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Abstract: The dynamic behaviour of a high speed balanced rotor supported  
on deep groove ball bearings (SKF-6205) has been studied by numerically 
simulated results. Since, internal radial clearance (IRC) is inevitably present in 
all class and types of bearing, in this paper it (IRC-C3) is considered as  
main source of nonlinearity with speed as control parameter. The complex 
mathematical model simulates nonlinear vibrations due to both nonlinear 
contact stiffness and damping at the contact of rollers and races. The contact of 
rollers with races are treated as nonlinear springs with contact damping whose 
stiffnesses are obtained by using Hertzian elastic contact deformation theory. 
The explicit type numerical integration technique Runge-Kutta-fourth-order 
method is used to solve the coupled nonlinear differential equations iteratively. 
Various techniques like Poincaré maps, orbits plots, and power spectra are used 
to study the nature of response. At lower speed transient chaos is observed 
which becomes stable through periodic doubling bifurcation at the medium 
speed. Hopf bifurcation is also observed at higher speed due to emergence of 
limit cycle. 
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1 Introduction 

Rolling element bearings are one of the key components in rotating machinery, and their 
good condition is vital for the machine performance. Any bearing in operation will 
invariably fail at some point, with risk of machine breakdown as a result. Allowing a 
machine to break down before repairing is expensive as production time is lost and the 
bearing defect may propagate to other machine components which will also need to be 
replaced. The stiffness, rotational accuracy and vibration characteristics of a high-speed 
shaft are partly controlled by the ball bearings that support it. In the rotor bearing 
assembly supported by perfect ball bearings, the vibration spectrum is dominated by the 
vibrations at the natural frequency and the varying compliance frequency. The vibrations 
at this later frequency are called parametric vibrations. 

For the particular bearing, the internal radial clearance (IRC) cannot be changed after 
manufacturing. Clearance in mechanical components introduces very strong nonlinearity. 
Clearance, which provided in the design of bearing to compensate the thermal expansion, 
is also a source of vibration and introduces the nonlinearity in the dynamic behaviour. 

Sunnersjo (1978) studied the varying compliance vibrations theoretically and 
experimentally, taking inertia and damping forces into account. Fukata et al. (1985) first 
took up the study of varying compliance vibrations and the nonlinear dynamic response 
for the ball bearing supporting a balanced horizontal rotor with a constant vertical force. 
It is a more detailed analysis compared with Sunnersjo’s (1978) works as regimes of 
super-harmonic, sub-harmonic and chaotic behaviour are discovered. The studies 
undertaken by Day (1987) and Kim and Noah (1996) considered the effect of unbalanced 
force only, but not a varying compliance effect. In the present analysis, all the three 
effects, i.e., the unbalanced rotor, the varying compliance and the radial internal 
clearance are studied in addition to nonlinearity due to Hertzian contact. Harris (2001) 
considered two factors for structural vibrations of ball bearings, one of these is contact 
load from the balls, which deform the races into a polyhedral shape, and the other is the 
motion of balls relative to the line of action of the radial load which fluctuates the rigidity 
of the bearing. 

The varying compliance effect was studied theoretically by Perret (1950) considering 
a deep groove ball bearing with the elastic deformation between race and balls modelled 
by the Hertzian theory and no bending of races. Perret studied the bearing at the instant 
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when the balls are arranged symmetrically around the load line, i.e., with either a ball or a 
ball gap directly under the load. In the intermediate cage position, however, the balls are 
non-symmetrically arranged which means that when loaded vertically; the centre of the 
inner ring will undergo a horizontal as well as vertical displacement. Meldau (1951) 
studied theoretically the two-dimensional motion of shaft centre. Both Perret and Meldau 
performed a quasi-static analysis since inertia and damping force were not taken into 
account. 

Mevel and Guyader (1993) have developed a theoretical model of a ball bearing 
supporting a balanced horizontal rigid rotor, with a constant vertical radial force. This is 
similar to the work done by Fukata et al. (1985) but more results have been reported for 
parametric studies undertaken and routes to chaos traced out. Chaos in this model of 
bearing has been reported to come out of the sub-harmonic route and the quasi-periodic 
route. Datta and Farhang (1997) developed a nonlinear model for structural vibration in 
the rolling bearings by considering the stiffness of the individual region where the 
elements contact each other but in this model distributed defects are not considered. 
Tiwari et al. (2000) has studied the effect of radial internal clearance – the appearance of 
sub-harmonics and Hopf bifurcation is seen theoretically where as the shift in the peak 
response is also observed experimentally. 

Harsha et al. (2003) analysed the nonlinear behaviour of a high speed horizontal 
balanced rotor supported by a ball bearing. The conclusion of this work shows that the 
most severe vibrations occur when the varying compliance frequency (VC) and its 
harmonics coincide with natural frequency. Harsha (2005a) has studied the effects of 
radial internal clearance and rotor speed. The appearance of periodic, sub-harmonic, 
chaotic and Hopf bifurcation is seen theoretically. But Harsha considered only nonlinear 
stiffness. He studied the effects of radial internal clearance for both balanced and 
unbalanced rotor speed (Harsha, 2005b, 2006a). The appearance of periodic,  
sub-harmonic, chaotic and Hopf bifurcation is seen theoretically. But he has considered 
only nonlinear stiffness. Harsha (2006b) has studied the effects of rotor speed with 
geometrical imperfections. The results are from a large number of numerical integrations 
and are mainly presented in the form of Poincaré maps and frequency spectra. 

The effect of fluctuation of the speed of the rotor has been studied and from the 
analysis performed, it was concluded that even a minimum fluctuation of the rotor speed 
may result in major changes of the system dynamics, indicating that speed fluctuations of 
the rotor are a governing parameter for the dynamic behaviour of the system. Cao and 
Xiao (2008) have developed the comprehensive mathematical model for the spherical 
roller bearing. This paper represents that the larger the radial clearance, the higher the 
modal density; and the higher the response at the roller passing frequency and its super 
harmonics. But overall the benefit of smaller radial clearance is limited in reducing the 
displacements of inner race. 

Upadhyay et al. (2010) developed the mathematical model for the bearing by 
considering the nonlinear spring along with contact damping at the ball-race contact. 
Effect of IRC along with unbalanced rigid rotor has been explained. Period doubling and 
mechanism of intermittency have been observed that lead to chaos. The outcomes 
illustrate the appearance of instability and chaos in the dynamic response as the speed of 
the rotor-bearing system is changed. Also, it has been shown by Ghafari et al. (2010) that 
the bearing having the clearance more than 4.5 μm has more than one equilibrium point 
noted as strange attractor. The system vibrates around these strange attractors randomly. 
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It has been reported that bearing having clearance more than 12 μm has chaotic nature at 
1,000 RPM onwards. 

The practical occurrences of the nonlinear phenomena such as periodic, subharmonic, 
chaotic and Hopf bifurcation are explained in the different books of authors (Nayfeh and 
Balachandran, 1995; Moon, 1987; Steven, 1994). The authors want to give more 
importance to all these books because a different tool to identify the nonlinear behaviour 
of the system has been explained very nicely with plots of experiments. 

2 Problem formulation 

A schematic diagram of rolling element bearing is shown in Figure 1. For investigating 
the structural vibration characteristics of rolling element bearing, a model of bearing 
assembly can be considered as a spring mass damper system. Elastic deformation 
between races and balls gives a nonlinear force deformation relation, which is obtained 
by Hertzian theory. In the mathematical modelling, the rolling element bearing is 
considered as spring mass damper system and rolling elements act as nonlinear contact 
spring as shown in Figure 2. Since, the Hertzian forces arise only when there is contact 
deformation, the springs are required to act only in compression. In other words, the 
respective spring force comes into play when the instantaneous spring length is shorter 
than its unstressed length, otherwise the separation between balls and the races takes 
place and the resultant force is set to zero. The excitation is because of the varying 
compliance vibrations of the bearing which arise because of the geometric and elastic 
characteristics of the bearing assembly varying according to the cage position. 

Figure 1 The flexibility of the rolling contacts in a rolling element bearing is represented by 
nonlinear springs and nonlinear damping 
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Figure 2 Mass-spring-damper of rolling element bearing (see online version for colours) 

 

2.1 Equation of motion 

The controlling equations of motion describing the dynamic behaviour of the complete 
model can be derived from a variational principle as Euler-Lagrange equations. 

0

t
J Ldt= ∫  (1) 

The equations of motion that describe the dynamic behaviour of the complete model can 
be derived by using Lagrange’s equation for a set of independent generalised coordinates, 
as: 

{ }
{ } { } { } { }

dd T T V F f
dt p p p p

∂ ∂ ∂ ∂
− + + =

∂ ∂ ∂ ∂� �
 (2) 

where T, V, p and f are kinetic energy, potential energy, vector with generalised  
degree-of-freedom (DOF) coordinate and vector with generalised contact forces 
respectively and Pd represent the dissipation energy due to damping. The kinetic and 
potential energies can be subdivided into the contributions from the various components 
i.e. from the rolling elements, the inner race, the outer race and the rotor. The  
kinetic energy and potential energy contributed by the inner race, outer race, balls,  
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rotor and springs, can be differentiated with respect to the generalised coordinates  
ρj (j = 1, 2,……,Nb), xin, and yin to obtain the equations of motion. For the generalised 
coordinates ρj, where j = 1, 2,……,Nb, the equations are: 
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For the generalised coordinate xin the equation is: 
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For the generalised coordinate yin the equation is: 
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where mrotation = (minner + mrotor). 
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This is a system of (Nb + 2) second order, nonlinear differential equations. There is no 
external radial force is allowed to act on the bearing system and no external mass is 
attached to the outer race. The ‘+’ sign as subscript in these equations signifies that if the 
expression inside the bracket is greater than zero, then the rolling element at angular 
location θj is loaded giving rise to restoring force and if the expression inside bracket is 
negative or zero, then the rolling element is not in the load zone, and restoring force is set 
to zero. For the balanced rotor condition, the unbalanced rotor force (Fu) is set to be zero. 

In the present paper, the authors have written the equation of motion directly. The 
derivation of the equation of motion has been explained in detail in Upadhyay et al. 
(2009). 

3 Methods of solution 

The coupled nonlinear second order differential equations (3) to (5) are solved by 
numerical integration technique which is a time domain approach. The non-analytic 
nature of the stiffness term renders the system equations difficult for analytical solution. 

3.1 Numerical integration 

The equations of motion (3) to (5) are solved by using the explicit type numerical 
integration technique Runge-Kutta-fourth-order method to obtain radial displacement, 
velocity, and acceleration of the rolling elements. For performing numerical integration, 
the system equations are transformed into first order form by state variable method. 

1 2 3 4

1 2 2 3 4 4

, , , ,
, , ,

ir ir ir ir

ir ir ir ir

z x z x z y z y
z x z z x z y z z y
= = = =
= = = = = =

� �
� �� � ��� � � �

 (11) 

1 1 2

2 2 2

3 3 4

4 4 4

 and .

ir ir

ir ir

ir ir

ir ir

z x z z x
z x z z x

z z
z y z z y
z y z z y

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

��
� ��� �

��
� ��� �

 (12) 

So, finally following four first order differential equation cab be obtained in the form of 
state variable, which can be solved by first order RK method. 
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3 irz y= ��  (15) 
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Also, replacing xin and yin by z1 and z3 respectively, we can rewrite the equations (6) to 
(10) as following (17) to (21). Here, it is important to note that xin and yin are variable 
because they are the generalised coordinates of inner race mass centre which is moved 
with shaft. While xout and yout are the constant because mass centre of outer race is not 
variable. Outer race is rigidly fixed in housing. 
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3.1.1 Choice of step size and initial condition 

For numerical solutions, the initial conditions and step size Δt are very important for 
successive and economic computational solutions. Any nonlinear system is very sensitive 
to initial condition and for the very small perturbation of the initial condition gives a 
totally different behaviour. So, improper selection of initial conditions can lead to a larger 
computation time or sometimes unexpected results. 

The larger the time step, Δt the faster the computation time but can fail in following 
high frequency contents. On the other hand the time step should be small enough to 
achieve an adequate accuracy. Also, very small time steps can increase the truncation 
errors (i.e. computational noise) and requires a longer time to reach a steady state. 
Therefore, an optimisation should be made between them. 

In addition, further analyses, such as plotting Poincaré maps, computing the 
Lyapunov exponent, and determining the attractor’s dimension, all require an integer 
delay at the dominant frequency which is a function of the time increment and the BPF. 
The time increment for all the presented simulations is computed from the following 
equation that yields a time delay at the BPF (Ghafari et al., 2010): 

3Δ 10o i

b i s

R Rt
N R f

−+
= ×  (22) 



   

 

   

   
 

   

   

 

   

    Nonlinear vibration signature analysis of a rotor supported ball bearings 9    
 

    
 
 

   

   
 

   

   

 

   

       
 

where Ro and Ri stand for the outer and inner ring radii, Nb is the number of rolling 
elements, and fs denotes the shaft rotational frequency (Hz). 

At time t = 0 the following assumptions are made: 

1 The shaft is held at the centre of the bearing such that there is no net radial load on 
the shaft and all balls are assumed to have equal radial preload. All the balls are 
equally spaced. 

2 The bearing is fault-free and the only external force is the rotor’s ideally balanced 
weight. 

3 The shaft is then given initial displacements and velocities. For fast convergence the 
initial displacements are set to the following values: xin = 10–6 m and yin = 10–6 m. 
The initial velocities are assumed to be zero 

4 When t > Δt the initial conditions have already passed and the normal procedure 
commences. 

5 All the results are obtained, after the system passes its transient state. 

3.1.2 Solution procedure 

The solution procedure for coupled nonlinear differential equation is explained with the 
flow chart as shown in Figure 3. The programming is done in MATLAB software and 
different response plots are obtained. 

Figure 3 Flow chart of (a) main program (b) call function (see online version for colours) 

 
(a) (b) 
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3.2 Tools used for the analysis 

In this paper, some qualitative tools like orbit plot, bifurcation plot, Poincaré plot and 
FFT plots are used to identify the dynamic nature of the system. The orbit plot is a graph 
in which horizontal displacement is plotted on X-axes and vertical displacement plotted 
on Y-axes. And, hence closed orbit of different regular or irregular shape can be observed 
or may be unclosed or fractal plots in case of chaos. When motion is linear periodic, the 
phase plane orbits traces out a circle type closed curve. But if the motion is nonlinear 
periodic the phase plane orbit have elliptical shape closed curve or self intersecting 
closed curve. If the system has higher order of period nT behaviour, then it has more 
number of loops in orbit or more irregular shape of closed curve. Chaotic motions have 
orbits that never close or repeat. Thus trajectories of the orbits in the plane will tend to fill 
up the section of the phase space. 

In case of Poincaré map, nth-order continuous time system is replaced with (n – 1)th 
order map. The Poincaré map is a graph in which displacement is plotted on X-axes and 
velocity is plotted on Y-axes. It is constructed by sampling the phase portrait 
stroboscopically. Its aim is to simplify the complicated systems, and it is useful to know 
the nonlinear dynamic behaviour of system. Chaotic and other motions can be 
distinguished visually from Poincaré map. Periodic behaviour is a fixed point in Poincaré 
map. A quasi periodic behaviour is closed curve or points in Poincaré maps. Distinct set 
of points indicate the chaos in Poincaré map. 

Fast Fourier transform is a plot of frequency v/s amplitude. Power spectrum is a very 
powerful frequency domain technique to identify the linear periodic, nonlinear periodic, 
superharmonics, subharmonic, quasiperiodic and different type of chaotic behaviour. If a 
system have undamped, unforced linear periodic type behaviour then FFT shows only a 
one peak of fundamental frequency of constant amplitude. While the frequency spectrum 
of undamped, unforced nonlinear periodic system shows peak of constant amplitude at 
fundamental frequency and multiples of fundamental frequency. While in case of 
damped, unforced linear and nonlinear periodic system the amplitudes have decreasing 
nature. Multiple of fundamental frequency (n*ff, where n is greater than 1) indicates the 
superharmonics nature of system. While n is less than 1 show subharmonic routes to 
chaos. Presence of two or more than two fundamental frequencies along with their 
modulation suggests the quasiperiodic nature if their ratio is incommensurate. If ratio is 
commensurate then the system is periodic in nature on torus. The system is said to be  
kth -order periodic, where k is a total no. of fundamental frequency in power spectrum. It 
means, system having three fundamental frequencies is known as third order periodic 
system. The Aperiodic (chaotic) behaviour in a dynamical system is characterised by 
broadband frequency spectra. In addition to that, the frequency spectrum is very dense 
and more number of peaks can be observed around the fundamental frequency. 

4 Results and discussion 

To get the satisfactory post transient steady state condition, numerical simulation is run 
for 2 sec. To save the computational time, artificial damping, c = 50 N-s/m is used. In the 
present study, DGB bearing SKF 6205, class 3 type is used, in which IRC is 14 μm. The 
other geometrical and physical properties of bearing is listed in Table 1. 
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Table 1 Geometrical and physical properties of the DGB bearing SKF 6205 

Bearing specification SKF 6205 
Mass of the rotor (mr) 5 kg 
Radius of inner race with point of contact with the rolling element (r) 15.56 mm 
Radius of outer race with point of contact with the rolling element (R) 23.5 mm 
Radius of each rolling element (ρr) 3.965 mm 
Radial load (W) 50 N 
Outside diameter 52 mm 
Number of rolling elements (Nb) 9 

Angular separation between elements (β = 2π / Nb) 40 deg 

Bearing clearance (μm) 28 

In the present paper, weight of balanced rigid rotor (50 N) is taken as constant radial  
load (W) and different types of nonlinear behaviour is identified for the speed range of 
1,000 RPM to 10,000 RPM. Results of simulation of this study like Poincaré map, power 
spectrum and orbit plot for horizontal and vertical displacement are shown in Figures 5 to 
15. As the speed is changing, the dynamical behaviour of the system is changed and that 
is listed in Table 2. From this study, it has been observed that at 9,000 RPM there is an 
occurrence of chaos through Hopf bifurcation. 
Table 2 Behaviour of the system for the speed as control parameter 

RPM Behaviour of the system 

1,000 Transient chaos-MULTIPERIODIC 
2,000 Period 4T-nonlinear periodic 
3,000 Period 3T-nonlinear periodic 
4,000 Period 2T-nonlinear periodic 
5,000 Period 2T-nonlinear periodic 
6,000 Period 1T-nonlinear periodic (emergence of limit cycle) 
7,000 Period 1T-nonlinear periodic (limit cycle) 
8,000 Period 2T-nonlinear periodic 
9,000 Chaos through Hopf bifurcation 
10,000 Period 1T-nonlinear periodic (emergence of limit cycle) 

Now, during the simulation it is observed that vertical displacement takes more time  
(2.5 sec to 5 sec) as compared to horizontal displacement (2 sec to 4 sec) to die out. Also, 
it is important to note that peak to peak displacement in vertical displacement is less as 
compared to horizontal displacement as shown in bifurcation plot (Figure 4). This fact is 
also reported by Harsha et al. (2003) and Tiwari et al. (2000). Also, vertical motion has a 
very broad band and dense frequency spectrum between VC and its multiple spikes as 
compared to horizontal motion. It means that, the system has more variation in vertical 
direction which is also conclude by Fukata et al. (1985), Harsha et al. (2003) and Tiwari 
et al. (2000). So, based on this discussion, the final behaviour of the system is decided 
almost by considering the vertical motion. In the next paragraphs, different plots are 
discussed in detail. 
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Figure 4 Bifurcation plot (peak to peak displacement response v/s speed) 

 

Figures 5(a) and 5(c) show Poincaré map and power spectra for horizontal displacement 
at the speed of 1,000 RPM respectively. Similarly, Figures 5(b) and 5(d) show Poincaré 
map and power spectra for vertical displacement at the speed of 1,000 RPM respectively. 
Two loops in Figure 5(a) indicate the period 3T behaviour, while Figure 5(b) shows the 
multi periodic behaviour. Now, in power spectra of horizontal displacement [Figure 5(c)], 
different peaks of VC and its multiples spikes like 2VC, 3VC, 4VC, 5VC and 6VC can 
be easily observed. Similarly, in power spectra of vertical displacement [Figure 5(d)], 
peak of VC can be easily observed. So, from Poincaré map and power spectra it can 
conclude that at 1,000 RPM system has transient type chaos behaviour. Further that can 
be verified from orbit plot which has closed loop, irregular shape and self intersecting 
trajectory as shown in Figure 15(a). Here, it is very important to note that the transient 
chaos is a regular nonlinear periodic motion but looks like chaos because of multiple 
strange attractor (Moon, 1987). This transient chaos eventually settles down in regular 
motion (Moon, 1987) by reverse periodic flip which is as explained further in successive 
paragraphs. So, finally at 1,000 RPM the system has transient type chaos or multi 
periodic behaviour which is also reported by Ghafari et al. (2010). 

Figures 6(a) and 6(c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 2,000 RPM respectively. Similarly, Figures 6(b) and 6(d) 
show Poincaré map and power spectra for vertical displacement at the speed of 2,000 
RPM respectively. One loop in Figure 6(a) indicates the period 2T behaviour, while three 
loops in Figure 6(b) show the period 4T behaviour. Now, in power spectra of horizontal 
displacement [Figure 6(c)], different peaks of VC and its multiples spikes like 2VC, and 
3VC can be easily observed. Similarly, in power spectra of vertical displacement  
[Figure 6(d)], peak of VC and its multiples spikes like 2VC, and 3VC can be easily 
observed. So, from Poincaré map and power spectra, it can conclude that at 2,000 RPM 
system has period 4T type multi periodic behaviour. Further that can be verified from 
orbit plot which has closed loop, irregular shape and self intersecting trajectory as shown 
in Figure 15(b). But it has less irregularities compared to orbit plot at 1,000 RPM. So, 
finally at 2,000 RPM the system has nonlinear multi periodic (period 4T) behaviour. 

Figures 7(a) and 7(c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 3,000 RPM respectively. Similarly, Figures 7(b) and 7(d) 
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show Poincaré map and power spectra for vertical displacement at the speed of  
3,000 RPM respectively. Closed orbit in Figure 7(a) indicates the periodic behaviour, 
while two loops in Figure 7(b) show the period 3T behaviour. Now, in power spectra of 
horizontal displacement [Figure 7(c)], different peaks of VC and its multiples spikes like 
2VC, can be easily observed. Similarly, in power spectra of vertical displacement  
[Figure 7(d)], peak of VC and its multiples spikes like 2VC, and 3VC can be easily 
observed. So, from the Poincaré map and power spectra, it can conclude that at 3,000 
RPM system has period 3T type periodic behaviour. Further that can be verified from 
orbit plot which has closed loop, irregular shape and self intersecting trajectory as shown 
in Figure 15(c). But it has less irregularities compared to orbit plot at 2,000 RPM. So, 
finally at 3,000 RPM the system has nonlinear period 3T type behaviour. 

Figures 8(a) and 8(c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 4,000 RPM respectively. Similarly, Figures 8(b) and 8(d) 
show Poincaré map and power spectra for vertical displacement at the speed of 4,000 
RPM respectively. Closed orbit in Figure 8(a) indicates the periodic behaviour, while one 
loop in Figure 8(b) shows the period 2T behaviour. Now, in power spectra of horizontal 
displacement [Figure 8(c)], peak of VC can be easily observed. Similarly, in power 
spectra of vertical displacement [Figure 8(d)], peak of VC and its multiples spikes like 
2VC, and 3VC can be easily observed. So, from Poincaré map and power spectra it can 
conclude that at 4,000 RPM system has period 2T type periodic behaviour. Further that 
can be verified from orbit plot which has closed loop, irregular shape and self intersecting 
trajectory as shown in Figure 15(d). But it has less irregularities compared to orbit plot at 
3,000 RPM. So, finally at 4,000 RPM the system has nonlinear period 2T type behaviour. 

Figures 9(a) and (c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 5,000 RPM respectively. Similarly, Figures 9(b) and 9(d) 
shows Poincaré map and power spectra for vertical displacement at the speed of  
5,000 RPM respectively. Closed orbit in Figure 9(a) indicates the periodic behaviour, 
while one loop in Figure 9(b) shows the period 2T behaviour. Now, in power spectra of 
horizontal displacement [Figure 9(c)], different peak of VC and its multiples spikes like 
2VC can be easily observed. Similarly, in power spectra of vertical displacement  
[Figure 9(d)], peak of VC and its multiples spikes like 2VC, and 3VC can be easily 
observed. So, from the Poincaré map and power spectra it can conclude that at 5,000 
RPM system has period 2T type periodic behaviour. Further that can be verified from 
orbit plot which has closed loop, irregular shape and self intersecting trajectory as shown 
in Figure 15(e). But it has less irregularities compared to orbit plot at 4,000 RPM. So, 
finally at 5,000 RPM the system has nonlinear period 2T type behaviour. 

Figures 10(a) and 10(c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 6,000 RPM respectively. Similarly, Figures 10(b) and 10(d) 
shows Poincaré map and power spectra for vertical displacement at the speed of  
6,000 RPM respectively. Here, in both Poincaré map have closed elliptical orbit which 
indicates the nonlinear periodic behaviour. Now, in power spectra of horizontal 
displacement [Figure 10(c)], different peak of VC and its superharmonics like 2VC, and 
subharmonics VC/3 and 2/3VC can be easily observed. Similarly, in power spectra of 
vertical displacement [Figure 10(d)], peak of VC and its superharmonics like 2VC can be 
easily observed. So, from the Poincaré map and power spectra it can conclude that at 
6,000 RPM system has nonlinear periodic behaviour. Further that can be verified from 
orbit plot which has elliptical type closed loop as shown in Figure 15(f). So, finally at 
6,000 RPM the system has nonlinear period 1T type behaviour and that is known as limit 
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cycle. So, now it can be conclude that the system become stable through reverse periodic 
flip. 

Figures 11(a) and 10(c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 7,000 RPM respectively. Similarly, Figures 11(b) and 10(d) 
show Poincaré map and power spectra for vertical displacement at the speed of  
7,000 RPM respectively. Here, in both Poincaré map have closed elliptical orbit which 
indicates the nonlinear periodic behaviour. Now, in power spectra of horizontal 
displacement [Figure 11(c)], peak of VC can be easily observed. Similarly, in power 
spectra of vertical displacement [Figure 11(d)], peak of VC and its superharmonics like 
2VC and its subharmonics like VC/7 and 3/5VC can be easily observed. So, from the 
time response and power spectra it can conclude that at 7,000 RPM system has nonlinear 
periodic behaviour. Further that can be verified from orbit plot which has elliptical type 
closed loop as shown in Figure 15(g). So, finally at 7,000 RPM the system still have 
nonlinear periodic type behaviour and existence of limit cycle is still continued. 

Figures 12(a) and (c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 8,000 RPM respectively. Similarly, Figures 12(b) and 12(d) 
show Poincaré map and power spectra for vertical displacement at the speed of  
8,000 RPM respectively. Closed orbit in Figure 12(a) indicates the periodic behaviour, 
while one loop in Figure 12(b) shows the period 2T behaviour. Now, in power spectra of 
horizontal displacement [Figure 12(c)], peak of VC/2 can be easily observed. Similarly, 
in power spectra of vertical displacement [Figure 12(d)], peak of VC and its 
superharmonics like 2VC and its subharmonics like VC/2 can be easily observed. So, 
from the time response and power spectra it can conclude that at 8,000 RPM system has 
nonlinear periodic 2T type behaviour. Further that can be verified from orbit plot which 
has closed loop, irregular shape and self intersecting trajectory as shown in Figure 15(h). 
So, it has more irregularities compared to orbit plot at 7,000 RPM. So, finally at  
8,000 RPM the system has nonlinear 2T type periodic behaviour. 

Figures 13(a) and 13(c) show Poincaré map and power spectra for horizontal 
displacement at the speed of 9,000 RPM respectively. Similarly, Figures 13(b) and 13(d) 
show Poincaré map and power spectra for vertical displacement at the speed of  
9,000 RPM respectively. Here, both the Poincaré map have very dense orbit and fractal 
structure if the orbit will be represented by points. So, it can be discerned that the system 
has a chaos type behaviour. Now, in power spectra of horizontal displacement  
[Figure 13(c)], peak of VC and its subharmonics like VC/2 can be easily observed. 
Similarly, in power spectra of vertical displacement [Figure 13(d)], peak of VC can be 
easily observed. Also, both the power spectrum has very broad band and dense frequency 
spectrum which indicates the chaos in system. Also, in power spectrum of horizontal 
displacement, subharmonic peak VC/2 has very high amplitude compared to VC and 
around it too many dense peaks are observed. So, from the time response and power 
spectra it can conclude that, at 9,000 RPM system has chaotic type behaviour. Further 
that can be verified from orbit plot in which orbit fills phase plane and orbit is not closed 
as shown in Figure 15(i). So, finally at 9,000 RPM the system has chaotic type behaviour 
which is happened through Hopf bifurcation. If the system becomes stable to unstable 
through the emergence of limit cycle oscillation or vice versa that is known as Hopf 
bifurcation (Moon, 1987). Since, the system has limit cycle at 7,000 RPM, period 2T at 
8,000 RPM and at 9,000 RPM chaotic behaviour and again at 10,000 RPM it has limit 
cycle, so it can be concluded as Hopf bifurcation. 
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Figure 5 Response plots at 1,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Figure 6 Response plots at 2,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figure 7 Response plots at 3,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement 
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Figure 8 Response plots at 4,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figure 9 Response plots at 5,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Figure 10 Response plots at 6,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figure 11 Response plots at 7,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Figure 12 Response plots at 8,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figure 13 Response plots at 9,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Figure 14 Response plots at 10,000 RPM, (a) Poincaré map for horizontal displacement  
(b) Poincaré map for vertical displacement (c) FFT for horizontal displacement  
(d) FFT for vertical displacement (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figures 14(a) and (c) show Poincaré map and power spectra for horizontal displacement 
at the speed of 10,000 RPM respectively. Similarly, Figures 14(b) and 14(d) show 
Poincaré map and power spectra for vertical displacement at the speed of 10,000 RPM 
respectively. Here, in both Poincaré map have closed elliptical orbit which indicates the 
nonlinear periodic behaviour. Now, in power spectra of horizontal displacement  
[Figure 14(c)], peak of VC and its subharmonics 2/5VC can be easily observed. 
Similarly, in power spectra of vertical displacement [Figure 14(d)], only one peak of VC 
can be easily observed. So, from the time response and power spectra it can conclude that 
at 10,000 RPM system has nonlinear periodic behaviour. Further that can be verified 
from orbit plot which has elliptical type closed loop as shown in Figure 15(j). So, finally 
at 10,000 RPM there is again emergence of limit cycle which is again known as Hopf 
bifurcation. 

Figure 15 Orbit plot for radial load W = 50 N, c = 50 N-s/m at (a) 1,000 RPM, (b) 2,000 RPM  
(c) 3,000 RPM, (d) 4,000 RPM, (e) 5,000 RPM, (f) 6,000 RPM, (g) 7,000 RPM  
(h) 8,000 RPM (i) 9,000 RPM (j) 10,000 RPM (see online version for colours) 

   
(a)   (b)   (c) 

   
(d)   (e)   (f) 

   
(g)   (h)   (i) 

 
(j) 
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5 Conclusions 

The sudden change in the behaviour of the system with linear change in control 
parameter of the system can be easily identified through bifurcation plot. Figure 4 shows 
the bifurcation plot for the speed as a control parameter and the difference between the 
peak to peak displacements of horizontal and vertical displacement is as output response. 
From the bifurcation plot, it can infer that the first maximum difference between the 
horizontal and vertical displacement is at 4,000 RPM which starts at 3,000 RPM and ends 
at 6,000 RPM. So, at the 4,000 RPM there is a sudden change in the behaviour of the 
system which starts at 3,000 RPM. And that is the system becomes stable periodic 2T 
type at 4,000 RPM which have previously a transient type chaotic motion at 1,000 RPM. 
From Table 2, it is very clear that system become periodic stable at 6,000 RPM by 
emergence of limit cycle through reverse periodic doubling bifurcation. As shown in 
bifurcation plot at the 6,000 and 7,000 RPM, the system has nonlinear periodic (1T) 
behaviour. The second maximum difference between the horizontal and vertical 
displacement is at 9,000 RPM which starts at 8,000 RPM and ends at 10,000 RPM. As 
discussed previously, the system has limit cycle (periodic 1T behaviour) at 7,000 RPM. 
While at 8,000 RPM period 2T type behaviour and at 9,000 RPM there is complete 
chaotic nature. And, at the 10,000 RPM there is an again emergence of limit cycle. It 
means before and after 9,000 RPM there is immediate immergence of limit cycle, which 
shows the Hopf bifurcation. So, actually it can conclude that there are two Hopf 
bifurcations, through one system become stable to chaotic and through the other system 
again become chaotic to stable. 

Further, existence of superharmonics (listed in Tables 3 and 4) power spectra 
indicates the multi periodic nature of the system. Number of superharmonic peaks 
decrease with the increase in speed in FFT, which represent reverse periodic doubling. In 
addition to that, subharmonic peaks of VC after 7,000 RPM in FFT indicate the change in 
the behaviour of the system. A major peak of subharmonic at 9,000 RPM in FFT is a 
clear indication of bifurcation. Since there is an immediate emergence of limit cycle 
before and after 9,000 RPM, it can conclude as Hopf bifurcation instead of subharmonic 
route to chaos. So, finally following points can be summarised. 

1 The system has transient type chaotic nature at 1,000 RPM, stable periodic 2T 
behaviour at 4,000 RPM and at 6,000 RPM there is an emergence of limit cycle. 

2 The system has chaos at 9,000 RPM through Hopf bifurcation. Before and after  
9,000 RPM there is an existence of limit cycle. 

3 In power spectrum, number of superharmonic peaks is decreased with increase in 
speed. While after 6,000 RPM, number of subharmonic peaks increase. 

4 So, before 6,000 RPM, the effect of superharmonic vibration is dominant and 
between 6,000 to 10,000 RPM, effect of subharmonic vibration is dominant. 
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Table 3 List of major and minor peaks for horizontal displacement 

Horizontal response 

RPM Max. peak Other peaks 

1,000 VC 2VC, 3VC, 4VC, 5VC, 6VC 
2,000 VC 2VC, 3VC 
3,000 VC 2VC 
4,000 VC 2VC 
5,000 VC 2VC 
6,000 VC VC/3, 2/3VC, 2VC 
7,000 VC VC/7, 3/5VC, 2VC 
8,000 VC/2 - 
9,000 VC/2 VC 
10,000 2/5VC VC 

Table 4 List of major and minor peaks for vertical displacement 

Vertical response 

RPM Max. peak Other peaks 
1,000 VC - 
2,000 VC VC, 3VC 
3,000 VC VC, 3VC 
4,000 2VC VC, 3VC 
5,000 2VC VC, 3VC 
6,000 VC 2VC 
7,000 VC - 
8,000 VC VC/2, 2VC, 3VC 
9,000 574.7 VC 
10,000 VC - 
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Nomenclature 

kir Equivalent nonlinear contact stiffness of the roller-inner race contact 

kor Equivalent nonlinear contact stiffness of the roller-outer race contact 

kir_contact Contact stiffness of the roller-inner race contact 

kor_contact Contact stiffness of the roller-outer race contact 

rin Position of mass centre of inner race 
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rout Position of mass centre of outer race 

T Kinetic energy of the bearing system 

Tcage Kinetic energy of the cage 

Ti_race Kinetic energy of the inner race 

To_race Kinetic energy of the outer race 

Tr.e Kinetic energy of the rolling elements 

V Potential energy of the bearing system 

Vcage Potential energy of the cage 

Vi_race Potential energy of the inner race 

Vo_race Potential energy of the outer race 

Vr.e Potential energy of the rolling elements 

Vspring Potential energy of the spring 

xir, yir Centre of inner race 

xor, yor Centre of outer race 

δir+ Contact deformation of the roller-inner race 

δor+ Contact deformation of the roller-outer race 

I Moment of inertia of each rolling element 

Iir Moment of inertia of the inner race 

Ior Moment of inertia of the outer race 

Min Mass of the inner race, Kg 

Mj Mass of the rolling elements, Kg 

Mout Mass of the outer race, Kg 

Mrotor Mass of the rotor, Kg 

Nb Number of balls 

R Radius of outer race 

R Radius of inner race 

c Viscous damping 

cir Equivalent viscous damping factor of the roller-inner race contact 

cor Equivalent viscous damping factor of the roller-outer race contact 

d Ball diameter, Mm 

D Pitch diameter of bearing, Mm 

Fdi Total damping contact force of the ith ball 
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Fd-in Ball-inner race contact damping force 

Fd-out Ball-outer race contact damping force 

Fu Unbalanced rotor force, N 

L Arc length, Mm 

m Mass of the rotor, Kg 

n Waviness order 

Nb Number of balls 

Nw Number of waves per circumference 

Q Contact force, N 

R Radius of outer race, Mm 

r Radius of inner race, Mm 

rθi Elastic deformation at the point of contact at inner and outer race 

Vc Translational velocity of centre of the ball 

Vin Translational velocity of inner race 

Vout Translational velocity of outer race 

W Radial load, N 

X Rotational frequency 

α Contact angle 

β Constant angular separation between rolling elements 

γ0 IRC 

λ Wave length, Mm 

ωbp Ball passage frequency due to outer race waviness 

ωbpfi Inner race defect frequency 

ωbpfo Outer race defect frequency 

ωbpfs Ball passage frequency due to ball size variation 

ωbsf Ball spin frequency 

ωcage Angular velocity of cage 

ωinner Angular velocity of inner race 

ωouter Angular velocity of outer race 

ωroll Angular velocity of ball 

ωrotor Angular velocity of rotor 

ωwp Wave passage frequency 
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Πin Amplitude of the wave at inner race 

Πout Amplitude of the wave at outer race 

Πm Initial amplitude of the Mth sinusoidal wave at inner race 

Πn Initial amplitude of the nth sinusoidal wave at outer race 

Σρ Sum of curvature of the contacting bodies 

ρr Radius of each rolling element, mm 

θj Angular position of rolling element 

Δi Additional deformation in the contact deformation 

Δin Additional deformation in the contact deformation due to inner race waviness 

Δout Additional deformation in the contact deformation due to outer race waviness 

VC Varying compliance frequency 

Fc Cage frequency 

BPF Ball passage frequency 

BPV Ball passage vibration 

FFT Fast Fourier transformations 

WPF Wave passage frequency. 


