first lag while the PACF die down fairly quickly to 
become significant after the fifth lag. Following Box and Jenkins, this suggests to select 
MA(1) and M(2) components for all the first-order differenced series. 

With respect to the fractionally differenced series of Sukuks’ AYS, two cases are 
presented. As for DJSIA/DJSIAAA and DJSIBBB/DJSIAAA, both ACF and PACF die down 
fairly quickly which supposes to test for mixed ARMA(p, q) models. We respectively 
select ARMA(4, 6) and ARMA(6, 6). Alternatively, the ACF of DJSIAAA/DJSIAAA dies 
down while the PACF cuts off after lag 6. Thus, we select an AR(6) model. It is worth 
noting that these are just some suspected models, and further candidate models are to be 
tested with trial and error. The final decision of the best fitting model is based on 
maximum log likelihood values, Akaike information criterion (AIC) and Schwarz 
information criterion (SIC). 

In general, the reported magnitude of ACF and PACF for all series ranges between 
0.004 and 0.362 which are small, indicating that short memory of the data is weak. Also, 
a number of significant ACF and PACF at later time lags were found. This indicates that 
there is dependence among distant observations. More importantly, the long lasting 
autocorrelations evidence indicates according to Taylor (1986), that the processes are 
nonlinear with time-varying variances. 

3.4 Estimates for specified ARIMA and ARFIMA models 

Table 2 presents the estimates of the selected models for both first-order and fractionally 
differenced series. Note that Table 2 reports the estimation results for different ARIMA 
and ARFIMA models from which we selected the best fitting model based on likelihood 
values, AIC and SIC. As for the diagnostic checking for residuals, two main tests were 
performed: Ljung and Box (1978) test, and Engle (1982) diagnostic test. 
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Table 2 Estimates of ARIMA and ARFIMA models for Sukuks’ AYS differenced series 

 p d q LL AIC SIC Q-stat. LM-ARCH 
AYS of DJSIAA/DJSIAAA 0 1 1 –544.87 0.844 0.852 0.063(H0) 32.922(H1) 

0 1 2 –540.47 0.839 0.851 0.056(H0) 44.982(H1) 
6 0.016 0 –524.04 0.819 0.847 0.062(H0) 64.092(H1) 
7 0.016 0 –523.80 0.820 0.852 0.062(H0) 65.150(H1) 

AYS of DJSIA/DJSIAAA 0 1 1 171.01 –0.259 –0.247 0.145(H0) 4.200(H1) 
0 1 2 174.06 –0.262 –0.246 0.145(H0) 6.508(H1) 
4 0.323 5 193.85 0.283 –0.243 0.144(H0) 21.122(H1) 
4 0.323 6 194.00 –0.282 –0.238 0.142(H0) 23.472(H0) 
6 0.323 4 194.02 –0.282 –0.239 0.142(H0) 23.440(H0) 

AYS of DJSIBBB/DJSIAAA 0 1 1 –676.79 1.049 1.161 0.161(H0) 0.389(H0) 
0 1 2 –676.58 1.051 1.067 0.162(H0) 2.652(H0) 
0 1 3 –675.18 1.050 1.070 0.162(H0) 2.934(H0) 
6 0.386 6 –645.37 1.017 1.073 0.117(H0) 98.820(H1) 
7 0.386 7 –639.17 1.011 1.074 0.120(H0) 106.199(H1) 

Notes: AYS denotes absolute yield spreads. LL = log likelihood. AIC and SIC are Akaike 
and Schwarz Information Criteria respectively. Q-stat refers to Box-Ljung’ test 
statistic where the null hypothesis is that residuals are independently distributed 
(20 lags included). LM-ARCH values are the Observed R-squared statistic of 
Engle’s LM test, the null hypothesis is non-existence of ARCH effect in residuals. 
Rejection of null hypotheses is considered for p ≤ 0.05. 

The Ljung-Box test was designed to check for autocorrelation within data and it is mostly 
used when the series represents the residuals from an ARIMA estimation. The test’s null 
hypothesis (H0) is that the data are independently distributed, and the alternative (H1) is 
that the data exhibit serial correlation. The Q-test statistic is described by: 

2

1

ˆ
( 2)

h
k

k

ρ
Q n n

n k=

= +
−∑  

where n is the sample size, ˆkρ  is the sample autocorrelation at lag k, and h is the number 
of lags being tested. Under H0, Q is asymptotically distributed as 2

( )hχ  with degrees of 

freedom equal to the number of autocorrelations. If the series represents the residuals 
from ARIMA estimation, the appropriate degrees of freedom should be adjusted to 
represent the number of autocorrelations less the number of AR and MA terms previously 
estimated. 

With respect to Engle’s (1982) Lagrange multiplier (LM) test for AR conditional 
heteroskedasticity (ARCH) in the residuals. The test checks for the null hypothesis (H0) 
that there is no ARCH up to order q in the residuals by running the regression of the 
obtained squared residuals 2

t̂ε  on a constant and q lagged squared residuals: 

2 2
ˆ0

1

ˆ ˆˆ
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In the absence of ARCH components (H0), the parameters αi = 0 for all i = 1, , q. The 
alternative hypothesis is that, in the presence of ARCH components, at least one of the 
estimated αi coefficients must be significant. In a sample of T residuals under the null 
hypothesis of no ARCH errors, the test statistic T′R2 follows χ2 distribution with q 
degrees of freedom, where T′ is the number of equations in the model which fits the 
residuals vs. the lags (i.e., T′ = T – q). If T′R2 is greater than the chi-square table value, 
we reject the null hypothesis and conclude there is an ARCH effect in the ARMA model. 
If T′R2 is smaller than the chi-square table value, we do not reject the null hypothesis. 

From the estimates above, we select the best fitting models based on maximum 
positive or minimum negative values of log likelihood, minimum AIC and minimum SIC. 
The elected models for further predictive power evaluation are: ARFIMA(6, 0.016, 0) for 
AYS of DJSIAA/DJSIAAA, ARFIMA(6, 0.232, 4) for AYS of DJSIA/DJSIAAA, and 
ARFIMA(7, 0.386, 7) for AYS of DJSIBBB/DJSIAAA. 

In addition, the examination of the correlogram of ACF and PACF for the residuals 
indicates that their patterns do not display significant seasonal fluctuations or definite 
cycles. The Ljung-Box Q statistics of squared residuals demonstrate that there is an 
overall significant autocorrelation among residuals for all estimated models. This also 
indicates that the conditional distributions of Sukuk’s AYS are time-varying which is a 
symptom of ARCH effect. With this regard, we consecutively performed the LM-ARCH 
test to detect the presence of ARCH effects, and the results rejected the null hypothesis of 
‘no ARCH’ in nine cases among 14 suggesting the presence of ARCH effect in AYS of 
Sukuk. 

Based on these results for the Q-statistic of squared residuals and the LM test, it is 
recommended to use the ARCH specification as a good approximation to the structure of 
conditional variance of Sukuk’s AYS. Moreover, ignoring ARCH effects may result in 
loss of efficiency. 

3.5 Predictive power comparison 

After determining the best fitting models for AYS of the DJSI, we made a 260-steps 
ahead forecast (i.e., from March 1, 2015 to March 1, 2016). The competing models are 
ARIMA(0, 1, 2) and ARFIMA(7,0.016,0) for AYS of DJSIAA/DJSIAAA, ARIMA(0, 1, 2) 
and ARFIMA(6, 0.323, 4) for AYS of DJSIA/DJSIAAA, and ARIMA(0, 1, 3) and 
ARFIMA(7, 0.386, 7) for AYS of DJSIBBB/DJSIAAA. We compared the forecasting power 
using the root mean squared error (RMSE), the mean absolute error (MAE), Theil 
inequality coefficient, the bias proportion, the variance proportion and the covariance 
proportion. These statistics measure the distance of the true from the forecasted values 
and they are reported in Table 3. 

Models with higher predictive power are those for which all measures of forecast 
accuracy are the smallest. That said, based on the forecasting results reported on Table 3, 
we can conclude that for all AYS series, the fractionally integrated models perform better 
for predicting future values than their counterparts (i.e., ARIMA models). 
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Table 3 In-sample dynamic forecasting results for estimated ARIMA and ARFIMA models 

 p d q RMSE MAE TIC Bias 
prop. 

Var. 
prop. 

Cov. 
Prop. 

AYS of DJSIAA/DJSIAAA 0 1 2 0.400 0.236 0.475 0.001 0.155 0.843 
7 0.016 0 0.391 0.230 0.433 0.007 0.522 0.470 

AYS of DJSIA/DJSIAAA 0 1 2 0.164 0.124 0.444 0.001 0.238 0.759 
6 0.323 4 0.162 0.124 0.391 0.000 0.614 0.385 

AYS of DJSIBBB/DJSIAAA 0 1 3 0.234 0.177 0.437 0.000 0.171 0.828 
7 0.386 7 0.236 0.180 0.378 0.000 0.532 0.467 

Notes: AYS denotes AYSs; root mean squared error (RMSE); mean absolute error 
(MAE); Theil inequality coefficient (TIC). These are results of  
260-steps ahead forecast (from March 1, 2015 to March 1, 2016). 

Furthermore, the estimated forecast values from ARFIMA models are more realistic and 
closely reflect the current variation of Sukuk’s yield spreads. These results are in 
agreement with Shittu and Yaya (2009), Wang (2006), and Boutahar et al. (2008). Thus, 
when series exhibits long memory property, the forecast values based on ARIMA model 
may not be reliable, and the fractionally integrated model may perform better for fitting 
the data and forecasting. 

In order to improve the forecasting power of ARFIMA models for Sukuk’s AYS, we 
believe that further consideration should be given to seasonal effect identified on the  
data (significant ACF and PACF at later time lags), and the present ARCH effect by 
using other models (e.g., Seasonal ARFIMA, ARFIMA-GARCH, Fractional Integrated 
GARCH...) 

4 Conclusions and future work 

In this paper, we used the MRS to test for the long memory property in three series of 
AYS of the DJSI, namely, AYS of the DJSI AA rated over DJSI AAA rated, AYS of the 
DJSI A rated over DJSI AAA rated, and the DJSI BBB rated over DJSI AAA rated. The 
data sample is from March 1, 2011 to March 1, 2016. 

The Hurst exponents ‘H’ obtained for the three series via MRS are respectively,  
H = 0.516, H = 0.823, and H = 0.886. These three parameters are all significant and 
smaller than one (H < 1) suggesting the presence of long memory in Sukuk’s yield 
spreads series. A reasonable explanation of long memory in Sukuk’s yield spreads is the 
persistence of risk premiums. Rating agencies do not frequently adjust Sukuk’s ratings to 
reflect the changes in issuers’ financial conditions. Such result testifies the lack of 
willingness or capability of the rating agencies to make timely rating adjustments. 

Using the calculated Hurst exponents, we next deducted the fractional differencing 
parameters ‘d’ of the AR fractionally integrated moving average models ARFIMA(p, d, 
q) for the three series. By comparing the latter to the first-order differenced ARIMA 
models, we found that ARFIMA models fit better the data and have more forecasting 
power. In fine, we selected three models for Sukuk’s AYS and these are:  
ARFIMA(7, 0.016, 0) for AYS of DJSIAA/DJSIAAA; ARFIMA(6, 0.323, 4) for AYS of 
DJSIA/DJSIAAA; and ARFIMA(7, 0.386, 7) for AYS of DJSIBBB/DJSIAAA. These findings 
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are in agreement with Wang (2006), Boutahar et al. (2008) and Shittu and Yaya (2009), 
and support the use of the fractionally integrated models for yield spread analysis and 
default risk anticipation on Islamic capital market. 

In addition, our investigation pointed out the presence of seasonality and time varying 
conditional variance (ARCH effect) in Sukuk’s yield spreads. Such facts motivate us to 
use the ARCH specification as a good approximation to the structure of conditional 
variance of Sukuk’s AYS. Our forthcoming work should give further consideration  
to seasonality in Sukuk’s AYS using seasonal ARFIMA model with volatility  
SARFIMA-GARCH (see, for example, Bordignon et al., 2005; Kallberg, 2008; Reisen  
et al., 2014; Ndongo et al., 2015). 
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Appendix 

Figure A1 ACF and PACF correlogram for AYS DJSIAA/DJSIAAA, (a) first-order differenced  
(b) fractionally differenced (see online version for colours) 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ACF -0.476 -0.036 0.036 -0.013 -0.061 0.127 -0.074 -0.030 0.055 -0.018 -0.030 0.010 0.003 0.011 0.006 0.027

PACF -0.476 -0.339 -0.215 -0.163 -0.220 -0.047 -0.062 -0.103 -0.050 -0.042 -0.067 -0.097 -0.093 -0.059 -0.047 0.019  
(a) 

-0.1

-0.1

0.0

0.1

0.1

0.2

0.2

0.3

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ACF 0.224 0.179 0.185 0.154 0.130 0.207 0.086 0.079 0.116 0.071 0.053 0.084 0.099 0.110 0.101 0.083

PACF 0.224 0.136 0.129 0.079 0.052 0.139 -0.021 -0.001 0.046 -0.003 -0.007 0.023 0.058 0.059 0.028 0.017  
(b) 

 

 

 

 

 

 

 



   

 

   

   
 

   

   

 

   

    Long memory forecasting of yield spreads 91    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure A2 ACF and PACF correlogram for AYS DJSIA/DJSIAAA, (a) first-order differenced  
(b) fractionally differenced (see online version for colours) 
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Figure A3 ACF and PACF correlogram for AYS DJSIA/DJSIAAA, (a) first-order differenced  
(b) fractionally differenced (see online version for colours) 
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