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Abstract: One of the major challenges in chemical safety assessment is 
prioritisation of the large number of chemicals in commerce. Over the past five 
years, a new tiered approach to chemical safety assessment that uses margin of 
exposure (MOE) as the metric for determining the level of testing required, 
identifies chemicals of greatest concern. This paper evaluates the role of new 
technologies and novel tools in improving different steps of chemical risk 
assessment processes such as high throughput screening (HTS) in vitro assay 
platforms, high content biological omics assays, molecular biomarkers, 
quantitative structure activity relationship (QSAR) modelling, in vitro to in 
vivo extrapolation (IVIVE) and physiologically-based pharmacokinetic (PBPK) 
modelling. Other technologies such as functional genomics, bioinformatics, and 
computational biology can expedite the analysis. This new approach could 
potentially be used to prioritise and categorise chemicals on the domestic 
substance list (DSL) under the Canadian Environmental Protection Act 
(CEPA). 
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1 Introduction 

New approaches are underway to evaluate the safety of tens of thousands of chemicals in 
the USA. The catalyst for this change began with a report written in 2007 by the National 
Research Council (NRC) called Toxicity Testing in the 21st Century: A Vision and A 
Strategy (now known as TT21C). This report recommended the utilisation of in vitro 
testing strategies and computational technologies with the aim to better understand 
chemical perturbation of biological systems or pathways (Krewski et al., 2011). A series 
of case studies have been researched to further exemplify the utility of the original 
TT21C vision, changing it from a concept to a data-driven toxicity testing framework 
(Thomas et al., 2013a). This new data-driven framework proposed by Thomas et al. 
(2013a) is based on the previously developed tiered approach for prioritising a large 
number of chemicals (Meek et al., 2011), and uses the margin of exposure (MOE) as the 
primary metric. In Canada, this framework could be used to identify and categorise 
chemicals that are on the domestic substances list (DSL) as defined under the Canadian 
Environmental Protection Act (CEPA) (Canadian Environmental Protection Act, 1999) 
and that have the potential to compromise human health or the environment 
(Environment Canada, 1999). 
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1.1 Evaluating the role of new technologies within the traditional steps of 
chemical risk assessment 

The traditional chemical risk assessment process as originally outlined in the Red Book, 
consisted of three steps: 

1 hazard identification 

2 dose-response assessment 

3 exposure assessment [NRC (US): Committee on the Institutional Means for 
Assessment of Risks to Public Health, 1983]. 

The TT21C vision framework (National Research Council, 2007), along with the recent 
NexGen framework for risk science (Krewski et al., 2014) have maintained these three 
main steps in their risk assessment process. The question still remains whether in vitro 
high throughput screening (HTS) assays and in silico modelling can fulfil the criteria 
required within each step and be used effectively in chemical risk assessment. 

1.1.1 Step one: hazard identification 
Traditional approaches of hazard identification utilise both epidemiological and animal 
studies (O’Bryan and Ross, 1988). To date, animal studies have been thought of as  
well-controlled experiments, requiring uncertainty extrapolations for high chemical doses 
and inter-species differences. Although the continued reliance on animal studies as a gold 
standard is under debate (Hartung, 2010), these in vivo models are still believed to be the 
best method for identifying higher-dosage chemical hazards as the intact animal 
encompasses the ongoing complex interactions of an intact biological system. The change 
to a foundation based on data from in vitro assays as proposed by the TT21C vision has 
yet to prove itself as an effective method for hazard identification to the extent that 
hazards must associate directly with results from the animal studies. Although the current 
suite of in vitro assays may not fully capture all potential biological targets, it is believed 
that as our knowledge-base increases so will the ability to interpret and predict 
probabilities of hazard or assurance of safety (Andersen and Krewski, 2010) based on in 
vitro assays and in silico methods. In the interim, HTS assays appear to be useful as an 
effective first tier screening tool for chemicals (Cote et al., 2012; Thomas et al., 2013a). 

The US Environmental Protection Agency (EPA) has launched several programs 
under the umbrella of Computational Toxicology – CompTox (Dix et al., 2007), 
including the ToxCast program, to investigate the feasibility of using HTS for hazard 
identification and determining the mode-of-action. For hazard identification, ToxCast 
phase 1 evaluated the predictive performance of over 600 assays across dozens of in vivo 
endpoints (Thomas et al., 2012a). The results of these studies indicated that the HTS 
assays used in the ToxCast program showed limited capability for predicting traditional 
in vivo chemical hazards (Thomas et al., 2013a). However, the HTS assay have 
demonstrated utility for identifying potential molecular initiating events (MIE) associated 
with specific modes of action (Thomas et al., 2012a) and ability to separate chemicals 
into two main categories: 
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1 chemicals that cause toxicity primarily through non-selective interactions with 
cellular or molecular targets (e.g., through cytotoxicity via cellular stress pathways) 

2 those that act through more selective interactions (e.g., receptor-mediated toxic 
response). 

Selective chemicals can be further investigated using assay platforms that test specific 
modes-of-action at relevant doses whereas non-selective chemicals can be tested in 
assays evaluating cell stress pathways. Following considerations of the value of various 
assays and redundancy in the phase 1 assays themselves, the Tox21 assay suite at NCGC 
(NIH Chemical Genomics Center) has been reduced to approximately 80 HTS assays (in 
ToxCast phase 1 and phase 2, over 1,000 data-rich chemicals were run through more than 
600 HTS assays. NCGC streamlined and optimised this HTS assay set from ToxCast 
phases 1 and 2 to under 100 HTS assays run with a robotics system) (Tice et al., 2013). 
The US EPA Tox21 program is now in the process of screening and prioritising 10,000 
chemical substances with the reduced set of assays (Huang et al., 2014). This HTS 
platform will form the basis of in vitro tests for determining potential hazardous exposure 
dose (as shown in the next section) in calculating MOE. 

1.1.2 Step two: dose response assessment 
Dose response assessment has traditionally relied on sub-chronic and chronic animal 
studies. The data are then fitted with mathematical models to identify point of departure 
(POD), such as the benchmark dose (BMD) (dose that produces a predetermined change 
in adverse response) (Gephart et al., 2001; Thomas et al., 2012b). Traditional safety 
standards can be set by deriving reference dose values (RfD) or risk-specific dose (RSD) 
based on BMD information, with the application of uncertainty factors – a factor of ten 
fold for species differences and an additional factor of ten fold for high to low dose 
extrapolations (Walton et al., 2001). 

In contrast, the TT21C approach uses pathway perturbations as the basis for 
determining the POD or the newly defined BPAD – biological pathway altering dose 
(Judson et al., 2011; Thomas et al., 2012b). One of the many advantages of the 
quantitative-HTS approaches is that chemicals can be assayed at multiple concentrations 
generating a concentration-response curve to evaluate the AC50 values, i.e., the 
concentration that causes a 50% change in activity. A wide range of concentrations in a 
variety of assays, including relatively low concentrations [reverse toxicokinetics (TKs) 
convert this to dose], are evaluated to determine the nominal in vitro concentration at 
which a chemical can initiate potential molecular events (Kavlock et al., 2012). 

In the pharmaceutical industry, in vitro to in vivo extrapolation (IVIVE) methods 
have been developed to parameterise simple TK models that relate blood and tissue 
concentrations to therapeutic doses. The IVIVE methods typically include in vitro 
measurements of hepatic clearance, plasma protein binding, and potentially other 
measures such as bioavailability. The IVIVE methods developed for pharmaceuticals 
have also been used to parameterise TK models for hundreds of environmental and 
industrial chemicals. The TK models are used to estimate the daily oral dose (mg/kg 
BW/day) needed to produce steady-state plasma concentrations equivalent to 
concentrations resulting in biological activity in the ToxCast and Tox21 HTS assays 
(Rotroff et al., 2010; Wetmore et al., 2012, 2013, 2015). 
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To assess the applicability of data generated from high-throughput in vitro screening, 
comparison of the lowest oral equivalent dose from in vitro assays (i.e., most sensitive 
assays) were compared with the in vivo response at the lowest effect level (LEL) from 
ToxRef database for each of the 59 ToxCast phase 1 chemicals. The results demonstrated 
that for over 94% of the chemicals, the lowest oral equivalent dose derived from the most 
sensitive in vitro endpoint was less than the in vivo response with the LEL, suggesting 
that information generated from the most sensitive high throughput in vitro screening 
assays may provide a reasonable, conservative estimate of the POD for a chemical in a 
dose-response assessment (Wetmore et al., 2013). The combination of HTS assays and 
IVIVE modelling of TK could provide an efficient and cost-effective first tier dose 
response assessment in calculating MOE (Thomas et al., 2013a). 

1.1.3 Step three: exposure assessment 
Exposure assessment is the process of estimating or measuring the level, duration, and 
frequency of exposure to specific chemical agents in the environment. It can also be a 
procedure of estimating or predicting potential future exposure to an agent that has not 
yet been released to the environment. A human exposure assessment should take into 
account the parameters such as size, type, and nature of populations exposed to the agent 
of interest, as well as the uncertainties associated with these parameters. Zeise et al. 
(2013) have reviewed human variability extensively and shown how evidence from 
different data streams could be incorporated for addressing risks to include all susceptible 
populations. Exposure can be measured directly from human body, but more commonly 
is estimated using computer modelling and assumptions about its use and associated 
human behaviour. To evaluate the utility of incorporating exposure assessment to HTS in 
vitro assays, the oral equivalent dose ranges derived from IVIVE tools applied to the in 
vitro assays were compared with human exposure estimates for 239 ToxCast phase 1 
chemicals. Eighteen of the 182 chemicals (9.9%) had oral equivalent doses that 
overlapped with the human exposure estimates, implicating potential human adverse 
health hazards (Wetmore et al., 2012). Comparison of exposure assessment to high 
throughput in vitro assay screening results which give a MOE estimate can provide a 
context for using toxicity data for priority setting for further chemical testing. 

1.2 New technologies and tools available for chemical risk assessment 

Over the last ten years, many new technologies have appeared that could be incorporated 
into the chemical risk assessment process. These technologies could enhance chemical 
risk assessment for three categories: 

1 hazard identification and dose response assessment 

2 dosimetry and exposure assessment 

3 cross-cutting assessment. 

Many of these new scientific tools and techniques will form the core of the new NexGen 
risk assessment framework and are outlined in Table 1 (Krewski et al., 2014). 
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Table 1 Promising risk assessment tools and methodologies 

HTS Uses high throughput in vitro assays to assess in vitro pathway activity 
from chemicals using human cell lines. There is some predictive 
capacity of certain perturbation pathways with in vivo health outcomes. 
HTS has the potential to efficiently and quickly screen thousands of 
chemicals simultaneously, at multiple doses, measuring changes in a 
wide range of biological pathways. Assays are done intriplicate on three 
different days resulting in 12 different doses response curves to 
determine validation, replication, and standard deviation of the curves. 
HTS can be used to determine margin-of-exposure and can be used as a 
first tier of analysis for risk assessment. 

Computational 
toxicology 

Computational toxicology methods integrates modern computing and 
information technology with molecular biology to develop biologically 
based in silico models to predict the toxicity of environmental agents, 
identify modes of action, and predict potential toxicity pathway 
perturbations. 
Offers to improve the efficiency and effectiveness of the process of 
determining the hazards and risks of environmental chemical, increasing 
the number of chemicals and the types of biological interactions that can 
be evaluated. 
Allow for examination of toxicity pathways across a range of dose 
levels, including those that are realistically applicable to exposure levels 
to the human population. 

Toxico informatics Encompasses activities related to the harness, standardisation, and 
integration of existing disparate and largely textual toxicological and 
bioactivity information of chemicals. 
Related predictive toxicity approaches and models enables to efficiently 
screen and prioritise large lists of chemicals. 

Biological pathway 
altering dose 
(BPAD) 

BPAD combines in vitro dose-response data with analysis of uncertainly 
and population variability to predict in vivo exposure levels. 
Can be calculated from in vitro derived data and mathematical models. 
Using relatively inexpensive high-throughput in vitro data, BPAD can 
be determined for thousands of data-poor environmental chemicals and 
prioritise chemicals for further testing 

Computational 
systems biology 
pathway modelling 
(CSBPM) 

CSBPM utilises understanding of the structure of pathways and cellular 
networks to understand the shape of dose response curves below the 
region of observation in the q-HTS assays. These tools, often reflecting 
the nonlinear stricture of cellular signalling processes, provides the 
information for more biologically-based modelling of the shape of 
curves at low levels of exposure/perturbation. 
By incorporating molecular components that regulate dose response the 
CSBP models can assist invariability analysis for the pharmacodynamic 
aspects of cellular dose response as is now done for pharmacokinetics 
through PBPK modelling. 
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1.2.1 Technologies available for hazard identification and dose response 
assessment methods 

For hazard identification and dose response assessment, several new scientific tools and 
techniques are available for these purposes. The accuracy and confidence in using 
pathway perturbations as the basis of hazard identification will be strengthened as our 
understanding of the toxicity pathways increases. The human toxome project that 
proposes to map and identify all toxicity pathways in the human genome will facilitate 
the full understanding of adverse health outcomes as a result of key pathway 
perturbations (Hartung and McBride, 2011). Case studies (Andersen et al., 2011; Clewell, 
2015) promise to show how these new technologies can be integrated to support 
risk/safety assessments based entirely on results from in vitro, mode-of-action-based 
assays. 

To accomplish the task of testing hundreds of thousands of chemicals, the in vitro 
quantitative high throughput screening (q-HTS) assay platform is a powerful method to 
rapidly generate concentration response curves over a wide range of pathways (Knight  
et al., 2009). In addition, high content biological omics assays including genomics, 
epigenomics, transcriptomics, proteomics, metabolomics, and micro-RNA platforms can 
also be used to assess perturbations in cellular and tissue function (Moore et al., 2013; 
Sui et al., 2013). Data generated from in vitro transcriptomic studies have shown that 
pathway-based transcriptional BMD values were highly correlated with BMD values of 
traditional apical (non-cancer and cancer) responses, and can provide a reasonable POD 
estimate (Thomas et al., 2013b). It is yet unknown whether there is a good correlation 
exists between in vivo study results compared to transcriptional BMD values derived 
from in vitro assays after using IVIVE methods to determine equivalent oral equivalent 
doses. 

Biochemical or molecular biomarkers of effects can be used to measure expected 
biological responses at the cellular, individual or population level. Biomarkers may also 
be linked to toxicity pathway perturbations, thereby providing direct evidence of critical 
perturbations in human populations due to harmful exposure such as pesticides (Anwar, 
1997). Furthermore, biomarkers of effect can be incorporated into population-based 
studies (i.e., molecular and genetic population-based studies), by integrating human 
genome knowledge into epidemiological studies in order to better understand the roles of 
genetic susceptibility and gene-environment interactions in disease causation (Erickson, 
2012; Garcia-Closas et al., 2011), as biological responses have been suggested to be 
strongly influenced by the host genome and epigenome (Olden et al., 2011). 

Biological activity can also be predicted based on chemical structure using QSAR 
modelling. In chemical risk assessment, QSAR predicts toxicological responses and 
metabolic pathways based on the chemical properties of environmental agents and 
comparison with other active structures. This is one of the many tools of computational 
models, which could increase the efficiency and the effectiveness of both hazard 
identification and dose response assessment of environmental chemicals risk 
determination (Dix et al., 2007; Kavlock et al., 2008). 
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1.2.2 Technologies available for dosimetry and exposure assessment methods 

New scientific technologies and tools are also available for the purposes of dosimetry and 
exposure assessment. For example, physiologically-based pharmacokinetic (PBPK) 
modelling is another technique used to understand the absorption, distribution, 
metabolism, and elimination (ADME) process of environmental agents (Clewell and 
Andersen, 1985; Poulin and Theil, 2002). Dosimetric methods are used to extrapolate 
between different exposure routes, as well as characterising inter-individual variability in 
exposure and dose (Valcke and Krishnan, 2010). PBPK modelling can also be used to 
predict dose- and species-dependent in vivo response based on in vitro data from 
pharmacokinetic parameters, as well as extrapolating experimental data from animal 
studies to predict human response (Rietjens et al., 2010). Moreover, PBPK modelling can 
account for heterogeneity in exposure of human populations including incorporation of 
chemical risk impact among the susceptible subpopulations (Clewell and Andersen, 
1996). 

Advances in computational modelling of human exposure are also occurring rapidly. 
In order to provide the complementary exposure estimates for thousands of chemicals, 
the US EPA developed the ExpoCast initiative, which uses mechanistic and heuristic 
exposure models that can be rapidly parameterised for a broad suite of chemicals (Cohen 
et al., 2010). Recent studies in the ExpoCast program used Bayesian methods to infer 
ranges of exposure intakes that are consistent with biomarkers of chemical exposures 
identified in urine samples from the US population by the National Health and Nutrition 
Examination Survey (NHANES) (Wambaugh et al., 2014). Linear regression was 
performed on the inferred exposures using high-throughput chemical descriptors, 
production volume, and chemical use categories. The study found that five descriptors 
formed the best model and could be used to predict exposures for thousands of chemicals 
together with associated estimates of uncertainty. Further refinement of the model will 
increase its predictive capacity and provide exposure estimates for sensitive demographic 
groups. 

1.2.3 Technologies available for cross-cutting assessment methods 

Several new tools and technologies developed over the last decade can facilitate the 
overall chemical risk assessment process, but cannot be grouped into any of the three 
main categories (hazard identification, dose response assessment, exposure assessment). 
Some of the new technologies include functional genomics, bioinformatics and 
computational biology, which can expedite the analysis and interpretation of large 
volumes of data, model dynamic responses in organisms, and extrapolate results observed 
in experimental models to humans. Other tools, such as adverse outcome pathways 
(AOPs) and systems biology, are novel concepts that help interpret perturbations in 
signaling pathways and networks for better prediction of adverse health responses. 

Functional genomics is a specialised discipline of molecular biology that utilises  
vast amounts of genomic data to identify gene function. The integration and analysis  
of diverse data generated from omic technologies (e.g., genomics, epigenomics, 
transcriptomics, proteomics, metabolomics, and micro-RNA platforms) can help 
understand the consequences of chemical treatment and predict the outcomes of pathway  
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perturbation at the levels of cell, tissue, organ, and organism (Caba and Aubrecht, 2006; 
Krewski et al., 2009). Computational biology involves the application of analytical 
methods of mathematical modelling and computational simulation to delineate biological 
systems whereas bioinformatics focus on developing new tools (both software and 
hardware) to store, retrieve, organise, and analyse biological data. Both computational 
biology and bioinformatics are useful technologies to analyse and interpret complex 
multivariable data from in vitro HTS assays, high content imaging (HCI), and high 
content biological omics assays to identify modes of action and predict adverse health 
outcomes as a result of toxicity pathway perturbations on organs and tissues using 
mechanistic models at the cellular and molecular level (Zhao et al., 2014). The US EPA 
has implemented the use of computational toxicology and bioinformatics to help identify 
chemical hazards and assess risks to human health and the environment (Kavlock and 
Dix, 2010), as described by A Framework for a Computational Toxicology Research 
Program (US EPA, 2003). 

The AOP describes the sequence of biological events that begins with the MIE and 
results in the development of adverse health outcome (Ankley et al., 2010). These 
biological events can take place at the individual or population level. The AOP platform 
helps provide a conceptual framework for identification of specific toxicity pathway 
perturbations triggered by environmental toxicants that lead to adverse health outcome. 
This AOP-based approach to chemical risk assessment has recently been implemented as 
part of the TT21C paradigm to be used as a practical tool for making safety decisions and 
prioritising chemicals (Adeleye et al., 2014). Systems biology is an emerging approach to 
understand the complex interaction between the components of the biological system, and 
how these interactions lead to functional changes within the system. It usually involves 
the understanding of biological and toxicity pathways, as well as metabolic and cell 
signalling networks (Mastellos et al., 2005). Systems biology also utilises mathematical 
and computational modelling to identity novel biological properties of cells, tissues and 
organisms that function as a system. For chemical risk assessment, systems biology 
organises information from multiple cellular pathways in order to understand integrated 
cellular, tissue and organ responses. Computational systems biology pathway modelling 
(CSBPM) is a tool to understand dose-response relationships in vivo systems in relation 
to the structure of cellular signalling networks and their responses to perturbations by 
environmental toxicants (Zhang et al., 2010, 2013, 2014). Furthermore, systems biology 
may also provide a platform for integrating and conducting the complex analyses 
required to determine whether a biological system could maintain homeostasis or trigger 
AOPs resulting in adverse health outcomes (Krewski et al., 2011; Zhang et al., 2015). 

1.3 MOE can be used to identify chemicals of greatest concern 

1.3.1 Matching in vitro bioactivity with exposure estimates to calculate MOE 
One of the major challenges for chemical risk assessment is the prioritisation of the large 
number of chemical substances for toxicity testing. To deal with this challenge of sorting 
through a vast quantity of chemicals, MOE is proposed as the primary metric to identify 
chemicals of greatest concern (Thomas et al., 2013a). MOE is defined as the ratio of a 
POD (such as BMD or other indicators of biological response) to the human exposure 
estimate of the chemical of interest. 
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To obtain the MOE using high-throughput in vitro approaches, two sets of 
calculations are estimated. The first, known as oral equivalent dose, is defined as the 
daily human oral dose required to produce steady-state in vivo blood concentrations 
equivalent to the in vitro AC50 value (concentration at which 50% of the maximal 
response was elicited) and is calculated using the IVIVE methods and TK modelling 
described above (Judson et al., 2011; Rotroff et al., 2010; Wetmore et al., 2012). The 
IVIVE methods and TK modelling has been demonstrated to provide a conservative 
estimate of the POD for a chemical (Wetmore et al., 2013, 2015). To account for  
inter-individual variability of the pharmacokinetic data derived from human samples, 
Monte calculated is representative of 95% of the population. Ideally, the biokinetic 
properties of the in vitro system (e.g., evaporation of chemicals or culture medium, 
binding of chemicals to plastic or proteins, and interaction between the culture medium 
and the cells) are also measured, modelled, and also incorporated into the IVIVE model 
in order to improve the ability of the oral equivalent dose derived from in vitro assay data 
to predict in vivo response (Blaauboer, 2010; Louisse et al., 2010). 

The second calculation for MOE, estimated human exposure, can be obtained from 
various sources, but they are inherently associated with varying degree of uncertainty 
depending on the sources and the ways data are derived. The use of surrogates such as 
chemical usage or emission profile while taking into account the physiochemical 
properties of chemicals may provide a simple and reasonable, though not highly accurate, 
estimation of potential human exposure (Arnot et al., 2012; Meek et al., 2011). More 
accurate human exposure estimates can be obtained from biomonitoring data such as the 
Canadian Health Measures Survey (CHMS) or the US NHANES conducted by Statistics 
Canada and Centers for Disease Control and Prevention (CDC), respectively. In these 
cases, human exposure levels can be estimated based on chemical concentrations in blood 
and urine collected from biomonitoring surveys using reverse dosimetry methods (Tan  
et al., 2007). If biomonitoring data are not available, high-throughput exposure 
assessment can be used to predict human exposure potential by integrating chemical use 
information with production volumes as parameter inputs to the model. When compared 
with biomonitoring data collected from NHANES, the high-throughput exposure 
assessment model can estimate human exposure to chemicals with quantifiable 
uncertainty (Wambaugh et al., 2013). Data generated from the high-throughput exposure 
assessment models are also useful for chemical prioritisation and decision making. 

1.3.2 A specific example looking at utility of the MOE approaches with existing 
data 

An example of the MOE approach is shown in Figure 1. Of the 182 ToxCast chemicals 
investigated, 18 (9.9%) exhibited oral equivalent doses lower than the estimated human 
exposure estimates, indicating potential health hazard to the population. When data from 
general US population were compared against exposure levels, ten of the 18 chemicals 
had oral equivalent dose ranges that overlapped with human exposure estimates (5.5% of 
the 182), suggesting that MOE is a useful metric for accurately identifying chemicals of 
greatest concern (Wetmore et al., 2012). For chemicals with MOE greater than a  
pre-determined cut off value, no further testing is required, whereas chemicals with MOE 
below the cut off would proceed to second tier level testing. 
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Figure 1 MOE can be used as a metric to identify chemicals of greatest concern 

 

Notes: The distribution of the oral equivalent dose ranges required to achieve the upper 
95th percentile Css across all the in vitro ToxCast assays are calculated for a subset 
of 60 ToxCast phase 1 chemical. The subset of ToxCast phase 1 chemicals are 
ordered from low to high median oral equivalent dose and depicted in this  
box-and-whisker plot. Horizontal lines depict the medians oral equivalent dose, 
the lower and upper edges of the black boxes represent the 25th and 75th 
percentiles, and the whiskers represent the range of values 1.5 times the 
interquartile range below or above the 25th and 75th percentiles, respectively. The 
matching human exposure estimates were obtained with the orange floating boxes 
representing the range of exposure estimates obtained for various age- and  
gender-based subpopulations whereas the green circles represent the exposure 
estimates for the general US population. For some of the chemicals, the exposure 
estimates fell below the units on the axes and are therefore not shown on the 
graphs. The MOE is the difference between the oral equivalent dose range and the 
human exposure estimate as labelled in the graph. Chemicals where any of the 
human exposure estimates fall within the range of the oral equivalent doses are 
highlighted with arrows. The graph and associated data are reproduced with 
permission from Wetmore et al. (2012). 

1.3.3 Expanded approaches to account for susceptible populations 
The current approach of calculating MOE as a metric to identify chemicals of greatest 
concern may be underestimated because it is based on healthy adults within a certain age 
range and does not include susceptible populations. Variability among a population, 
including difference in exposure pattern and clearance of toxicants, could have a 
significant impact on the dose range considered acceptable for a given chemical. 
Individuals of different ethnicity, age, sex, and health status can have very different 
exposure patterns (due to lifestyle or diet) and clearance rates (due to pharmacogenetic 
factors) (Ginsberg et al., 2005, 2002), which may contribute to underestimation of  
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risk to subpopulations. For example, hepatic clearance variability among different 
subpopulations can be attributed to the difference in expression of metabolising enzymes 
such as P450s and UGTs (Ginsberg et al., 2004; Punt et al., 2010). To compensate for 
these differences, recombinant P450s and UGTs isoforms can be used in place of human 
hepatocytes from healthy donors to determine hepatic metabolic clearance (Wetmore  
et al., 2014). The use of the expanded dosimetry to include susceptible populations in 
IVIVE modelling to determine PODs better accounts for population variability in 
chemical risk assessment process. Zeise et al. (2013) illustrate that population 
susceptibility comes from variability and that multiple data streams could be used in 
modelling approaches to address population variability. 

1.4 Incorporating the MOE approach into toxicity testing and chemical risk 
assessment 

To demonstrate how the MOE can fit into the current toxicity testing strategy and 
streamline the overall chemical risk assessment process, a new, data-driven, multi-tiered 
toxicity testing framework (Figure 2) has been developed (Thomas et al., 2013a). This 
new framework has evolved from an existing tiered approach formed in response to 
regulatory policy mandates to assess and prioritise a large number of chemical substances 
for testing (Meek et al., 2011). Therefore, the adaptation of this new framework into 
chemical risk assessment process could have broad applications across multiple 
regulatory agencies in many different countries. This framework can be used to: 

1 categorise and prioritise chemicals on the DSL in Canada, under Canadian 
Environmental Protection Act, 1999 (Environment Canada, 1999), and chemicals 
regulated under the Toxic Substances Control Act (TSCA) in the US (US EPA, 
1981) 

2 identify chemical substances of health and environment concerns under Registration, 
Evaluation, Authorization and Restriction of Chemicals (REACH) in the European 
Union (EU) (European Commission, 2006). 

The new proposed framework has three tiers to accomplish this task (Thomas et al., 
2013a). 

The three levels of testing complexity are closely analogous to the NexGen three 
tiered framework (Cote et al., 2012). The first tier consists of five concise steps and the 
overall purpose for this tier is to screen and prioritise tens of thousands of chemicals. The 
first two steps involve the use of HTS assays to sub-categorise chemicals based on their 
modes-of-action. First, chemicals are subdivided based on whether their MOAs are 
selective or non-selective. Then they are further subdivided based on whether MOE is 
genotoxic or not. The remaining three steps involve converting the in vitro concentration 
to an equivalent oral administered dose, determination of chemical exposure and 
calculation of the MOE. In this framework, the MOE is the primary metric for 
determining whether a chemical advances to the second tier of testing. Chemicals with 
MOE greater than some pre-defined cut-off require no further testing, whereas chemicals 
with MOE below the cut-off would advance on to tier two testing. These triaged 
chemicals are thus deemed of insufficient concern to justify further testing and become 
regarded as safe for use in commerce. 
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Figure 2 A flowchart outlining tiers 1, 2, and 3 testing in the proposed framework 

 

Notes: New and legacy chemicals with no or minimal toxicity data served as the inputs 
for the tier 1 testing framework. Chemicals are categorised based on target 
selectivity and genotoxicity, which are determined by the high-throughput in vitro 
screening assays and the in vitro genotoxicity assays, respectively. For the 
selective chemicals, the tentative mode of action is defined based on which  
high-throughput in vitro assays were selectively activated or inhibited. The points 
of departure for all chemicals are estimated using in vitro pharmacokinetic assay 
data and IVIVE modelling. The oral equivalent doses are then compared with 
human exposure estimates to determine MOE. For chemicals with a MOE greater 
than a defined cut-off ‘X’, no further testing would be required and tier 1 
reference values would be reported. Chemicals with a MOE less than the cut-off 
‘X’ advance to tier 2 testing. Chemicals categorised in tier 1 testing as selective or 
non-selective serve as inputs for the tier 2 testing framework and their mode of 
action are confirmed by the in vivo studies or short term in vivo transcriptomic 
studies, respectively. PODs for all chemicals are estimated by modelling with data 
from in vivo and in vitro pharmacokinetic studies, and are compared with refined 
human exposure characterisation to define MOE. For chemicals with a MOE 
greater than a defined cut-off ‘X’, no further testing is performed and tier 2 
reference values are published. Chemicals with a MOE less than the cut-off ‘X’ 
then move on to tier 3 testing. 

Source: Adapted with permission from Thomas et al. (2013a) 
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Figure 2 A flowchart outlining tiers 1, 2, and 3 testing in the proposed framework (continued) 

 

Notes: New and legacy chemicals with no or minimal toxicity data served as the inputs 
for the tier 1 testing framework. Chemicals are categorised based on target 
selectivity and genotoxicity, which are determined by the high-throughput in vitro 
screening assays and the in vitro genotoxicity assays, respectively. For the 
selective chemicals, the tentative mode of action is defined based on which  
high-throughput in vitro assays were selectively activated or inhibited. The points 
of departure for all chemicals are estimated using in vitro pharmacokinetic assay 
data and IVIVE modelling. The oral equivalent doses are then compared with 
human exposure estimates to determine MOE. For chemicals with a MOE greater 
than a defined cut-off ‘X’, no further testing would be required and tier 1 
reference values would be reported. Chemicals with a MOE less than the cut-off 
‘X’ advance to tier 2 testing. Chemicals categorised in tier 1 testing as selective or 
non-selective serve as inputs for the tier 2 testing framework and their mode of 
action are confirmed by the in vivo studies or short term in vivo transcriptomic 
studies, respectively. PODs for all chemicals are estimated by modelling with data 
from in vivo and in vitro pharmacokinetic studies, and are compared with refined 
human exposure characterisation to define MOE. For chemicals with a MOE 
greater than a defined cut-off ‘X’, no further testing is performed and tier 2 
reference values are published. Chemicals with a MOE less than the cut-off ‘X’ 
then move on to tier 3 testing. 

Source: Adapted with permission from Thomas et al. (2013a) 

The tier 2 testing framework consists of five components, all of which refine the 
calculations for MOE. For example, more complex in vivo animal systems are used to 
refine the calculations for POD. These include short-term in vivo transcriptomic studies 
used to calculate transcriptional POD values for non-selective chemicals and knockout or 
humanised rodent models to confirm the mode of action of selective chemicals and 
calculate POD values. Pharmacokinetic studies would be expanded through the collection 
and chemical analysis of additional samples from the in vivo studies (Saghir et al., 2006) 
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and the identification of potential metabolites using rodent and human microsomes and 
S9 (Bonn et al., 2010). The fourth component of tier 2 testing is refining estimates of 
human exposures where new technologies such as QSARs (Wambaugh et al., 2013), high 
throughput physicochemical profiling (Kerns, 2001), and in vitro degradation screening 
method (Hussain et al., 2007) would be utilised to measure both physical-chemical 
properties and environmental half-lives of all tier 2 chemicals. The end result is a more 
refined estimation of MOE within tier 2. 

Tier 3 testing would be conceptually equivalent to the traditional in vivo studies 
performed on high-value chemicals with potential for human exposure, or specific in vivo 
assays based on understanding of the mechanism of action and toxicological profile 
acquired in tier 1 and 2 testing such as rodent cancer bioassays, developmental, and 
reproductive toxicity studies. Depending on the MOE cut-off value imposed, it is 
estimated that only a small portion (3–15 %) of the total chemicals would require these 
types specialised in vivo testing, whereas majority of the chemicals would be screened 
out in the preceding tiers. Chemicals that require tier 3 testing would be prioritised based 
on the results acquired from tier 1 and 2 testing. 

2 Conclusions 

This paper describes and summarises a novel framework proposed through work 
conducted by Thomas and various colleagues at the Hamner Institute over a period of 
about five years for using MOE as a risk-based metric to identify chemicals of greatest 
concern to human health. This approach incorporates recent new technologies to increase 
the efficiency and efficacy of the risk assessment process. One of the major challenges in 
chemical risk assessment is the prioritisation and management of the large number of 
chemical substances for toxicity testing. One unique approach of this framework is the 
initial separation of chemicals into specific and non-specific mode of action, which can 
be efficiently applied to all chemicals. This subsequently allows for determination of 
PODs by different suites of bioassays based on specificity of the chemicals. 

New technologies have been incorporated into all three stages of chemical risk 
assessment, namely hazard identification, dose-response assessment, and exposure 
assessment, to increase both the efficiency and accuracy. To compensate for the limited 
capability for predicting in vivo hazards by in vitro assays as reported previously 
(Thomas et al., 2012a), new technologies including refined in vitro HTS assays and high 
content biological omics (e.g., transcriptomic) assays are utilised in the screening process 
of chemicals for tier 1 and 2 risk assessments, utilising MOE as an indirect measure for 
potential hazard of a substance. Data derived from transcriptomic assays of the most 
sensitive pathways have been shown to be highly correlated with the in vivo apical 
responses (Thomas et al., 2013b). 

Information generated from the most sensitive HTS in vitro assays have already been 
shown to provide a conservative estimate of the dose at which adverse in vivo response 
may be observed (i.e., POD) for a chemical in a dose-response assessment (Wetmore  
et al., 2013, 2015). In an effort to further increase the efficiency and effectiveness for 
dose-response assessment, QSARs may be integrated into HTS in vitro assays as part of 
the new computational modelling tools to predict toxicological responses and metabolic 
pathways based on the chemical properties of toxicants and comparison with other active 
structures (Dix et al., 2007; Kavlock et al., 2008). 
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Under the proposed framework, IVIVE methods and TK modelling play a critical role 
in converting in vitro assay concentrations into administered doses to estimate PODs in 
both tier 1 and 2 testing framework. Furthermore, QSARs and exposomics database are 
new tools that may be integrated specifically into tier 2 testing to improve the  
high-throughput exposure modelling method and reduce the uncertainties associated with 
it for the purpose of improving the overall accuracy of the calculated human exposure 
estimates. As an alternative to estimate human exposure under the tier 2 testing 
framework, high throughput biomonitoring studies are proposed to carry out with the aid 
of new tool like dual-chromatography with Fourier-transform mass spectrometry  
(DC-FTMS). The increased efficiency and accuracy of exposure assessment by the new 
technologies could ultimately help provide important context for interpreting toxicity data 
for prioritising chemicals for further testing (Wetmore et al., 2012). 

By integrating new technologies into the framework and incorporating data generated 
from these technologies into the risk assessment process, the new data-driven framework 
provides a risk-based, practical, and animal-sparing approach to evaluate chemical risk. 
Furthermore, the application of MOE as a metric to identify chemicals of greatest 
concern also offers a near-term solution for making economical, efficient, and health-
protective decisions on chemical safety evaluation. 
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