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Abstract: This paper describes optimisation of a multi-objective flexible job 
shop scheduling problem (MO-FJSP) in small and medium-sized enterprises 
(SMEs) where widely various products are manufactured in make-to-order 
(MTO) mode. A genetic algorithm using tabu search strategy was applied to 
solve the MO-FJSP incorporating weighted tardiness, setup worker load 
balance, and work-in-process. From experiments using data based on  
real-world SME, the solutions obtained using the proposed method are 
compared with those obtained by conventional earliest due date (EDD), and 
GA using multi-island. The results confirmed the effectiveness of the proposed 
method. Results imply that the proposed approach is applicable not only for 
production scheduling but also for estimating the investment of resources such 
as machine and worker capacity. 
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1 Introduction 

Small and medium-sized enterprises (SMEs) play important roles in sustaining local 
communities and economies in many countries (Ayyagari et al., 2007; Giovanna et al., 
2012). However, it is difficult for them to survive competition with rivals during changes 
in trade structure or shortening of a product life cycle (Jamali et al., 2015). To sustain 
them, it is necessary for SMEs to establish their own systems for response to the demand 
of customers quickly and flexibly from a marketing point of view. For the manufacturing 
sector, an appropriate option is adoption of a flexible manufacturing system that can 
accommodate various demands of customers (changes in the amount and types of goods 
and services demanded) (Hendry, 1998; Veen-Dirks, 2005; Simao et al., 2006). The 
flexible manufacturing system consists of numerous flexible factors that cause difficulty 
in managing the system. Running the system efficiently requires information systems, 
especially scheduling systems for flexible job shops to match their various resources to 
customer demands (Proth, 2007; Wei and Ma, 2014). 

Production scheduling in make-to-order (MTO) manufacturing has several important 
points: meeting the due-date of a customer (Wang et al., 2011; Kaminsky, 2008; Sawik, 
2011), balancing the workload of resources that are constrained (Thuerer et al., 2012), 
and reducing work-in-process for proper cash flow management (Nenes et al., 2014). 
These points dictate that enterprises with flexible job shop manufacturing systems for 
MTO production need multi-objective flexible job shop scheduling systems. 

Studies in this field examine the multi-objective flexible job shop scheduling problem 
(MO-FJSP). This is a combination problem for optimising objective functions related to a 
combination of given jobs or tasks, operations of each job to be processed in the specified 
order, and machines used to carry out operations. 

Given the background presented above, studies in the field of MO-FJSP have been 
conducted for several decades. At the beginning of this century, several researchers have 
started using evolutionary algorithms for this field. Kacem et al. (2002a, 2002b) used a 
method combining fuzzy logic and evolutionary algorithms. They studied the 
optimisation of three objectives: make span, total load on the machinery, and load of the 
machine with the largest load on the so-called dataset of Kacem et al. The dataset 
includes five instances having scale (n × m, where n stands for the number of jobs, and m 
denotes the number of machines) ranges from 4 × 5 to 15 × 10. After these studies, 
various evolutionary algorithms have been developed for solving MO-FJSP on the 
Kacem et al. dataset. The performance results of these algorithms have been mutually 
compared: hybrid approach of particle swarm optimisation (PSO) and simulated 
annealing (SA) (Xia and Wu, 2005); hybrid approach of PSO and tabu search (TS) 
(Zhang et al., 2009); improvement of operation sequencing subsystem by ant colony 
optimisation algorithm (ACO) (Xing et al., 2009); a TS algorithm with neighbourhood 
search (Li et al., 2010); an approach based on a hybridisation of the PSO and local search 
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algorithm (Moslehi and Mahnam, 2011); hybrid Pareto-based discrete artificial bee 
colony (ABC) algorithm with several local search approach (Li et al., 2011); hybrid 
genetic algorithm (GA) and SA (Shahasaveri-Pour and Ghasemishabankareh, 2013); and 
the discrete ABC algorithm with TS (Li et al., 2014). Nevertheless, few studies have 
considered due dates for MTO manufacturing set by important customers (Wu and Weng, 
2005; Turkyilmaz and Bulkan, 2015). Actually, several researchers have studied FJSP 
depending on the setup work (Defersha and Chen, 2010; Huang et al., 2013), but studies 
of systems that balance the setup worker load in MO-FJSP are few (Nagao et al., 2015). 
Although a few studies of work-in-process in a flow shop can be found in the web of 
science (Luh et al., 2000), no studies of work-in-process in a flexible job shop have been 
reported. Additionally, almost all earlier studies of MO-FJSP emphasise a discussion of 
their algorithm performance on the Kacem et al. dataset or BD dataset (Brandimarte, 
1993), but no discussion of the algorithm effectiveness has been reported for data referred 
from a real-world manufacturing shop. 

This report explains three optimisation objectives: weighted tardiness, setup worker 
load balance, and work-in-process inventory on a shop floor in MTO mode of actual 
SMEs. The due dates are weighted by trade conditions such as the position of each job in 
the customer’s supply chain (e.g., an assembly plant directly related to production, 
trading company having their own inventory, and restocking at the company of their own 
products based on demand forecasts). This study also examines balancing the load of 
setup workers with different technical levels because, if due dates are overemphasised, 
workers with low levels of technical skill will feel excessively burdened, which might 
increase the risk of missing deadlines. Different kinds of products with various numbers 
are handled in MTO manufacturing. Then the work-in-process inventory on a shop floor 
is preferably evaluated in terms of production cost based on the unit price and lot size of 
an individual order. 

As the optimisation method, we have developed an algorithm based on GA which 
advances in global search. However, GA presents shortcomings in local search. We have 
developed a hybridisation algorithm that combines a TS strategy with GA to compensate 
for these shortcomings of GA. Its validity was verified in numerical experiments using 
data related to jobs in shops of actual high-mix, various-volume MTO mode of SMEs. 

The remainder of the paper consists of the following. Section 2 defines the MO-FJSP 
in MTO manufacturing. Section 3 presents a description of the structure of the GA used 
for this study. Section 4 explains the conditions and data used for the experiments and 
parameter settings in GA, and Section 5 presents the results of experiments. Section 6 
discusses the results. Section 7 presents a summary of the entire paper. 

2 MO-FJSP in MTO manufacturing 

2.1 Problem description 

This paper is targeted at MTO manufacturing, which handles products with high-mix and 
various-volumes of diverse customers. As shown in Table 1, not only the relations 
between operations of jobs and machines, which are described in almost all earlier 
research, but also the relations among due-date, tardiness weight, lot size, and unit price 
of each order (job) are considered to optimise weighted tardiness, balance of setup 
workers’ workload and work-in-process on a shop floor. Additionally, as Table 2 shows, 
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the relations between setup workers and machines are considered. These are generalised 
as described below. 

1 ith operation Oki of jobs Jk(J1, J2,…,Jk) with lot size Lk for each job are processed 
using m units of machinery Mm(M1, M2,…,Mm). 

2 The order of operations of each job should be maintained, but the order of passing 
machines varies among operations. 

3 Job Jk is completed, having passed all of Oki. 

4 Each operation Oki is linked to machine Mm, which is capable of processing. Each 
machine Mm is linked to setup-worker Ww who can set up machine Mm. 

5 The operation is completed when the processing time Pkim(Pkim = pkim × Lk) for each 
job consisting of the product of processing time pkim per operation and Lk has passed 
without interruption. 

6 If the type of job differs from the previous job when work is changed from one job to 
the next for machine Mm, then any of w number of setup-workers Ww(W1, W2,…, Ww) 
will set up the machine. Therefore, the setup time Skim arises before processing. 

The constraints follow from our earlier paper (Morinaga et al., 2014). 
Table 1 Relations among jobs, operations and machines 

Job Due 
date 

Tardiness 
weight 

Number of 
operation 

Lot 
size 

Unit 
price Operation 

Machine 
M1 M2 … Mm 

J1 d1 a1 n1 L1 u1 O11 p111 p112 … p11m 
O12 p121 p122 … p12m 
O13 p131 p132 … p13m 

J2 d2 a2 n2 L2 u2 O21 p211 p212 … p21m 
O22 p221 p222 … p22m 

: : : : : : : : : … : 
Jk dk ak nk Lk uk Ok pk11 pk12 … pk1m 

Ok2 pk21 pk22 … pk2m 
: : : … : 

Table 2 Relations between setup workers and machines 

Setup worker 
Machine 

M1 M2 … Mm 
W1 Sk11 Sk12 … Sk1m 
W2 Sk21 Sk22 … Sk2m 
: : : : : 
Ww Skw1 Skw2 … Skwm 
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2.2 Three objectives to minimise 

2.2.1 Weighted tardiness 
As shown in Table 3, each job has a due date dk. The difference from the period ek for  
the completion of the final operation of job Jk is called the tardiness period  
tdk(max{0, ek – dk}). Therefore, weighted tardiness TD is defined as shown below. 

1
min

k
k kk

TD td
=

=∑ α  (1) 

Therein, αk is the weighting factor for the tardiness of job Jk. 
Table 3 Weighted tardiness of each job 

Job Due date Shipment 
date Tardiness Weighting 

factor 
Weighted 
tardiness 

J1 d1 e1 td1 = max{0, e1 – d1} α1 α1 × td1 

J2 d2 e2 td2 = max{0, e2 – d2} α2 α2 × td2 

: : : : : : 

Jk dk ek tdk = max{0, ek – dk} αk αk × tdk 

2.2.2 Balancing the setup workers load 
In MTO, various products are released to the shop floor every day. Then, each job is 
shipped according to due date dk, which causes the jobs on the shop floor to be switched 
every day. That is, jobs kept on the shop floor on the first day, when target jobs are 
scheduled, are reduced every day and new jobs are added from the next day on. 
Therefore, to consider balancing the setup worker load, allocation of setting up is 
expected to be reflected by changes in the job load (Morinaga et al., 2014). 

Because the number of jobs (k0) on the first day, when target jobs are scheduled, will 
decrease to kτ on the τth day, as above described, if the maximum permissible value for 
providing setups to the jobs on the first day is L0, then the maximum permissible value 
for providing setups to the jobs on the τth day (Lτ) will be (kτ/k0) × L0. If kτ/k0 = βτ(β0 = 1), 
then Lτ/βτ = L0. Assuming that this L0 is the maximum permissible value for providing 
setups and that SL is the equivalent value for the setup workers load, then SL is set to 
equal L0. Balancing the setup load is considered under the condition of Lτ/βτ ≤ SL. 
Therefore, setup worker load SL is defined as shown below. 

{ }_ maxmin max 1, 2, ,τ tSL L τ T= =⎡ ⎤⎢ ⎥ …β  (2) 

{ }_ max max 1, 2, ,τ τwL L w w= = …  (3) 

Therein, Lτ_max is maximum setup workers load in the evaluation period from τ =1 to  
τ = T. 

 



   

 

   

   
 

   

   

 

   

   76 Y. Morinaga et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.2.3 Work-in-process on the shop floor 
Table 4 shows the unit price and the number of works-in-process on the shop floor (xit) of 
each job at the time t. Assuming that the number of released jobs is equal to the number 
of orders and assuming that there are no losses on the shop floor caused by processing 
defects, then xit = 0(t < ti, t > Ti) and xit = Li(ti ≤ t ≤ Ti). In those equations, ti is the release 
time of job Ji, and Ti is the shipment time of job Ji. Then, work-in-process on the shop 
floor of all target jobs in the work-in-process evaluation period from ti to Ti; noted WIP is 
defined as follows. 

1
min k

k

T k
i itt t i

WIP u x
= =

=∑ ∑  (4) 

Table 4 Change of work-in-process 

Job Unit 
price 

Date 

1 2 … t … T 

J1 u1 x11 x12 … x1t … x1T 

J2 u2 x21 x22 … x2t … x2T 

: : : : … : … : 

Ji ui xi1 xi2 … xit … xiT 

: : : : … : … : 

Jk uk xk1 xk2 … xkt … xkT 

3 GA with TS strategy 

3.1 Gene representation considering setup worker load 

Almost no earlier study has considered the setup worker load. This approach requires the 
gene representation that involves the relation between machines and setup workers who 
can make setup of the machines processing operations. A simple example is presented in 
Figure 1 to illustrate the relation between two jobs (J1, J2), in which two operations are 
processed, with two machines (M1, M2) and two setup workers (W1, W2). In this figure, 
three ‘1 h’ show that each setup time is 1 hr, and ‘2 h’ and ‘3 h’ respectively denote 
processing times of 2 hr or 3 hr. As shown in Figure 1, assuming that O11 has an option; 
processed in M1 and setup by W1, each of O12, O21 and O22 has two options: processed in 
M2 and setup by W1 or processed in M2 and setup by W2, the combination of operations 
consists of eight representation numbers of jobs, as shown in Table 5. Table 6 is derived 
by sorting the representation numbers of job based on the processing machines in  
Table 5. Table 6 presents randomised sequences of representation numbers of jobs in 
each machine. For example, the processing job sequence in M1 is set to representation 
number (1) only. That in M2 is set to (2) → (4) → (1) → (3) → (4) → (6) → (8). 
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Figure 1 An example of relation among operations, machines and setup workers 

W1 W2

M1 M2

O11
3h

O12
2h

O21
2h

O22
2h

1h
1h 1h

J1 J2

Setup workers:
W1, W2

Machines:
M1, M2

Jobs: J1, J2

Operations:
J1: O11, O12
J2: O21, O22

 

Table 5 An example of representation numbers 

Representation 
number Job First operation  

(O11 or O21) 
Second operation  

(O12 or O22) 
(1) J1 M1, W1, 3 h M2, W1, 2 h 
(2) J2 M2, W1, 2 h M2, W1, 2 h 
(3) J1 - M2, W2, 2 h 
(4) J2 M2, W1, 2 h M2, W2, 2 h 
(5) J1 - - 
(6) J2 M2, W2, 2 h M2, W2, 2 h 
(7) J1 - - 
(8) J2 M2, W2, 2 h M2, W2, 2 h 

Table 6 An example of gene representations refereed in Table 5 

Gene position 1 2 3 4 5 6 7 8 
M1 (1) 0 0 0 0 0 0 0 
M2 (6) (4) (1) (3) (4) (2) (8) 0 

Table 6 is the genotype for GA operation. A phenotype is required to evaluate three 
objectives. As shown in Table 7, a Gantt chart is derived by reading the representation 
numbers of a job in Table 6 from left in each machine. In the Gantt chart, each time 
frame is filled with a number of setup workers, several jobs to be processed, or a blank in 
each row of the machine. For example, in Table 6, the first locus in the row of machine 
M1 is (1). Therefore, in Table 7, ‘W1’, representing setup work for the first operation O11 
of J1, is set in the first time frame in the row of machine M1. Furthermore, three ‘J1’, 
standing for the first operation of J1 are set in from the second time frame to the fourth. 
Furthermore, no operation is processed expect O11; blanks continue from the fifth time 
frame. In the row of machine M2, ‘W2’, meaning setup work for the first operation of 
representation numbers (6) of job J2, is set in the first time frame. Two ‘J2’, representing 
the first operation of J2, are set in from the second time frame to the third. The results 
presented above indicate that both the first operation of J1 and J2 are completed. In  
Table 7, the following vacant time frame is the fourth time frame in the row of machine 
M2, in Table 6, the second locus in the row of machine M2 is (4). Therefore, in Table 7, 
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‘W2’, representing the setup work for the second operation of J2, which is referred from 
Table 5, is set in the fourth time frame in the row of machine M2, and two ‘J2’ meaning 
for the second operation of J2 are set in from the fifth time frame to the sixth in the row of 
machine M2. Next, in Table 6, the third locus in the row of machine M2 is (1). Therefore 
in Table 7, ‘W1’, representing setup work for the second operation of J1, which is referred 
from Table 5, is set in the seventh time frame in the row of machine M2, and two ‘J1’ 
standing for the second operation of J1 are set in from the eighth time frame to the ninth 
in the row of machine M2. After all operations are completed, from the Gantt chart, each 
release time to the shop, shipment time from the shop to customers and setup workers’ 
workload of all jobs are derived. Then TD, SL, and WIP are calculated. 
Table 7 An example of Gantt chart from Table 6 

Time (h) 1 2 3 4 5 6 7 8 9 
M1 W1 J1 J1 J1 0 0 0 0  
M2 W2 J2 J2 W2 J2 J2 W1 J1 J1 

3.2 GA operation using tabu list 

The proposed method is based on GA, which is widely used in the field of combination 
problem, using a TS (Glover, 1989) strategy in crossover and mutation operation. In this 
section, the outline of the GA algorithm in the proposed method, the basic idea of TS, 
and a hybrid GA with TS strategy (TS-HGA) are described. 

3.2.1 Outline of GA 
GA operations mimic natural selection and biological evolution by creating new 
offspring from a previous generation to solve problems. The procedure is the following. 

1 An initial individual is created. 

2 A population that consists of some number of individuals is created in an array 
randomly by shuffling the initial individual as presented in Figure 2. Each array 
consists of sub-arrays with fixed length divided by the number of registered 
machines (Machine 1, 2,…, n). Each sub-array indicates the order of representation 
number to be processed in each machine, as shown in Table 6. 

3 A Gantt chart is derived based on the gene representation of each. Then weighted 
tardiness, setup worker load and work-in-process on the shop floor of each 
(solution), and Pareto solutions are derived from the population based on NSGA-II 
(Deb, 2002). 

4 To make a valid comparison of the evaluated values, which have different orders of 
magnitude, the degree of congestion was proposed by normalising the evaluated 
values for the calculation of Euclidean distance as the congestion degree. 

5 Evaluated values from Euclidean distance among points on Pareto surface are 
defined as the degree of congestion. The larger the evaluated values, the lower the 
degree of congestion. 
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6 Solutions are ranked in decreasing order of the value of their degree of congestion. 
They are selected as parents for creating offspring according to rank-based selection 
and roulette selection, which increase the diversity of solutions. Next, crossover and 
mutation operations are performed on the selected parents to generate offspring. 

7 Crossover operations have two modes: exchanging whole arrays of the selected same 
number of machine between individuals, and exchanging the selected loci of the 
selected same number of machine between individuals. For instance, in the first 
mode, assumed machine 3 is selected randomly as presented in Figure 2, and gene 
array (11, 12, 13, 14, 15) in individual #1 and gene array (12, 14, 11, 15, 13) in 
individual #2 are mutually exchanged. By the second mode, assumed machine 1 and 
loci 2–4 in machine 1 are selected randomly as presented in Figure 2, gene array (2, 
3, 4) in individual #1 and gene array (5, 4, 3) in individual #2 are mutually 
exchanged. However, in this case, both the array (1, 5, 4, 3, 5) in individual #1 and 
the array (2, 2, 3, 4, 1) in individual #2 after the crossover conflict with these arrays 
before the crossover. The conflicts should be amended based on the procedure. 

8 Mutation operation is executed by exchanging random selected two genes in 
randomly selected machine arrays. Details of the procedure will be described later in 
the sub-section presenting hybrid GA with TS strategy (TS-HGA). 

Figure 2 An example of population and crossing reference table 

 

3.2.2 Outline of TS 
To search for neighbouring optimal solutions in a short time, local search methods are 
used for application in this field, but using those methods, a neighbouring optimal 
solution tends to return to a current solution by repeating local searches. In TS, a tabu list 
that keeps a set of most recently visited solutions is created to avoid cycling and avoid 
being trapped in a local optimal solution. A basic procedure of TS is the following: 
generate an initial solution randomly and initialise a tabu list; create neighbouring 
solutions from the initial solution; and exchange the initial solution for the best solution 
involved in neighbourhood solutions which is not involved in solutions included on the 
tabu list. Then the tabu list, which is vacant by initialisation, is filled with a certain 
number of the last solutions encountered. These solutions are updated in each time when 
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the solution is exchanged. When the terminating condition is obtained, the incumbent 
solutions derived to date are provided as the excellent solutions. 

3.2.3 TS-HGA based on TS strategy 
The crossover operation is executed by replacing the loci in the same number of 
machines based on crossover reference tables presented in Figure 2. The crossover 
reference tables are stored in the tabu list by a given condition. The set of crossover 
reference tables in tabu list is not accepted in the next iteration to avoid useless operation. 

Figure 3 An Example of mutation procedure based on TS 

 

Mutation is executed based not only on general GA operation but also on the mutation 
reference table as depicted in Figure 3. The procedure is the following. 

1 As a target of mutation, the number of machines and gene loci on the machines are 
randomly selected. 

2 A mutation reference table is defined in the same format as the format of 
chromosomes. All loci are set initially to 2. 

3 A mutation operation based on general GA is executed. For example in Figure 3, 
machine 3 and machine 1 are the targets of mutation. Two loci selected randomly in 
each machine are mutually exchanged: gene B and gene E in machine 1, and gene K 
and gene M in machine 2. 

4 In the mutation reference table, the two loci having the same position as the position 
in individual are reset to 1. 

5 After the GA operation described above, a new Gantt chat is derived and the new 
individual is re-evaluated to ascertain if the new individual is superior to the prior 
individual. In the mutation reference table, the two positions with the value of ‘1’ are 
reset to ‘0’. 
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6 If the re-evaluated value is not superior to the former individual, in the mutation 
reference table, then the two positions with values of ‘1’ are reset to ‘2’. 

From the next mutation, the gene loci with the value of ‘0 ‘are eliminated from the target 
of mutation to avoid useless operations. 

3.3 Outline of multi-island based GA (MI-GA) 

Multi-island based GA (MI-GA) (Nagao et al., 2015), which can yield diverse solutions, 
is provided so that the performance of the proposed method is compared with that of  
MI-GA. The solutions obtained using the proposed methods are confirmed not to fall into 
local optimal solution. In MI-GA, the population in one generation is divided into several 
sub-populations called ‘islands’. The genetic operations are executed independently on 
each island. For the islands, solutions are evaluated by rule of each island, which differ in 
weighting factor of crowded distance of each solution in the population; then this 
independence enables the solution to maintain diversity. Next the exchange of some 
individuals, named ‘migration’, is conducted periodically among islands. This mutual 
migration enables the solutions to avoid falling into a local optimum. 

4 Experiment 

This study addresses a combination including setup-worker, which is a novel approach in 
the field of MO-FJSP, as shown in Table 1 and Table 2. Therefore, the effectiveness of 
the proposed method cannot be compared with those found in prior studies. Two methods 
are introduced for comparison with the proposed method as follows: a conventional 
method EDD in which only the due-date of jobs has priority without consideration of the 
lot size of the jobs, the number of operations in each job and setup workers’ workload 
balance; and MI-GA described above. 

Sub-Section 4.1 describes the experimental data based on the daily operation of an 
SME of the MTO system. Sub-Section 4.2 describes parameter settings for the 
experiment to verify the performance of the proposed method. 

4.1 Experimental data based on daily operation of SME of MTO 

The SME manufactures high-mix and various-volume timing pulleys for equipment such 
as sewing machines, optical devices and medical instruments from materials such as 
metals or resin. The manufacturing process of pulleys consists of several processes such 
as turning, drilling, milling, gear cutting, assembling, and surface treatment. 

In this experiment, one can assess the following cases based on daily operations. 

1 109 jobs which have 1–9 operations each are ordered at scheduling. 

2 These jobs are processed by six setup workers and ten machine-processing workers 
using 32 machines. 

3 As portrayed in Figure 4, the bar chart shows a number of jobs with respective 
numbers of days to the due date. The maximum number of days to the due date is 22. 
Actually, ten jobs are already overdue. 
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Figure 4 Changes in the number of jobs on the shop for 109 jobs (see online version for colours) 

 

The number of jobs on the shop floor at the time of scheduling decreases because of daily 
shipments, as portrayed in Figure 4. Here, βτ is determined by the approximate 
polynomial derived from the solid line graph, which, in combination with equation (2), is 
used to derive SL. 
Table 8 Estimated TD value based on EDD 

Job Lot size Days left for due 
date 

Days to complete 
processing tdi αi αi tdk 

J1 10 –6 1 7 100 700 
J4 2 6 7 1 100 100 
J5 100 6 8 2 100 200 
J40 100 –3 2 5 5 25 
J41 100 –2 3 5 5 25 
J42 55 –2 4 6 5 30 
J43 1 1 2 1 5 5 
J58 35 –11 5 16 1 16 
J93 2 –3 3 6 5 30 
J94 2 –3 3 6 5 30 
J95 2 –3 3 6 5 30 
J96 2 –3 4 7 5 35 
J97 100 –3 3 6 5 30 
     TD 1,256 

Table 8 presents the TD values estimated from the dates of completion of processing 
obtained from a Gantt chart developed using the earliest due date (EDD) method, a rule 
to prioritise jobs with fewer days to the due dates, a conventional technique. In this case, 
J4, J5, and J43 are added to the delayed ten jobs for which due-date values are negative. In 
the example of J1, the tardiness is seven days because the due-date value is ‘–6’ and one 
day is added to complete processing. That multiplied by α1 100 is ‘700’. Applying the 
same procedure to the other 12 jobs presented in Table 8 gives the TD value of 1,256. 
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The feasibility of this TD value is not guaranteed because the setup-workers’ load 
balance is not considered. However, this TD value indicates a solution that is close to 
neighbourhood solutions. If the solutions, which have equivalent values to this TD value, 
are obtained from the proposed method, then the proposed technique can be regarded as 
valid. 

4.2 Parameter setting 

Parameter settings of GA, which are based on the results of simple experiment introduced 
from the operation of real-world SME as described above, are presented in Table 9. The 
weighting factors in crowdedness are set to diverse values under the condition of ‘kTD + 
kSL + kWIP = 1’ in each island. This enables the solution to maintain diversity. 
Table 9 Parameters of proposed algorithm 

 TS-HGA MI-GA 
Population size 20 144 
Number of islands - 12 
Population size on island - 12 
Crossover rate between chromosomes in 
matched machines 

70% 70% 

Crossover rate between two points of gen 
in matched machines 

70% 70% 

Mutation rate 20% 20% 
Interval of TS crossing 2,000 generations - 
Number of GA operations in each TS 
crossing 

500  

Interval of TS mutation 1,000 generations - 
Number of GA operations in each TS 
mutation 

5  

Interval of migration - 5,000 generations 
Weight in crowdedness TD 5 kTD 

SL 1 kSL 
WIP 1 kWIP 

Number of generations 400,000 400,000 

5 Results 

Figure 5 presents the distribution of solutions every 100,000 generations obtained  
using TS-HGA: Figure 5(a) is an SL-TD projection plane; Figure 5(b) is a WIP-TD 
projection plane. In the scatter plot, grey points indicate solutions in the generation of 
1,000–100,000, triangles represent solutions in the generation of 101,000–200,000 
generations, open circles represent solutions in the generation of 201,000–300,000, and 
black points indicate solutions in the generation of 301,000–400,000. The greater the 
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increase in the number of generations, the closer the solutions approach to the minimum 
in each objective. 

Figure 5 Derived solutions by TS-HGA at typical generations, (a) SL-TD projection plane 
(b) WIP-TD projection plane 

  
(a)     (b) 

Figure 6 Derived solutions by MI-GA at typical generations, (a) SL-TD projection plan  
(b) WIP-TD projection plane 

  
(a)     (b) 

Figure 6 presents the distribution of solutions every 100,000 generations obtained using 
MI-GA: Figure 6(a) is the SL-TD projection plane; Figure 6(b) is the WIP-TD projection 
plane. In Figure 6, as in Figure 5, each point denotes a solution in each generation. The 
scatter plot includes the solutions for all of 12 islands. Even black points scatter over a 
wide range on both the SL-TD projection plane and the WIP-TD projection plane, but 
from two projection planes, the cluster of solutions seems to provide a convex surface. 

Figure 7 presents a comparison among solutions near optimal solution in TS-HGA 
based on Figure 5, those in MI-GA based on Figure 6, and the solution obtained using 
EDD. 



   

 

   

   
 

   

   

 

   

    Balancing setup workers’ load of flexible job shop scheduling 85    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 Neighbourhood solutions based on TS-HGA and MI-GA and the solution based on EDD 
(see online version for colours) 

  

Figure 8 Convergence of TD values 

 

Figure 8 shows how solutions converge over time for two cases that converge to 
approximately 1200 by TD values in Figure 7. In Figure 8, the grey dots represent the 
curve consisting of solutions with a TD value of 1198 obtained using MI-GA; the black 
dots represent that of 1,201 obtained using TS-HGA. The solutions for the TS-HGA 
approach converged faster than the solutions for MI-GA. 

Figure 9 Number of daily setup done by each setup worker (see online version for colours) 
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Figure 9 presents changes in the daily load of setup-workers for seven days obtained from 
the Gantt chart for the solution (TD = 1,201, SL = 9, WIP = 35 × 106): the lowest TD 
value in the Pareto-optimal solutions in Figure 7(a). The numbers of daily setup decrease 
daily as the numbers of jobs decrease daily in Figure 4. 

Figure 10 Changes in work-in-process 

 

Figure 10 presents a comparison of changes in work-in-process on shop floor referred 
form Figure 7(b). In Figure 10, the black curve represents the changes in the solution 
(WIP = 35 × 106) obtained using TS-HGA. The grey curve represents the changes in the 
solution (WIP = 41 × 106) obtained using EDD. The solution obtained using TS-HGA 
provides not only lower WIP but also a lower maximum inventory level on the shop 
floor. 

6 Discussion 

Comparing the solutions obtained for TS-HGA in Figure 5 and MI-GA in Figure 6 reveals 
that TS-HGA obtained fewer solutions than MI-GA because of population size, but the 
solutions obtained by TS-HGA converge as the generations advance. This result implies 
that the TS algorithm functions effectively even with small population size. Actually,  
MI-GA method provides wide-area solutions obtained even at high generation on both 
SL-TD projection plane and WIP-TD projection plane because the weighting factors in 
crowdedness are set to diverse values in each island. 

In Figure 7, both the TS-HGA method and MI-GA method are shown to provide 
superior performance to EDD from the perspective that the most important object in 
MTO manufacturing scheduling is the due date. Actually, EDD is inferior to TS-HGA 
method and MI-GA method in spite of the due-date priority feature because tardiness 
results from the mismatched relation between the due date and the production lead time. 
The production lead-time of each job depends on some factors such as the number of lot 
size and the number of required operations. Therefore, the jobs with large lot size and or 
large number of required operations should be released to the shop floor earlier, even if 
these due-dates are large. However, these factors aside from the due date are not 
considered in the EDD method. As a result, jobs with a low due date, small lot size, and 
low number of required operations are released to the shop floor earlier in spite of the 
small production lead time. Jobs with a long lead time because of the large lot size and 
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large number of necessary operations are released to the shop floor later because of the 
due date. 

In Figure 7, TS-HGA provides more excellent solutions than MI-GA for both 
projection planes, which implies that TS-HGA provides equivalently excellent values to 
MI-GA under the condition of small SL and small WIP. In other words, it does so under 
the condition of small setup workers’ workload and small work-in-process in spite of 
small population size in GA. TS avoids useless crossover and mutation operations. 

Returning to Figure 9, it might be readily apparent that numbers of the daily setup 
decrease daily as the numbers of jobs decrease daily in Figure 4. However, decreasing 
ratio in numbers of daily setup should be confirmed based on the decreasing ratio in jobs, 
as described in Sub-Section 1.2. The maximum setup workloads on each day in Figure 9 
are transformed based on βτ in the middle row of Table 10. The transformed values show 
that the maximum setup workloads on each day are balanced, as shown in the bottom row 
of Table 10. These values are also presented in Figure 11. 
Table 10 The largest number of setup on each elapsed day 

τ (number of elapsed days) 1 2 3 4 5 6 7 
Lτ_max 9 8 7 6 6 6 5 
βτ 1 0.93 0.86 0.8 0.74 0.68 0.62 

⎡Lτ_max/βτ⎤ 9 9 9 8 9 9 9 

Figure 11 Number of daily setup by each workers converted by job decrease (see online version 
for colours) 

 

7 Conclusions 

This study proposed a hybrid GA with TS strategy (TS-HGA) for multipurpose 
optimisation to minimise weighted tardiness, to balance the setup workload, and to 
minimise work-in-process in a flexible job shop scheduling problem (MO-FJSP). 
Computational experiments were conducted for the dataset from a real-world MTO of 
SME to investigate the TS-HGA performance. The solutions obtained using the TS-HGA 
are compared with those obtained using conventional EDD, and GA using multi-island 
methods (MI-GA). Results confirmed the effectiveness of the proposed method. 
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Additionally, the solutions obtained using a TS-HGA approach converged faster than 
when using MI-GA because tabu lists help to avoid redundant solutions. 

This study investigated the performance of a real-world MTO mode SME from the 
perspective of due-date, setup workload, and work-in-process inventory views using 
experimental data based on daily operations. Although these experiments were conducted 
under the conditions of data reflecting current operations in a MTO of SME, replacing 
the data related to conditions such as the number of machines, performance of machines, 
number of setup workers, setup worker skill levels and the upper limit of inventory, the 
proposed approach is applicable not only to scheduling problems but also to other 
management decision making related to estimation of the investment of resources such as 
machines and worker capacity and estimation of the reasonability of orders from 
customers. 

From a practical application perspective, the available computation time may become 
shorter than several hours because the contractor has to provide the time of delivery to 
the customer as soon as possible. The diversity of the products also has to be considered 
in MTO manufacturing. Therefore, to handle both enhancing the calculation speed and 
adaptive flexibility of the genotype, parameter-free approach will be considered in the 
future work. 
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