Base dependent adsorption of single-stranded homo-oligonucleotides to gold nanoparticles
by Omar A. Alsager; Sarah K. Andreassend; Bicheng Zhu; Jadranka Travas-Sejdic; Justin M. Hodgkiss
International Journal of Nanotechnology (IJNT), Vol. 14, No. 1/2/3/4/5/6, 2017

Abstract: Many bioanalytical devices now feature DNA immobilised on optically or electrically addressed gold surfaces, either via covalent (thiol) tethers, or non-specifically adsorbed via the DNA nucleobases. To guide the development of colorimetric biosensors that depend on the dissociation of adsorbed DNA aptamers, the interaction of homo-30-mers composed of each of the bases with gold nanoparticles was investigated. Through colorimetric measurements of the stability of DNA-coated gold nanoparticle dispersions, stability was found to decrease in the order A > T > C ≥ G, counter to expectations based on intrinsic affinities. These observations were reconciled using electrochemical measurements of DNA surface densities on gold nanoparticle electrodes; while the measured surface densities correlated with the dispersion stabilities, it was apparent that many bases of a long DNA strand were dangling from the surface, rather than directly adsorbed. Thus, even (dT)30, whose bases have the weakest affinity to gold, can cover a gold surface with high total density since many of the bases will simply be tethered, and still contributing to the stability of a nanoparticle dispersion.

Online publication date: Fri, 24-Feb-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com