Synthesis of magnetic nanoparticles by low-energy dual ion implantation of iron and nickel into silicon dioxide followed by electron beam annealing
by Tushara Prakash; Grant Williams; John Kennedy
International Journal of Nanotechnology (IJNT), Vol. 14, No. 1/2/3/4/5/6, 2017

Abstract: Magnetic nanoparticles have been made by low-energy dual ion implantation of iron and nickel into SiO2 with a nickel fluence ratio of 82% followed by electron beam annealing for 1800 s at 1000°C. After annealing, there is significant diffusion of iron and nickel into the silicon dioxide layer. Annealing also led to the formation of superparamagnetic nanoparticles with a narrow particle size distribution. The saturation moment at 5 K was 0.7 µB and a similar value was observed at 300 K, which indicates that the Curie temperature is far above room temperature. This moment is lower than that expected for Ni0.82Fe0.18. While the results clearly show the formation of superparamagnetic nanoparticles, it is not possible to determine whether nickel-iron, iron or nickel has formed.

Online publication date: Fri, 24-Feb-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com