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Abstract: The incremental acoustoelastic equations for fluid-saturated porous media (FSPM) 
under the large static pre-deformation are derived in this paper by incremental loading method 
based on classic acoustoelastic theory of FSPM, which provides quantitative acoustoelastic 
relation of FSPM with arbitrary constitutive equation. Isotropic FSPM with third-order 
constitutive equation are taken as an example to give the relation between wave velocity and 
confining pressure and discuss the effect of loading step on acoustoelastic relations of isotropic 
FSPM under closed-pore jacketed condition and opened-pore jacketed condition. 
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1 Introduction 

Acoustoelasticity of fluid-saturated porous media (FSPM) is 
a nonlinear acoustical phenomenon that describes the 
influence of stress or deformation states of FSPM on wave 
velocities (Murnaghan, 1951; Tian and Hu, 2010). It has an 
extremely important role on the ultrasonic non-destructive 
measurement of stresses (Crecraft, 1967; Lu and Roy, 1996) 
and has wide application in the fields of geotechnical 
engineering, petroleum geophysics for the estimation of 
crustal stress (Crampin and Peacock, 2005; Tian and Wang, 
2006; Winkler and McGowan, 2004). 

Since Biot (1956a, 1956b, 1956c, 1956d) established the 
poroelastic theory of FSPM, some researches on 
experimental study, theoretical analysis, and numerical 
simulation of the acoustoelastic properties of FSPM had 
been investigated. Tosaya (1982) measured the elastic-wave 
velocities of fluid-saturated clay-bearing rocks subjected to 
the confining pressure by the ultrasonic method.  
Winkler and McGowan (2004) measured the nonlinear 
acoustoelastic constants of dry and water-saturated rocks. 
Grinfeld and Norris (1996) derived wave speed formulas in 
closed-pore jacketed and open-pore jacketed configuration 
to find a complete set of seven third order elastic moduli for 
poroelastic medium. Considering the finite strain, Ba et al. 
(2013) derive the wave propagation equation by substituting 
the 11-term potential function and the Biot kinetic energy 
function into Lagrange equation. Wang and Tian (2014) 
gave the acoustoelastic theory for FSPM in the natural and 
initial coordinates based on the finite deformation theory of 
the continuum and poroelastic theory and present an explicit 
formulation about the influence of the effective stress and 
the fluid pore-pressure on wave velocities. 

At present, the acoustoelastic theory of FSPM is based 
on the assumption of finite deformation. But, if the FSPM 
experiences a long-term loading process or has larger initial 
stress, the assumption of finite deformation in classic 
acoustoelastic theory is failed. However, the initial stress σij 
must satisfy (σijσij)(cijklmncijklmn) << (cijklcijkl)2 in the classic 
acoustoelastic theory, where cijkl and cijklmn are the  
second-order and third-order elastic constants (Johnson and 
Rasolofosaon, 1996). Because the third-order elastic 
constants are usually much greater than the second-order 
elastic constants, this means that the initial deformation 
induced by the initial stress applicable for the classic 
acoustoelastic theory must be infinitesimal, which has been 
verified in the relevant experiments (Abiza et al., 2012). 
Furthermore, the FSPM usually have complex nonlinear 
constitutive law, rather than the constitutive law of the 
third-order elastic constants in the classic acoustoelastic 
theory, especially at the large pre-deformation. Although the 
higher-order elastic constants may be introduced into 
constitutive law, this will increase the difficulty greatly 
(Abiza et al., 2012). 

In order to solve the above-mentioned problem, we 
introduce the incremental algorithm of acoustoelastic theory 
for large static pre-deformed FSPM with the complex 
constitutive relation by incremental loading method, and 
then discuss the effect of loading steps on acoustoelastic 

relations of large static pre-deformed isotropic FSPM under 
closed-pore jacketed condition and opened-pore jacketed 
condition. 

2 Incremental algorithm for acoustoelastic theory 
of large static pre-deformed FSPM in natural 
coordinate 

There are three configurations in pre-deformed FSPM, 
which include natural configuration, initial configuration, 
and finial configuration. The positions of a particle in the 
FSPM at natural, initial, and finial configurations are 
measured by position vectors ξ, X, and x, respectively, all 
directed from the origin of a common Cartesian coordinate 
systems. A physical variable in the natural, initial, and finial 
configurations is designated by superscript labels 0, i, and f, 
respectively. The components of physical quantities which 
refer to the natural, initial, and finial configurations are 
denoted by Greek subscripts, upper case Roman subscripts, 
and lower case Roman subscripts, respectively. 

Figure 1 shows the process of statically stepwise loading 
in initial large pre-deformed FSPM, which loads FSPM at 
natural state into large pre-deformation state by M steps and 
the value of loading step depends on the applicable 
conditions of classic acoustoelastic theory under the 
infinitesimal pre-deformation. For step m, the position of a 
solid-skeleton particle at starting state is measured by 
position vector X(m–1). FSPM in starting state will turn into 
terminal state given single-step static loading and the 
position of a solid-skeleton particle at terminal state is 
measured by position vector X(m). Similarly, FSPM in 
terminal state will turn into ultimate state superposed 
acoustic dynamic motion and the position of a  
solid-skeleton particle at ultimate state is measured by 
position vector X(m). 

There are m – 1 loading steps from natural state to 
starting state in the mth step, and the deformations of the 
solid-skeleton component and the fluid component in each 
step is infinitesimal and static. From the natural state to the 
starting state in the mth step, the natural state to the terminal 
state in the mth step, and the natural state to the ultimate 
state in the mth step, the displacements of the solid-skeleton 
particle is denoted by u(m–1)(ξ), u(m)(ξ), and u(m)f(ξ) in the 
natural coordinates, and the displacements of the fluid 
particle is denoted by U(m–1)(ξ), U(m)(ξ), and U(m)f(ξ). The 
incremental displacements of the solid-skeleton component 
and the fluid component are denoted by Δu(m)i, Δu(m)f  
and ΔU(m)i, ΔU(m)f, respectively. They are related to the 
vectors by 
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Figure 1 Incremental loading of solid particles for large pre-deformed FSPM 
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The differences of Δu(m)i(ξ) and Δu(m)f(ξ), ΔU(m)i(ξ) and 
ΔU(m)f(ξ) are the dynamic displacements induced by the 
small acoustic dynamic motion from the terminal state to 
the ultimate state in the mth step, 
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In the global natural coordinates, the solid-skeleton 
Lagrangian strain tensors in the starting state, terminal state, 
and ultimate state in the mth step are defined from the 
squares of the stretch tensor, respectively, as 
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The increments of Lagrangian strain tensors from the 
starting state to the terminal state and the starting state to the 
ultimate state in the mth step are denoted by, respectively, 
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Assuming the superposed dynamic motion is small,  
that is ( ) ( )|| || || || .m m iu uΔ Δα α  The incremental Lagrangian 
strain tensors from the terminal state to the ultimate state 
induced by the small-amplitude disturbance are deduced 
approximately, 
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The strain in the fluid is defined by the dilatation. The fluid 
Lagrangian strain tensors from the starting state to the 
terminal state and the starting state to the ultimate state in 
the mth step are expressed as, respectively 
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The incremental Lagrangian strain tensor from the terminal 
state to the ultimate state induced by the small-amplitude 
disturbance is expressed as 
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ξ
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∂

α

α
 (8) 

where ( ) ( ) ( ) .m m f m iU U UΔ = Δ − Δα α α  
The total stress T of the FSPM particle is usually 

defined as the sum of the solid-skeleton-stress T  
component and the fluid-stress component s. In natural 
coordinates, the stresses of a solid-skeleton particle in the 
FSPM at starting, terminal, and ultimate states in the mth 
step are measured by Piola-Kirchhoff stress tensor  
T(m–1)(ξ, t), T(m)(ξ, t), and T(m)f(ξ, t), respectively, and the 
stresses of a fluid particle are measured by stress tensor  
s(m–1)(ξ, t), s(m)(ξ, t), and s(m)f(ξ, t). The incremental 
Kirchhoff stress tensors of a solid-skeleton particle and a 



 Incremental algorithm for acoustoelastic theory of large static pre-deformed fluid-saturated porous media 45 

fluid particle from the starting state to the terminal state in 
the mth step are denoted by, respectively, 
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The incremental Kirchhoff stress tensors of a solid-skeleton 
particle and a fluid particle from the starting state to the 
ultimate state in the mth step are denoted by, respectively, 
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The incremental Kirchhoff stress tensors of a solid-skeleton 
particle and a fluid particle from the terminal state to the 
ultimate state induced by the small-amplitude disturbance is 
given by 

( ) ( ) ( )

( ) ( ) ( )

( , ) ( , ) ( , )
( , ) ( , ) ( , )

m m f m i

m m f m i

t t t
t t t

⎫Δ = Δ − Δ ⎪
⎬

Δ = Δ − Δ ⎪⎭

T ξ T ξ T ξ
s ξ s ξ s ξ

 (11) 

The pre-deformation from natural state to initial state is 
static, so the particles of solid-skeleton and fluid at the 
starting state and the terminal state in the mth step must 
satisfy the equations of equilibrium in the natural 
coordinates, respectively, 
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The equation of motion for solid-skeleton particles and fluid 
particles at the ultimate state in the mth step can be 
expressed in the natural coordinates, 
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where 11 12,  ,o oρ ρ  and 22
oρ  represent the effective density of 

the solid moving in the fluid, the coupling density between 
the solid and the fluid, and the effective density of the fluid 
flowing through the pores, which are at natural state. 
Subtracting equation (12) from equations (13) and (14), we 

obtain the equation of equilibrium and the equation of 
motion, respectively, for the incremental displacement 
Δu(m)i(ξ, t) and Δu(m)f(ξ, t) in the mth step at natural 
coordinates, 
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Similarly, the equation of motion for the incremental 
displacement Δu(m)(ξ, t) in the mth step can be given by 
subtracting equation (15) from equation (16), 
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Assuming the FSPM has a hyperelastic constitutive relation, 
the internal energy W(ΔE, Δε) can be expanded about the 
state of zero incremental strain by Taylor series expansion 
for an isentropic thermodynamic process and considering 
stress-strain energy relation in hyperelastic FSPM, 
constitutive equations for the incremental stress tensors 
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( ) ( ),  m i m fT TΔ Δαβ αβ  and Δs(m)i, Δs(m)f, in the natural coordinates 
can be derived, respectively, by neglecting the higher-order 
terms, 
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where ( 1)m
γδc −

αβ  and ( 1)m
γδεηc −

αβ  are the isentropic second-order and 

third-order constants of the solid-skeleton, ( 1) ( 1),  ,m m
γδM s− −

αβ αβ  

and ( 1)mN −
αβ  are the isentropic coupling constants between 

the solid and the fluid, M(m–1) and N(m–1) are the isentropic 
fluid constants at starting state in the mth step. Assuming 
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incremental stress tensors ( )mTΔ αβ  and Δs(m) can be derived 
from equation (18), 
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Substituting equation (19) into equation (17) yields equation 
of motion for Δu(m)(ξ, t) and ΔU(m)(ξ, t), 
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Next, acoustoelastic equation for FSPM in the (m – 1)th step 
is given as follows. According to equation (17), equation of 
motion induced by the small-amplitude disturbance in the 
(m – 1)th step is derived, 
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The incremental stress tensors induced by the small-
amplitude disturbance in the (m – 1)th step are denoted as 

( 1) ( 1) ( 1)
( 1) ( 1) ( 1)

( 1) ( 1)

( 1) ( 1)( 1)
( 1) ( 1)( 1)

( 1) ( 1)

m m m
γm m m λ λ

γδ γδ
δ γ δ

m m

m mm
m m λ λm

m m

u u u
T c c

ξ ξ ξ

M ε

u uuM M
ξ ξ ξ

M ε

s

− − −
− − −

− −

− −−
− −−

− −

⎫∂Δ ∂ ∂Δ
Δ = + ⎪

∂ ∂ ∂ ⎪
⎪+ Δ ⎪
⎬

∂ ∂Δ∂Δ ⎪
+ ⎪∂ ∂ ∂ ⎪

⎪+ Δ ⎭

Δ =

αβ αβ αβ

αβ

α
αβ αβ

β α β

 (22) 

Substituting equation (22) into equation (21) yields the 
equation of motion for Δu(m–1)(ξ, t) and ΔU(m–1)(ξ, t), 
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Assuming that the wave-velocity at terminal state in the  
(m – 1)th step is same as the wave-velocity at starting state 
in the (m – 1)th step, the recurrence relation by comparing 
equation (20) with equation (23) can be deduced as, 
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Finally, acoustoelastic equations at the terminal state in the 
mth step (as well as the initial state of large pre-deformation 
elastic solids) are presented, 
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For a homogeneously pre-deformed FSPM, if dynamic 
disturbance travels as a plane sinusoidal wave form in the 
direction of the vector V, substituting the wave function 
expression of the solid-skeleton and fluid into equation (25), 
the characteristic equation for large static pre-deformed 
elastic solids in global natural coordinates is given as 
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where c(M) is the wave velocity in the natural coordinates. 

3 Numerical results and discussions 

In this section, the relation between wave-velocity and 
stress for large static pre-deformed isotropic FSPM 
subjected to hydrostatic pressure will be derived in natural 
coordinates, where two cases of loading schemes are 
considered, including closed-pore jacketed and is open-pore 
jacketed (Grinfeld and Norris, 1996). Figure 2(a) shows the 
state of the closed-pore jacketed system corresponds to 
constancy of the fluid content or mass, and in the 
geometrically linear approximation this implies that εi = 0. 
Figure 2(b) shows the open porous system corresponds to 
the case of constant fluid pressure, or P = 0. 

The closed-pore jacketed condition for the rock sample 
of confining pressure Ph corresponds to the constant fluid 
content. Using the linear constitutive relation for a solid 
skeleton particle and a fluid particle, the solid-skeleton 
strains in the mth step can be given as 
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Figure 2 Different loading schemes in large pre-deformed 
FSPM 

 
(a)     (b) 

Furthermore, the solid-skeleton stress and fluid stress are 
expressed as 
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If the rock sample which corresponds to the constant initial 
fluid stress si = –npf (n denotes porosity) is open-pore 
jacketed and subjected to a hydrostatic pressure Ph, and the 
fluid pressure is hold on one atmosphere (can be zero in 
approximation), we have the solid-skeleton stress and fluid 
stress 
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In the virtual test, the hydrostatic pressure changes between 
0 to 40 MPA. The numerical results for open-pore and 
close-pore jacketed rock sample under hydrostatic loading 
are shown in Figures 3 to 5. The material parameters are 
listed in Table 1 (Nur and Simmons, 1969). 

Table 1 Density and elastic constant of isotropic FSPM and 
the direction of incident wave 

11
oρ  

(kg/m3) 
22
oρ  

(kg/m3) 
12
oρ  

(kg/m3) 
λ  

(GPa) 
μ  

(GPa) 
l  

(GPa) 

2,205 650 –350 1.667 18.2 –337 

m 
(GPa) 

n  
(GPa) 

sijkl 
(GPa) 

M  
(GPa) 

Mij (i = j) 
(GPa) 

Mij (i ≠ j) 
(GPa) 

–6,742 –6,600 0 0.729 0.396 0 

N  
(GPa) 

Nij  
(GPa) ν1 ν2 ν3 

0 0 0 0 1 
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Figure 3 Effects of loading incremental number on wave 
velocity in natural coordinate under hydrostatic 
pressure (closed-pore jacketed condition),  
(a) Vp1-P curve (b) Vp2-P curve (c) Vs-P curve  
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Figure 4 Effects of loading incremental number on wave 
velocity in natural coordinate under hydrostatic 
pressure (opened-pore jacketed condition), (a) Vp1-P 
curve (b) Vp2-P curve (c) Vs-P curve (see online 
version for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 5 Effects of loading scheme on wave velocity in natural 
coordinate, (a) Vp1-P curve (b) Vp2-P curve (c) Vs-P 
curve (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

Figures 3 and 4 show the effects of the loading step number 
on the elastic wave-velocity in the closed-pore and  
open-pore jacketed rock sample under hydrostatic loading. 

There are three types of body waves in the FSPM, which are 
fast longitudinal wave, slow longitudinal wave, and 
transverse wave. For a fixed initial stress, the variations of 
stress-dependent wave-velocity are given with different 
loading step (M = 1, M = 2, M = 5, M = 20, M = 100,  
M = 1,000). The velocity-pressure curve with M = 1 
corresponds to the results of classic acoustoelastic theory. 
The velocity-pressure curves for longitudinal and transverse 
waves show the good convergence of the incremental 
algorithm with the increase of loading step number in 
natural coordinates. Wave-velocities for the fast and slow 
longitudinal wave and transverse wave increase with the 
increase of hydrostatic pressure. When the hydrostatic 
pressure is below 10 MPa, the results of the incremental 
algorithm are basically consistent with the results of classic 
acoustoelastic theory. When the hydrostatic pressure is 
greater than 10 MPa, their differences increase with the 
increase of hydrostatic pressure. 

The longitudinal wave-velocity and transverse  
wave-velocity in the open-pore jacketed condition are larger 
comparing with the closed-pore jacketed condition. Figure 5 
shows the effect of loading scheme on wave velocity in 
natural coordinates. In the open-pore jacketed condition, 
external loading is mainly supported by the solid skeleton, 
and the nonlinear elastic property of solid plays a leading 
role. In the closed-pore jacketed condition, the external 
loading is partly supported by the fluid component, so the 
acoustoelasticity of fluid need to be considered in the 
experiment. Because the three order elastic constant of fluid 
is far smaller than that of solid, the wave velocity in the 
open-pore jacketed condition is higher than that in the 
closed-pore jacketed condition at the same hydrostatic 
pressure. 

4 Conclusions 

The incremental acoustoelastic equation of large  
pre-deformed FSPM with arbitrary constitutive law has 
been presented by incremental loading method based  
on the classic acoustoelastic theory. The examples for 
isotropic FSPM of third-order constitutive equation under 
closed-pore jacketed condition and opened-pore jacketed 
condition verify the good convergence of the incremental 
algorithm with the increase of loading step number. 
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