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Abstract: This paper analyses how to achieve optimal hedging of a cash flow 
to be received at a future date T, when facing price risk, cost and quantity 
uncertainty. We explore and compare the case where the only instrument 
available to hedge is a regular forward contract (to hedge the price uncertainty), 
the case where we only have access to a linear-type weather derivative to hedge 
quantity, and the case where both types of contracts are available. A closed 
form solution for both the optimal hedging strategies and the quality of the 
hedging under each scenario are identified. We show how to obtain the optimal 
hedging strategies through linear regressions. Then, by using simulations, we 
explore how the results critically depend on some key factors such as the 
volatility of some stochastic variables considered and the degree of correlation 
among some of the variables considered. 
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1 Introduction 

Firms face uncertainty in their future cash flows due to the interaction of stochastic 
variables such as prices, costs and level of production or sales. Those companies 
sometimes have access to regular hedging instruments such as forwards, futures or 
options, which are usually designed to take care of the uncertainty in prices. In the last 
years a new kind of hedging instruments (weather derivatives) has developed. These 
weather derivatives are contracts that offer a payment conditional on the performance of 
a weather variable such as temperature or rain for example. In this paper we explore how 
weather derivatives can improve the hedging of a firm, in particular if there is a strong 
correlation between the cash flow of the company and the weather variable defined as the 
underlying asset in the weather derivative contract. 

There is evidence that firms hedge their cash flows. Previous research on why 
companies hedge, such as the ones performed by Smith and Stulz (1985), Bessembinder 
(1991), Froot et al. (1993) and Mello and Parsons (1995) have identified the desires to 
minimisation of the variance of future cash flows, the reduction of the volatility of 
taxable income, the desire to reduce dispersion of accounting earnings and the hope of 
being able to avoid financial distress as the main reasons for hedging. Other authors such 
as Neuberger (1999) assume that the desire for hedging comes from risk averse agents 
hoping to maximise their expected utility. 

The use of forward or futures contracts to hedge against price and quantity risk works 
less than perfectly in the real world for several reasons: First, the variable we want to 
hedge from may not be the same as the variable considered in the futures contracts 
available in the market. In this case the quality of the hedge will critically depend on how 
closely correlated are those two variables1. This point has been developed in all the major 
derivatives and risk management textbooks. See for example, Duffie (1989), Stulz (2003) 
or Hull (2008). A recent paper by Basak and Chabakauri (2012) gives new insights on 
how to solve this problem through different techniques. 

Second, the date of expiration or maturity of the future or forward contracts available 
to perform the hedging may not coincide exactly with the particular date in the future we 
will receive the foreign currency. This could happen for example if there are only  
short-term futures contracts available to hedge against long-term exchange rate exposure 
or if there are long-term futures contracts to hedge against short-term exchange rate 
exposure. This problem has been analysed among others by Brennan and Crew (1997), 
Neuberger (1999), Schwartz (1997), Broll et al. (1999), Castillo and Lefort (2003) and 
Castillo et al. (2012). 

A third reason for hedging to work less than perfectly will arise if there is uncertainty 
regarding the quantity of production and/or selling. This problem has been analysed by 
authors such as Rolfo (1980), Newbery and Stiglitz (1981), Kamgaing (1989), Kerkvliet 
and Moffett (1991), Moschini and Lapan (1995), Wong (2003), Näsäkkälä and Keppo 
(2005), Castillo and Aguila (2008), Castillo et al. (2012), Frestad (2009), Oum and Orem 
(2010) and Korn (2010). None of these papers consider the availability of derivatives 
contracts as tools to hedge the cash flows of the companies. 

Weather derivatives are relatively new. They start to develop in the 1990s. The most 
common weather derivatives are the ones related to either temperature or precipitations or 
snowfall at a specific geographic location. Temperature derivatives, for example, 
typically try to address losses caused by either too hot or too cold weather conditions. 
There are both over the counter and standardised exchange traded contracts. In each case, 
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the exposition to basis risk resulting from the non-perfect correlation between the weather 
index used in the contract and the cash flow the investor is trying to hedge is an important 
concern for the user of these contracts. 

Richards et al. (2004) are among the first studies that formalise how to use and price 
weather derivatives. Recent contributions on how to hedge with weather derivatives can 
be found in Golden et al. (2007), Torriani et al. (2008) and Manfredo and Richards 
(2009). 

Golden et al. (2007) reviews the effectiveness of both linear (using forwards and 
futures) and nonlinear (using options) hedging strategies. They also compare the use of 
standardised exchange traded derivatives and custom tailored OTC derivatives and their 
effectiveness to decrease basis risk and credit risk. Using the mean-variance utility 
framework they derive optimal hedging strategies and use simulation to compare. 
Torriani et al. (2008) develop a hedging strategy using rain derivatives to cope with grain 
maize production in Switzerland. The effectiveness of the hedging was evaluated on the 
basis of a quantile-based risk measure of the profit distribution, i.e., the value at risk 
measure, as an alternative to the risk preference and utility functions used by others. 
Manfredo and Richards (2009) explore the fact that when using weather derivatives to 
cope with volumetric risk, risk managers often face unique basis risks arising from both 
the choice of the weather station where a derivatives contract is written, as well as the 
relationship between the hedged volume and the underlying weather index. They show 
that the use of nonlinear weather derivatives can be particularly helpful to minimise both 
sources of basis risk. 

Our study analyses how to obtain an optimal hedging strategy when facing price, 
costs and quantity uncertainty, if both regular and weather derivatives are available. We 
analyse how both the optimal hedging strategy and also the quality of that hedging 
depends critically of parameters such as the volatilities of some of the stochastic variables 
considered and the correlations among some of those stochastic variables. We assume 
both the absence of transactions costs and also that the futures contracts available are 
infinitely divisible. These are standard assumptions in the cited literature. 

This paper is organised as follows. In Section 2, the hedging problem faced by the 
firm is described and the optimal analytical solution is presented, under two different 
scenarios. The first one assumes that the company has only access to weather linear-type 
derivative contracts to hedge the future cash flow. The second one assumes that both 
regular and weather derivatives are available. Some particular cases are also presented 
here. Section 3 reports the implementation of the optimal hedging strategies described in 
Section 2 to a particular case and explores how efficient those optimal hedging strategies 
are under a series of different scenarios. Section 4 presents the main conclusions of the 
paper. 

2 The cash flow hedging model 

Let us assume that there is a company that is expecting to generate a certain cash flow,  
T periods from now. We will suppose that the firm is facing three sources of uncertainty, 
which are the price of the product to be sold ( ),TP  the per-unit cost of production ( ),TC  

and the level of production in physical units ( ).TQ  The cash flow generated by the 
company if no derivatives are used to hedge will be described by the following equation: 
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NH
T T T T TCF P Q C Q= ⋅ − ⋅  (1) 

2.1 Only weather derivatives are available to hedge 

If we assume that only weather derivatives are available to hedge the cash flow, the 
following expression would represent the total cash flow that the company would 
generate at time T once the hedging strategy has been implemented. 

( )H NH
T T TCF CF G q N= + ⋅ −  (2) 

where N is the strike price in a forward-type weather derivative, Tq  represents the 
observed level for the weather underlying variable, and G corresponds to the number of 
positions taken in the weather derivative. The variance of the cash flow we want to 
minimise can be written as: 

( ) ( ) ( ) ( )2 2 ,
H NH NH
T T TT TVar CF Var q G Cov CF q G Var CF= ⋅ + ⋅ +  (3) 

The optimal hedging strategy, defined as the value of G that minimises the cash flow 
variance described in equation (3) would be represented by: 

( )
( )

,
NH
T T

opt
T

Cov CF q
G

Var q
= −  (4) 

Once the company has implemented the optimal hedging strategy described here the level 
of maximum efficiency, defined as the proportion of the total cash flow variance that will 
be reduced by hedging, can be computed by equation (5). 

( )
( ) ( )

2 ,
_

NH
T T

NH
T T

Cov CF q
Max Efficiency

Var CF Var q
=

∗
 (5) 

It is interesting to notice that we can obtain the same optimal hedging strategy by running 

an OLS regression with 
NH
TCF  as the dependent variable and Tq  as the independent 

variable, as shown by equation (6). 

0 1
NH
T T TCF q e= + ∗ +β β  (6) 

Solving by OLS we get the following expression: 

( )
( )

,ˆ
NH
T T

opt
T

Cov CF q
G

Var q
= −β =  (7) 

And the maximum efficiency to be reached by the optimal hedging strategy corresponds 
to the determination coefficient (R2) of the described regression. 
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2.2 Both regular and weather derivatives are available to hedge 

If we assume that the firm hedges through both regular and weather derivatives, the 
following expression represents the total cash flow that the company would generate at 
time T: 

( ) ( )H NH
T T T TCF CF H P K G q N= + ⋅ − + ⋅ −  (8) 

where K is the forward price in a regular forward contract over the company’s product, H 
represents the number of positions taken in those forward contracts, N is the strike price 
in a forward-type weather derivative, Tq  represents the observed level for the weather 
underlying variable, and G corresponds to the number of positions taken in the weather 
derivative. The variance of the cash flow we want to minimise can be written as: 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 ,

2 , 2 ,

H NH NH
T T TT T T

NH
T T T T

Var CF Var CF H P G Var q H Cov CF P

G Cov CF q H G Cov P q

= + ⋅ + ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ ⋅
 (9) 

By minimising the variance of the cash flow we obtain the values of parameters H and G, 
which represent the optimal hedging strategy for the company, defined as the number and 
the type of positions to be taken in both the regular derivatives contract available (H) and 
the weather derivatives contract available (G). 

( ) ( ) ( ) ( )
( ) ( ) ( )( )2

, , ,
1 ,

NH NH
T TT T T T T

opt
T T T T

Cov CF q Cov P q Cov CF P Var q
H

Var P Var q Corr P q

⋅ − ⋅
=

⋅ −
 (10) 

( ) ( ) ( ) ( )
( ) ( ) ( )( )2

, ,
1 ,

NHNH TT T T TT
opt

T T T T

Cov CF P Cov P q Cov CF Var P
G

Var P Var q Corr P q

⋅ − ⋅
=

⋅ −
 (11) 

It is interesting to notice that if we consider the OLS regression described by  
equation (12), then the coefficients of the regression –β1 and –β2 represent the optimal 
hedging strategy (they are basically H and G), and the determination coefficient (R2) of 
the regression represents the maximum hedging efficiency that can be reached 
implementing those optimal strategies. 

( ) 0 1 2,
NH
T T T T TE CF P q P q= + ⋅ + ⋅β β β  (12) 

It is interesting to notice that if all the stochastic variables are independent (with the only 
exception of TQ  and )Tq  then the optimal hedging strategy described by equations (10) 
and (11) would become: 

( ) ( )
( ) ( )T T

opt T
T

Var P E Q
H E Q

Var P
⋅

= − = −  (13) 
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( )
( )

( ),T T
opt T T

T

Cov Q q
G E P C

Var q
⎡ ⎤= − ⋅ −⎣ ⎦  (14) 

As it can be observed from equation (13) the optimal hedging strategy with regular 
forward contracts considers taking a number of short positions in that contract equivalent 
to the expected number of long positions (or production level) in the final product of the 
company. The expression from equation (14) represents the optimal hedging strategy 
regarding the number of positions in the weather derivative. It is interesting how this 
expression would further simplify if we are able to find a derivative Tq  that is positively 

and perfectly correlated to production level TQ  (let us suppose for example that 

).T Tq a b Q= + ∗  In that case the optimal weather derivative strategy would become: 

( )T T
opt

E P CG
b
−= −  (15) 

3 Implementing the optimal hedging strategy. 

3.1 Assuming TP  and TQ  are not correlated 

In this section, the model described previously is implemented. We assume we have a 
company trying to hedge against the volatility of the cash flow of next period, and having 
access to only a regular derivative (Tables A), having access to only a weather derivative 
(Tables B), or having access to both types of derivatives (Tables C). On each table, 
section A shows the inputs required to implement the methodology and section B 
contains the results of implementing it2. 

Tables 1A to 1C show the result of applying the optimal hedging methodology to 
different scenarios where the correlation between TQ  and Tq  changes from 0.2 to 1.0. 

All the other stochastic variables (and in particular TP  and )TQ  are assumed to be 
independent. The assumptions regarding volatility of the variables are described on each 
table. 

Section B of Tables 1A to 1C presents the results of the optimal hedging policies and 
maximum efficiency to be reached under each scenario. In Table 1A, we appreciate how 
the quality of the hedging does not change when the correlation between TQ  and Tq  
increases and only regular derivatives are used. In Table 1B, we observe how the quality 
of the hedging using only weather derivatives increases as the degree of correlation 
between TQ  and Tq  increases. In Table 1C, we appreciate how when both derivatives 

are used the quality of the hedging increases as the correlation between TQ  and Tq  
increases. Regarding the hedging policies we appreciate how the hedging level in the 
regular derivative does not change (significantly) across different correlations for TQ  and 

.Tq  In all the cases considered in Tables 1A and 1C, it remains equal to ( ),TC Q−  as 
could be predicted from our equation (20), and how the level in weather derivatives 
increases as the correlation of TQ  and Tq  increases, as could be deduced from our 
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equation (21), where G is a direct function of ( , ).T TCov Q q  In all cases the hedging 
strategies have a negative sign describing short positions in both derivatives, to hedge the 
long position in the product of the company. 
Table 1A Changing the correlation between Q and q if only regular derivatives are available 

Section A: inputs 

Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 15 15 15 15 15 
SD(Q) 25 25 25 25 25 
SD(C) 10 10 10 10 10 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.20 0.40 0.60 0.80 1.00 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: Outputs 

H –100.28 –99.82 –99.46 –100.33 –100.16 
var(CFNH) 4,455,902 4,454,593 4,437,262 4,444,436 4,441,094 
varOPT(CFH) 2,196,520 2,211,270 2,196,427 2,184,329 2,196,698 
%Efficiency 50.71% 50.36% 50.50% 50.85% 50.54% 

Table 1B Changing the correlation between Q and q if only weather derivatives are available 

Section A: Inputs 

Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 15 15 15 15 15 
SD(Q) 25 25 25 25 25 
SD(C) 10 10 10 10 10 
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Table 1B Changing the correlation between Q and q if only weather derivatives are available 
(continued) 

Section A: Inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.20 0.40 0.60 0.80 1.00 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: Outputs 
G –210.24 –421.85 –617.42 –815.89 –995.85 
var(CFNH) 4,455,902 4,454,593 4,437,262 4,444,436 4,441,094 
varOPT(CFH) 4,411,813 4,277,212 4,056,791 3,783,278 3,448,782 
%Efficiency 0.99% 3.98% 8.57% 14.88% 22.34% 

Table 1C Changing the correlation between Q and q if both regular and weather derivatives are 
available 

Section A: Inputs 
Inputs Scenario 3 Scenario 5 Scenario 7 Scenario 9 Scenario 11 
E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 15 15 15 15 15 
SD(Q) 25 25 25 25 25 
SD(C) 10 10 10 10 10 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.20 0.40 0.60 0.80 1.00 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: Outputs 
H –100.28 –99.80 –99.48 –100.07 –100.24 
G –210.10 –421.02 –618.13 –808.63 –997.60 
var(CFNH) 4,455,902 4,454,593 4,437,262 4,444,436 4,441,094 
varOPT(CFH) 2,152,490 2,034,584 1,815,081 1,534,904 1,200,908 
%Efficiency 51.69% 54.33% 59.09% 65.46% 72.96% 
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Tables 2A to 2C show the result of applying the optimal hedging methodology to 
different scenarios where the standard deviation of TQ  increases from 15 to 35. The 

correlation between TQ  and Tq  is assumed to be 0.8. All the other stochastic variables 

(and in particular TP  and )TQ  are assumed to be independent. The assumptions 
regarding volatility of the variables are described on each table. 
Table 2A Changing the standard deviation of Q if only regular derivatives a re available 

Section A: inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 15 15 15 15 15 
SD(Q) 15 20 25 30 35 
SD(C) 10 10 10 10 10 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.80 0.80 0.80 0.80 0.80 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: outputs 
H –100.16 –100.22 –100.33 –100.24 –100.76 
var(CFNH) 3,709,989 4,013,998 4,444,436 5,010,717 5,641,123 
varOPT(CFH) 1,437,709 1,771,165 2,184,329 2,735,846 3,341,868 
%Efficiency 61.25% 55.88% 50.85% 45.40% 40.76% 

Table 2B Changing the standard deviation of Q if only weather derivatives are available 

Section A: inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 15 15 15 15 15 
SD(Q) 15 20 25 30 35 
SD(C) 10 10 10 10 10 
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Table 2B Changing the standard deviation of Q if only weather derivatives are available 
(continued) 

Section A: inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.80 0.80 0.80 0.80 0.80 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: outputs 
G –485.88 –648.62 –815.89 –981.43 –1.141,07 
var(CFNH) 3,709,989 4,013,998 4,444,436 5,010,717 5,641,123 
varOPT(CFH) 3,473,468 3,594,168 3,783,278 4,056,494 4,334,482 
%Efficiency 6.38% 10.46% 14.88% 19.04% 23.16% 

Table 2C Changing the standard deviation of Q if both regular and weather derivatives a re 
available 

Section A: inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 15 15 15 15 15 
SD(Q) 15 20 25 30 35 
SD(C) 10 10 10 10 10 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.80 0.80 0.80 0.80 0.80 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: outputs 
H –100.22 –100,29 –100.07 –100.12 –100.46 
G –488.75 –651,07 –808.63 –978.56 –1,135.23 
var(CFNH) 3,709,989 4,013,998 4,444,436 5,010,717 5,641,123 
varOPT(CFH) 1,198,388 1,348,150 1,534,904 1,787,193 2,048,576 
%Efficiency 67.70% 66.41% 65.46% 64.33% 63.68% 
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Section B of Tables 2A to 2C presents the results of the optimal hedging policies and 
maximum efficiency to be reached under each scenario. The quality of the hedging 
decreases as the volatility of TQ  increases, when only regular derivatives are used. When 
only weather derivatives are available, the quality of the hedging increases as the 
standard deviation of TQ  increases. If both derivatives are available, the quality of the 

hedging decreases slowly as the standard deviation of TQ  increases. Regarding the 
hedging policies we appreciate how the hedging level in the regular derivative does not 
change across different standard deviations of ,TQ  as could be predicted from our 
equation (20), and how the level in weather derivatives increases as the standard 
deviation of TQ  increases, as could be deduced from our equation (21). 

Tables 3A to 3C show the result of applying the optimal hedging methodology to 
different scenarios where the standard deviation of TP  increases from 5 to 25. The 
correlation between TQ  and Tq  is assumed to be 0.8. All the other stochastic variables 

(and in particular TP  and )TQ  are assumed to be independent. The assumptions 
regarding volatility of the variables are described on each table. 
Table 3A Changing the standard deviation of P if only regular derivatives a re available 

Section A: inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 5 10 15 20 25 
SD(Q) 25 25 25 25 25 
SD(C) 10 10 10 10 10 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.80 0.80 0.80 0.80 0.80 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: outputs 
H –101.19 –100.43 –100.33 –100.03 –99.85 
var(CFNH) 2,328,243 3,136,339 4,444,436 6,321,986 8,731,012 
varOPT(CFH) 2,071,810 2,133,109 2,184,329 2,314,204 2,467,469 
%Efficiency 11.01% 31.99% 50.85% 63.39% 71.74% 
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Table 3B Changing the standard deviation of P if only weather derivatives a re available 

Section A: inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 5 10 15 20 25 
SD(Q) 25 25 25 25 25 
SD(C) 10 10 10 10 10 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.80 0.80 0.80 0.80 0.80 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 

Section B: outputs 
G –812.90 –818.79 –815.89 –820.15 –832.28 
var(CFNH) 2,328,243 3,136,339 4,444,436 6,321,986 8,731,012 
varOPT(CFH) 1,670,098 2,463,186 3,783,278 5,653,977 8,035,699 
%Efficiency 28.27% 21.46% 14.88% 10.57% 7.96% 

Table 3C Changing the standard deviation of P If both regular and weather derivatives are 
available 

Section A: inputs 
Inputs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
E(P) 100 100 100 100 100 
E(Q) 100 100 100 100 100 
E(C) 60 60 60 60 60 
E(q) 0 0 0 0 0 
SD(P) 5 10 15 20 25 
SD(Q) 25 25 25 25 25 
SD(C) 10 10 10 10 10 
SD(q) 1 1 1 1 1 
corr(P, Q) 0.00 0.00 0.00 0.00 0.00 
corr(P, C) 0.00 0.00 0.00 0.00 0.00 
corr(P, q) 0.00 0.00 0.00 0.00 0.00 
corr(Q, C) 0.00 0.00 0.00 0.00 0.00 
corr(Q, q) 0.80 0.80 0.80 0.80 0.80 
corr(C, q) 0.00 0.00 0.00 0.00 0.00 
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Table 3C Changing the standard deviation of P If both regular and weather derivatives are 
available (continued) 

Section B: outputs 
H –100.45 –100.27 –100.07 –99.92 –99.72 
G –810.61 –816.87 –808.63 –814.93 –822.35 
var(CFNH) 2,328,243 3,136,339 4,444,436 6,321,986 8,731,012 
varOPT(CFH) 1,417,377 1,463,111 1,534,904 1,654,686 1,788,665 
%Efficiency 39.12% 53.35% 65.46% 73.83% 79.51% 

Section B of Tables 3A to 3C presents the results of the optimal hedging policies and 
maximum efficiency to be reached under each scenario. The quality of the hedging 
increases as the volatility of TP  increases, when only regular derivatives are used. When 
only weather derivatives are available, the quality of the hedging decreases as the 
standard deviation of TP  increases. If both derivatives are used, the quality of the 
hedging increases as the standard deviation of TP  increases. Regarding the hedging 
policies we appreciate how the level of the optimal hedging policies in both the regular 
derivativeand also the weather derivative do not change as the standard deviation of TP  
increases, reflecting the fact that the volatility of that variable is not relevant, as can be 
appreciated in equations (20) and (21). 

3.2 Recognising that P and Q can be correlated 

In this section, we compare the results of the previous section, allowing now for the 
existence of correlation (negative or positive) between price and quantity. It is very 
uncommon to find examples in real life of prices and quantities that do not correlate. As 
we show in this section, recognising the true correlation between these two variables has 
an impact not only in the quality of the optimal hedging that can be reached, but also in 
the level of those hedging policies, in particular in the level of the hedging policies that 
should be applied when using regular derivatives. 

Figure 1A Efficiency and correlation between production level Q and the weather variable q 
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Figure 1B Efficiency level and standard deviation of production Q 

 

Figure 1C Efficiency level and standard deviation of product price P 

 

Figure 1A shows how the quality of the hedging changes as we change the correlation 
between TQ  and Tq  if correlation between TP  and TQ  is –0.2 or 0.0 or +0.2. We 

conclude that a positive correlation between TP  and TQ  increases the quality of the 

correlation for all the possible values of the correlation of TQ  and .Tq  We also conclude 

that a negative correlation between TP  and TQ  has the opposite effect. Figure 1B shows 

how the quality of the hedging changes as we change the standard deviation of ,TQ  if 

correlation between TP  and TQ  is –0.2 or 0.0 or +0.2. We conclude that a positive 

correlation between TP  and TQ  increases the quality of the correlation for all the 

possible values of the standard deviation of .TQ  We also conclude that a negative 

correlation between TP  and TQ  has the opposite effect. Figure 1C shows how the quality 

of the hedging changes as we change the standard deviation of ,TP  if correlation between 

TP  and TQ  is –0.2 or 0.0 or +0.2. We conclude that a positive correlation between TP  

and TQ  increases the quality of the correlation for all the possible values of the standard 
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deviation of .TP  We also conclude that a negative correlation between TP  and TQ  has 
the opposite effect. 

Figure 2A Optimal hedging ratio H and the correlation between production level Q and the 
weather variable q 

 

Figure 2B Optimal hedging ratio H and the standard deviation of production level Q 

 

Figure 2C Optimal hedging ratio H and the standard deviation of product price P 
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Figure 2A shows how the optimal hedging in the regular derivative H changes as we 
change the correlation between TQ  and ,Tq  if correlation between TP  and TQ  is –0.2 or 

0.0 or +0.2. We conclude that a positive correlation between TP  and TQ  reduces the 

number of short positions to be taken for all the possible values of the correlation of TQ  

and .Tq  We also conclude that a negative correlation between TP  and TQ  has the 
opposite effect. In all the cases, H does not change when we change correlation between 

TQ  and .Tq  Figure 2B shows how the optimal hedging in the regular derivative H 

changes as we change the standard deviation of ,TQ  if correlation between TP  and TQ  is 

–0.2 or 0.0 or +0.2. We conclude that a positive correlation between TP  and TQ  reduces 
the number of short positions to be taken for all the possible values of the standard 
deviation of ,TQ  but we also conclude that H decreases as the standard deviation of TQ  

increases. If the correlation between TP  and TQ  is negative, we observe an increase in 
the number of short positions to be taken, for all the possible values of the standard 
deviation of ,TQ  but we also conclude that H increases as the standard deviation of TQ  
increases. Figure 2C shows how the optimal hedging in the regular derivative H changes 
as we change the standard deviation of ,TP  if correlation between TP  and TQ  is –0.2 or 

0.0 or +0.2. We conclude that a positive correlation between TP  and TQ  increases the 
number of short positions to be taken for all the possible values of the standard deviation 
of ,TP  but we also conclude that H decreases as the standard deviation of TP  increases. 
If the correlation between TP  and TQ  is negative, we observe a decrease in the number 

of short positions to be taken, for all the possible values of the standard deviation of ,TP  
but we also conclude that H increases as the standard deviation of TP  increases. 

Figure 3A Optimal hedging ratio G and the correlation between production level Q and the 
weather variable q 
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Figure 3B Optimal hedging ratio G and the standard deviation of production level Q 

 

Figure 3C Optimal hedging ratio G and the standard deviation of product price P 

 

Figure 3A shows how the optimal hedging in the weather derivative G changes as we 
change the correlation between TQ  and ,Tq  if correlation between TP  and TQ  is –0.2 or 

0.0 or +0.2. The figure suggests that the degree of correlation between TP  and TQ  has no 
significant impact on G. The number of positions in weather derivatives increases with 
the degree of correlation between TQ  and .Tq  Figure 3B shows how the optimal hedging 

in the weather derivative G changes as we change the standard deviation of ,TQ  if 

correlation between TP  and TQ  is –0.2 or 0.0 or +0.2. The figure suggests that the 

degree of correlation between TP  and TQ  has no significant impact on G. The number of 

positions in weather derivatives increases with the standard deviation of .TQ  Figure 3C 
shows how the optimal hedging in the weather derivative G changes as we change the 
standard deviation of ,TP  if correlation between TP  and TQ  is –0.2 or 0.0 or +0.2. The 

figure suggests that the degree of correlation between TP  and TQ  has no significant 
impact on G. The number of positions in weather derivatives in all cases shows no 
relationship with the standard deviation of .TP  
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4 Summary and conclusions 

This study analyses how to achieve the optimal hedging of a cash flow to be received at a 
future date T, when facing price risk if we are also in the presence of cost and quantity 
uncertainty. We explore and compare the case where the only instrument available to 
hedge is a regular forward contract (to hedge the price uncertainty), the case where we 
only have access to a linear-type weather derivative to hedge quantity, and the case where 
we have access to both types of derivatives. Obviously the use of weather derivatives to 
improve the hedging of the cash flow of a company would only make sense in a company 
where its cash flow is correlated to a weather variable that is considered by a particular 
weather derivative. 

A closed form solution for both the optimal hedging strategies and the quality of the 
hedging under each scenario are identified. We also show how to obtain the optimal 
hedging strategies through linear regressions, and how the quality of the optimal hedging 
strategy is measured by the determination coefficient (R2) of the same regression. The 
closed form solutions found allow us to explore how the different parameters considered 
here, such as the volatilities of all the stochastic variables considered or the degree of 
correlation among them would impact both the optimal hedging policies and the quality 
of the optimal hedging solution. 

Section 3 shows an example where the optimal hedging strategies and the quality of 
the hedging are computed for different scenarios. Then it is explored how the results 
critically depend on some key factors such as the volatility of some stochastic variables 
such as TP  and TQ  and on some key correlations such as the ones between TQ  and Tq  

or between TP  and .TQ  The example allows to verify for example how the optimal 
hedging solutions can deviate from the simple hedging strategies derived when no 
correlation between TP  and TQ  is considered. 
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Notes 
1 Imagine that you want to hedge the price of a stock and the only futures contract available 

defines a related stock index as its underlying asset. Or as in this paper, imagine you want to 
hedge a certain agricultural production level and the derivative contract available relates to 
rain precipitations on that geographical location. 

2 All the results presented in this section are the consequence of generating sets of 100.000 
random numbers with the required characteristics for each scenario. For simplicity it is 
assumed that all the variables follow a normal distribution. 


