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Abstract: This paper presents numerical model based on the finite-discrete 
element method for the analysis and prediction of the collapse of masonry 
structures with mortar joints and dry stone masonry structures. The model 
consists of a numerical model in a finite element, contact interaction algorithm 
which simulates the interaction between stone blocks in dry joint and numerical 
model in an interface element which simulates the behaviour of the mortar 
joints and unit-mortar interface. The verification of the model was performed 
on examples by comparing it with the known numerical and experimental 
results from literature. 
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1 Introduction 

Building construction using dry stone walls or clay bricks which are held together by 
mortar is one of the oldest building techniques which are still in use today. Masonry has a 
long worldwide tradition of usage in construction due to its simplicity. In spite of the 
simplicity that is manifested during the construction of masonry structures, understanding 
and describing mechanical behaviour of those structures represents a true challenge due 
to the nature of masonry structure which shows a complex and particular nonlinear 
behaviour. 

Most of the models for simulation of the behaviour of masonry structures are based 
on the finite element method. The analysis of masonry by finite element method is 
usually based on the modelling of the material as a fictitious homogeneous orthotropic 
continuum. Strong discontinuities between different units of the masonry can be 
simulated by joint interface elements (Calderini and Lagomarsino, 2008; Lourenço and 
Rots, 1997). 

Another approach for modelling of the cracking in these materials is the discrete 
element method (Cundall and Hart, 1992; DeJong, 2009; Lemos, 1998; Baggio and 
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Trovalusci, 1995). The behaviour of masonry is based on the idealisation of the material 
as a discontinuum where joints are modelled as contact surfaces between different units. 
Different approaches in modelling of the contact exist. One of them is distinct elements 
method (Cundall and Hart, 1992) used at first to model rocky aggregates, then walls and 
granular materials, in software such as UDEC, TRIDEC. The second one is the non-
smooth contact dynamics (NSCD) method, which has been initiated and developed by 
Jean and Moreau (1992; Jean, 1999) and applied in numerical simulation of monuments 
made of blocks (Acary and Jean, 1998). In NSCD, the basic laws such as Coulomb’s law 
and the inelastic shock law are described as non-smooth laws and the dynamical equation 
is discretised according to a low-order implicit algorithm, while smooth approximations 
of these laws are used in distinct element method, together with an explicit scheme. 
Consequently, NSCD uses large time steps and needs many iterations at each time step, 
while distinct element method uses many small time steps and few iterations at each time 
step. 

In recent times an increasing number of models attempted to combine the advantages 
of finite element and discrete element methods. The most often used numerical methods 
which combine these methods are discontinuous deformation analysis (Pearce et al., 
2000) and combined finite-discrete element method (FEM/DEM) (Munjiza, Andrews and 
White, 1999). These methods are designed to handle contact situations in which transition 
from continua to discontinua can appear. 

The FEM/DEM, the subject of this paper, was first developed for the simulation of 
fracturing problems considering deformable particles that may split and separate during 
the analysis. Within the framework of this method the discrete elements are discretised by 
constant strain triangular finite elements. Material nonlinearity, including fracture and 
fragmentation of discrete elements, is considered through contact elements (Munjiza, 
Andrews and White, 1999), which are implemented within a finite element mesh. The 
interaction between discrete elements is considered through the contact interaction 
algorithm based on the principle of potential contact forces (Munjiza and Andrews, 2000) 
and the Coulomb-type law for friction (Xiang et al., 2009). The method uses an explicit 
numerical integration of the equation of motion.  

This paper presents numerical model based on FEM/DEM which can capture the 
main features related to the behaviour of dry stone masonry structure and masonry 
structures with mortar joints. The model consists of a numerical model in a finite element 
which simulates the behaviour of units, contact interaction algorithm for modelling of the 
interaction between stone blocks in dry joint and material model in an interface element 
which simulates the behaviour of the mortar joints and unit-mortar interface 
(Smoljanović, Živaljić and Nikolić, 2013; Smoljanović, 2013; Smoljanović, Nikolić and 
Živaljić, 2015).  

The application of the model was performed on examples by comparing it with 
known numerical and experimental results from the literature. 

2 Numerical model 

In this numerical model masonry structure is considered as an assemblage of discrete 
elements as shown in Figure 1. 
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Figure 1 Discretisation of masonry structure: (a) mortar masonry; (b) dry stone masonry 

 

Each discrete element, which can split and separate during the analysis, is discretised by 
its own mesh of constant strain triangular finite elements. Material behaviour in the finite 
elements is linear-elastic. Material nonlinearity, fracture and fragmentation are 
considered through the contact elements which are implemented within the finite element 
mesh of each block. The main processes included in the presented method are contact 
detection, contact interaction, finite strain elasticity as well as fracture and fragmentation, 
as explained in more detail later in this paper. 

2.1 Deformability of finite elements 

In the finite-discrete element framework, the deformability of discrete elements is 
enabled by means of a finite element mesh. Given the need for an algorithm that would 
be as simple and fast as possible and the fact that the calculation of contact forces is 
based on the same discretisation scheme, geometrically simple finite elements have been 
chosen for addressing linear problems, namely triangular, three-node finite elements with 
constant strain. However, by adopting constant strain triangular finite elements, shear 
members can become dominant in the stiffness matrix, causing an unrealistic increase in 
structure stiffness known as shear locking (Dow, 1999). The geometry of a triangular, 
three-node finite element is defined by global coordinates of each node (x, y), where  
(xi, yi) represent the coordinates in their initial configuration and (xc, yc) are the 
coordinates in their current configuration (Figure 2). Since discrete elements are able to 
change their position in space, their displacements can be divided into two different 
components: displacements of discrete elements as rigid bodies caused by translation and 
rotation, and displacements resulting from the deformation of the body. Displacements of 
a deformable body involving rotation and deformation in the vicinity of a certain point of 
a deformable body are defined by the deformation gradient F (Munjiza, 2004). 
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Figure 2 Initial and current configuration of a triangular finite element 

 

The deformation gradient for three-node finite elements is constant in all points of the 
triangle and it can be obtained as follows: 

1
c,j c,i c,k c,i i,j i,i i,k i,i

c,j c,i c,k c,i i,k i,i i,k i,i

- - - -
- - - -

x x x x x x x x
y y y y y y y y

−
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

F  (1)
 

The Green-St Venant strain tensor E is calculated from the following expression: 

( )1
2

T= −E F F I
(  (2)

 

Adopting the linear-elastic relationship between the stress and strain, the Cauchy stress 
tensor can be obtained according the expression 

v2 μ λ ε μ= + +T E I D
(  (3) 

where µ and λ are the Lamé constants and εv is the volume deformation which is 
expressed by the following equation: 

v xx yyε ε ε= +  (4) 

The last element on the right-hand side of Eq. (3) represents the contribution of the 
deformation velocity where ͞µ is the damping coefficient and D is the rate of the 
deformation tensor. 

Traction force over each edge of the triangle can be calculated using the normal on 
the edge of the deformed configuration, with components of the normal given in the 
global frame (Figure 3). Edge traction is given by the expression 

x xx xy x

y yx yy y

s t t n
s t t n
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

s Tn  (5) 
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Figure 3 Normal vectors used in calculation of traction forces; magnitude of each normal is equal 
to the length of the corresponding edge 

 

where nx and ny represent the components of the outward unit vector normal to the edges 
of triangle. Edge traction for each of the three edges of the deformed configuration is 
distributed proportionally to each of the nodes belonging to a particular edge. Equivalent 
nodal force in each node is represented by following expression: 

1 1 1
2 2 2

x xx xy x

y yx yy y

s t t n
s t t n
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

f s  (6) 

2.2 Contact detection and interaction 

The objective of the contact detection algorithm is to locate pairs of neighbouring finite 
elements that are in contact and to eliminate those that are too far away from one another 
and can no longer establish contact. Accordingly, the non-binary search algorithm for 
contact detection has been implemented into the FEM/DEM model (Munjiza, Andrews 
and White, 1998). The total time required for the detection of all contact pairs is 
proportional to the total number of discrete elements. 

Once the pairs of discrete elements are detected, the algorithm of contact interaction 
(Munjiza and Andrews, 2000) defines the contact forces between two discrete elements, 
one of which is then designated as a contactor and the other as a target (Figure 4). In the 
interaction algorithm, the distributed contact forces are defined by the penalty method, 
which is based on the principle of potential contact forces. The contactor and the target 
overlap across the surface S bounded by the external edge t cβ β∩Γ . 

Figure 4 Contact force due to an infinitesimal overlap around points Pt and Pc 
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In such case, the total contact differential force on the contactor dfc is defined as 

( ) ( )c 0 c t t cd grad grad dp P P Sφ φ= −⎡ ⎤⎣ ⎦f  (7) 

where Pt and Pc are the points in which the target and the contactor overlap, φ is a 
corresponding potential function while p0 is the penalty coefficient for normal contact 
forces (Munjiza, 2004). The total contact force is obtained by the integration of Eq. (7) 
across the entire overlapping surface S as follows: 

[ ]
t c

c 0 c tgrad grad d
S

p S
β β

φ φ
= ∩

= −∫f  (8) 

Equation (8) can be rewritten as 

[ ]
t c

c 0 c t dp
β β

φ φ
∩

Γ
Γ

= − Γ∫f n  (9) 

where nГ is the unit external normal on the edge Г of the overlapping surface S.
 In the framework of the contact forces algorithm, the Coulomb dry friction model for 

shear forces has been implemented as follows: 

t t tk= −f δ  (10) 

where ft is the tangential elastic contact force, kt is the penalty coefficient for friction and 
δt is the accumulated tangential displacement between two elements from the total 
previous history of the contact (Xiang et al., 2009). 

If ft is greater than the maximum friction force defined by the Coulomb law |ft|>µ|fn|, 
the elements slide along one another and the shear force between them is defined by 
means of the elastic normal force fn, according to the following expression: 

t nμ= −f f  (11) 

where µ is the friction coefficient. In that case tangential displacement is equal to 

t
t

tk
= −

f
δ  (12) 

2.3 Time integration of equation of motion 

In the combined FEM/DEM, the shape and position of each discrete element is described 
by the current coordinates of finite elements nodes. To calculate the current coordinates 
of nodes, it is necessary to take into account the mass of the corresponding system. In the 
combined FEM/DEM, the mass of a system is concentrated in finite elements nodes, 
which leads to a lumped-mass model. 

Time integration of the equations of motion for each corresponding node has been 
conducted explicitly using the finite differences method (Munjiza, 2004; Pearce et al., 
2000), which is conditionally stable and whose stability and accuracy depend on the 
choice of a time step. The description of the update of variables can be written as 
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i, /2 i, /2 i, i

i, i, i, / 2

/t t t t t

t t t t t

t m
t

+Δ −Δ

+Δ +Δ

= + Δ
= + Δ

v v f
x x v

 (13) 

where xi, vi, fi, mi are the displacement vector, the velocity vector, the total mass vector 
and the mass of each node, respectively, and Δt is a time step. In this method, the time 
step significantly influences the numerical stability; namely, the central difference time 
integration scheme was applied. It is always numerically stable if the time step satisfies 
following expression 

2t
ω

Δ ≤  (14) 

where ω is the highest frequency of the corresponding system. The conditions for the 
selection of time step are provided in Munjiza (2004). In addition, the time step depends 
on the penalty parameter. Increase of penalty parameter produces more accurate solutions 
but, due to the numerical stability, it causes smaller time steps (Munjiza, 2004). 

2.4 Fracture and fragmentation 

Fracture and fragmentation are essential processes in transition from continua to 
discontinua. In this numerical model it is realised by the combined single- and smeared-
crack model, which is also known as the discrete-crack model. 

In such a model, a typical stress-strain curve in direct tension is divided into two 
sections (Figure 5): strain-hardening prior to reaching the peak stress (ft), which is easily 
implemented through the constitutive law, and strain-softening, for which the stress 
decreases with an increasing separation δ. It is modelled through a single-crack model 
(Figure 6) in contact elements implemented between finite element mesh. 

Figure 5 (a) Strain-hardening and strain-softening curves defined in terms of strains and 
(b)strain-softening curve defined in terms of displacements 
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Figure 6 Single-crack model for the softening part of the stress-strain diagram 

 

Source: Munjiza, Andrews and White, 1999 

The cracks are assumed to coincide with the finite element edges (contact elements) 
which are achieved in advance through the topology of adjacent elements being described 
by different nodes. Separation of these edges induces a bonding stress which is taken to 
be a function of the size of separation δ (Figure 5). The area under the stress-
displacement curve represents the energy release rate f 2IG γ= , where γ is the surface 
energy, that is, the energy needed to extend the crack surface by a unit area (Munjiza and 
Andrews, 2000). In theory no separation occurs before the tensile strength ft is reached, 
that is, δ = δt = 0, where δt is normal displacement at interface and contact element 
corresponding to tensile strength. In the actual implementation, it is enforced through the 
penalty function method (Munjiza and Andrews, 2000). 

After reaching tensile strength ft, stress decreases with an increasing separation δ, 
while the bonding stress tends to be zero for critical separation δ = δc. For the separation 
δt < δ <δc, the bonding stress is given by 

tz fσ =  (15) 

where z is a heuristic scaling function representing an approximation of the experimental 
stress-displacement curves taken according to Smoljanović, Živaljić and Nikolić (2013) 

2 t 23 3
1 t t 11 ( ) (1 )c D cz c D e D c e− −⎡ ⎤= + − +⎣ ⎦  (16) 

where c1 = 3 and c2 = 6.93, while the damage parameter Dt is determined according to the 
following expression: 

t c t t c
t

c

( ) / ( ),    if   ;
1,    if   

D
δ δ δ δ δ δ δ

δ δ
− − < <⎧

= ⎨ >⎩
 (17) 

In this paper the numerical model in the contact element is extended to capture the main 
features related to cyclic behaviour as shown in Figure 5b, where the value k1/kt is equal 
to 0.73 as recommended by Reinhardt (1984). 
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The edges of two adjacent elements are held together by the shear stress calculated by 
the penalty function method (Munjiza and Andrews, 2000). After reaching shear strength 
fs, which coincides with sliding t = ts, the stress decreases with an increasing sliding t 
according to the exponential law defined by Eq. (16). At t = tc shear stress tends to be 
zero. For sliding ts < |t| < tc shear stress is given by 

c sz fτ =  (18) 

where z is a heuristic scaling function given by Eq. (16) in which the damage parameter 
Dt is replaced with shear damage parameter Ds given by 

s c s s c
s

c

( ) / ( ),    if  ;
1,    if   
t t t t  t t t

D
t t

− − < <⎧
= ⎨ >⎩

 (19) 

Within the framework of the FEM/DEM method the masonry structure is considered as 
an assemblage of extended unit elements connected with zero-thickness interface 
elements (Figure 1) which simulate the behaviour of the mortar joints and unit-mortar 
interface. 

The dimensions of each unit are extended to the axis of the horizontal and vertical 
joints. Each unit element is discretised with its own constant strain triangular finite 
element mesh.  

In this paper the existing FEM/DEM model is extended by a new material model in 
finite elements which takes into account the orthotropic behaviour of masonry, whose 
principal material axes coincide with the global axes x and y. It is known that, under 
uniaxial compressive loading, mortar tends to expand laterally more than the brick 
because of its weaker mechanical properties. Due to the continuity between bricks and 
mortar, ensured by cohesion and friction, mortar is confined laterally by the bricks. Thus, 
shear stress, developed at the mortar-brick interface, produces a triaxial compressive 
stress state in the mortar and bilateral horizontal tension coupled with vertical 
compression in the brick. In this way, failure usually occurs by the development of cracks 
in the bricks, parallel to the loading direction. This effect of softening and failure in 
compression is taken into account in finite element. Potential cracks in units due to 
tension and shear are considered through contact elements, implemented between the 
finite element mesh, and are based on a combined a single- and a smeared-crack model 
(Munjiza, Andrews and White, 1999) previously presented.  

In this paper the new material model in an interface element which simulates the 
behaviour of the mortar joints and unit-mortar interface was also presented. The model 
takes into account the tension and shear strength (cohesion) of the mortar increasing the 
fracture energy in shear due to increasing pre-compression stress, decreasing friction 
coefficient due to increasing shear displacement and the cyclic behaviour in the interface 
element. 

This new numerical model of the interface element and the new material model in a 
finite element, which were developed as part of this study, are shown below. 

2.5 Numerical model in finite element 

Due to the geometrical arrangement of units and mortar, the constitutive behaviour of 
masonry is highly anisotropic, even if the properties of these constituents are isotropic. 
Oriented voids in perforated unit elements also contribute to the anisotropic behaviour of 
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masonry structures whose material axis, in most cases, coincides with horizontal and 
vertical directions. 

Unlike concrete structures in which the collapse usually appears due to cracking of 
material in tension or shear, in masonry structures, besides these two failure mechanisms, 
the material often crushes in compression. This failure mechanism may be especially 
important in masonry structures built with perforated bricks. 

In this paper, the orthotropic constitutive material behaviour with hardening/softening 
law for compression is considered in finite elements (Lourenço, 1996; Smoljanović, 
Nikolić and Živaljić, 2015). Elliptical hardening followed by parabolic/exponential 
softening law in compression defined by four inelastic parameters - (σi, εi), (σm, εm),  
(fc, εc), (σr, εr) - is shown in Figure 7 where the subscripts i, m, c and r denote, 
respectively, the initial, medium, compressive peak and residual values. This 
hardening/softening behaviour is considered for both material axes, with different 
compressive fracture energies and different compressive strengths. A redefined 
compressive fracture Gfci corresponds only to the local contribution of σi-εi diagram, 
where subscript i refers to the material axes which correspond to global axes x and y. 

Figure 7 Hardening/softening law for compression 

 

Cyclic behaviour is adopted as shown in Figure 8 where k1 is plastic strain for zero stress 
after unloading from monotonic tensile envelope, while kc is plastic strain for zero stress 
after unloading from monotonic tensile envelope according to initial modulus of 
elasticity. The ratio of k1/kc, adopted as 0.935, is obtained from numerical analyses 
(Smoljanović, 2013) to achieve the best correlation with experimental results. 

Figure 8 Cyclic behaviour in compression 
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2.6 Numerical model in interface element 

The numerical model in the interface element simulates the behaviour of the mortar joints 
and unit-mortar interface taking into account cracking of joints in tension and sliding 
along the bed or head joints in shear. Since the contact elements describe discontinuity in 
a displacement field after reaching ultimate tension or shear strength, their behaviour is 
described in terms of the relationship between stress and relative displacement based on a 
single- and smeared-crack model (Munjiza, Andrews and White, 1999). When relative 
displacement exceeds critical displacement, interface element disappears and contact 
interaction between fragmented parts is considered according to potential contact forces 
(Munjiza and Andrews, 2000), taking into account Coulomb’s dry friction model (Xiang 
et al., 2009). 

Since the experimental research conducted by Van der Pluijm (1993) has shown that 
increasing the pre-compression stress levels in the contact between the block and the 
mortar causes an increase in the fracture energy in shear, in the presented model, this 
phenomenon is taken into account according to the following relation 

f f 0 (N/m)II IIG G Cσ= −   (20) 

where f 0
IIG  is the value of the shear fracture energy in the case when the normal pre-

compression stress is equal to zero, C is constant in m and σ is pre-compression stress in 
MPa. In the presented numerical model, constant C is adopted as 106.31 m (Smoljanović, 
2013), to obtain the best correlation with experimental results reported by Van der Pluijm 
(1993). 

3 Numerical examples 

3.1 Sensitivity study of penalty coefficient 

Application of the penalty method in calculation of the contact forces in FEM/DEM 
influences solution accuracy. The errors arise due to the penetration of discrete elements 
into each other during the contact interaction or due to the separation of finite elements 
before the appearance of cracks, which is regulated with the value of penalty coefficient. 
The value of penalty coefficient p0 could be chosen extremely high in order to eliminate 
errors, but this would lead to very small time step and very long calculation time. In 
numerical examples analysed by FEM/DEM it is recommended to choose minimal value 
of penalty coefficient, which would result in acceptable errors. 

In this example, an analysis of the influence of the penalty coefficient on relative 
error was analysed. For this purpose, a dry stone masonry column consisting of 10 stone 
blocks and exposed to monotonic increasing vertical load at the top was analysed. This 
force causes the vertical displacement at the top of the column, which can be analytically 
determinate according to 

F hh
E A

Δ =   (21) 
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where F, h, E and A are the forces at the top of the column, column height, modulus of 
elasticity and cross-section area, respectively. Based on the known analytical solution and 
numerical results, relative error can be obtained. 

Geometry and discretisation of the column used in numerical analysis are shown in 
Figure 9, while the adopted characteristics of the stone are shown in Table 1. 

Figure 9 Dry stone masonry column: (a) geometry; (b) discretisation 

 

Table 1 Mechanical characteristics of stone used in numerical analysis 

Modulus of elasticity (MPa) Poisson coefficient 
20000 0.0 

The analysis was conducted with and without contact elements between triangular finite 
element mesh with various values of the penalty coefficient. In the case when there are no 
contact elements between triangular finite elements, the error in numerical solution gets 
erased due to the penetration of stone blocks into each other at dry contact. This 
penetration is regulated with penalty coefficient in contact interaction algorithm based on 
potential contact force. In the case when contact elements are implemented between finite 
elements mesh (fragmentation of each block is enabled), the error in numerical solution 
gets erased not only due to the penetration of stone blocks into each other at dry contact 
but also due to the penetration of triangular finite elements of corresponding stone blocks 
into each other. 

Figure 10a and 10b show the value of the relative error of vertical displacement of the 
top of the column in cases with and without contact elements between finite elements 
depending on the value of penalty coefficient. It can be seen that in both cases the value 
of the relative error decreases with increasing penalty coefficient. In the case without 
contact elements, the value of the relative error is less than 1% if the value of penalty 
coefficient is 10 times greater than the modulus of elasticity of stone. In the case with 
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contact elements, the value of the relative error is less than 1% if the value of penalty 
coefficient is 100 times greater than the modulus of elasticity. A further increase in the 
value of penalty coefficient leads to further reduction of the relative error. 

Figure 10 Relative error dependence on the value of penalty coefficient p0: (a) without contact 
elements (b) with contact elements 

 

3.2 Masonry shear walls exposed to a monotonically increasing loading 

In this example, the ability of the numerical model to reproduce the main features that 
characterise the behaviour of masonry shear walls under increasing monotonic increasing 
is performed by comparing experimental and numerical results. The numerical analyses 
were performed on several shear walls which Raijmakers and Vermeltfoort (1992) 
analysed within the CUR (Council on Undergraduate Research) project. The walls 
analysed in this example correspond to the samples J4D, J5D and J7D. 

Geometrical characteristics of the walls are shown in Figure 11. The walls have a 
width/height ratio of one with dimensions 990 × 1000 mm2 and consist of 18 rows of 
blocks, where only 16 between them were active, while the remaining two were clamped 
in the steel beams (Figure 11a). The walls were made of solid clay bricks with 
dimensions 210 × 98 × 50 and 10-mm thick mortar. Discretisation of the structure with 
finite element mesh used in the numerical analysis is shown in Figure 11b. 

Figure 11 Masonry shear wall: (a) geometry; (b) finite element mesh 
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Different vertical pre-compression stresses were applied to the walls (0.3 MPa for walls 
J4D and J5D and 2.12 MPa for wall J7D) keeping the bottom and top boundaries 
horizontal and precluding any vertical movement at the bottom of the wall. After 
applying the vertical stress, the walls were exposed to the horizontal load, which is 
achieved through the controlled displacement of steel beam at the top of the walls. The 
loading rate was 20 μmm/s in order to obtain quasi-static loading procedure. During the 
application of the horizontal displacement, vertical movements of the top and bottom of 
the steel beams were prevented. 

Mechanical characteristics of materials used in numerical analysis are based on data 
taken from the literature (Raijmakers and Vermeltfoort, 1992) and shown in Table 2.  
In this table index x refers to horizontal direction, while index y refers to vertical 
direction. 

Table 2 Mechanical characteristics of materials 

Unit 
Young modulus 
Ex/Ey (MPa) 

Poisson ratio, 
νxy 

Compressive strength,  
fcx = fcy (MPa) 

Tensile 
strength,  
ft (MPa) 

Shear strength, 
fs (MPa) 

7520/3960 0.09 10.5 2.0 2.8 
Fracture energy in tension/shear, 

I
fG / II

fG  (N/m) 
Fracture energy in 
compression, 

fcxG / fcyG  (N/m) 

Friction coefficient 
initial/residual, μ0/μr 

80/500 20000/15000 1.0/1.0 
Interface element 
Tensile strength, 
ft (MPa) 

Shear 
strength,  
fs (MPa) 

Fracture energy in 
tension/shear,  

I
fG / II

fG  (N/m) 

Friction coefficient 
initial/residual, μ0/μr 

0.16 0.224 18/50 0.75 

In the performed analysis, the relationship between the horizontal displacement and the 
horizontal force at the top of the wall was measured. Numerical analyses were performed 
using both nonlinear material model and linear elastic numerical model of the finite 
element method as discussed earlier in this paper (Munjiza, 2004). 

A comparison of numerical results obtained in this paper with the experimental 
results reported in Raijmakers and Vermeltfoort (1992) and numerical results obtained by 
Lourenço (1996) are shown in Figure 12.  

The numerical results of Lourenço were obtained by a numerical model based on the 
finite element method in which the units were discretised with continuum elements while 
the joints were discretised with interface elements. A composite interface model, which 
includes softening for tension, shear and compression, was based on the modern plasticity 
concept. 
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Figure 12 Comparison of experimental and numerical displacements at the top of the wall 

 

Particularly for walls J4D and J5D, good agreement can be observed between the 
numerical results obtained in this study by the nonlinear model based on FEM/DEM and 
the experimental and numerical results obtained by Lourenço (1996).  

In the case of wall J7D, the numerical results obtained by the nonlinear FEM/DEM 
model do not show a significant difference compared to the numerical results obtained by 
Lourenço (1996). On the other hand, all the numerical results provide approximately 15% 
higher ultimate load for wall J7D compared to those obtained by the experiment 
(Raijmakers and Vermeltfoort, 1992). It can be also seen that the numerical results 
obtained with linear material model in the finite element method provide approximately 
25% higher ultimate load for walls J4D/J5D compared to those obtained by the nonlinear 
numerical model. For wall J7D there is no significant difference between the numerical 
results obtained by linear and nonlinear models since the collapse appeared due to 
exceeding shear strength of the wall. 

Failure patterns, just before the complete breakdown, obtained from experiments 
(walls J4D/J5D) and numerical analyses are compared and presented in Figure 13. It can 
be seen that experimental and numerical crack patterns are similar. At the early loading 
stage the horizontal tensile cracks developed at the bottom and top of the wall, but 
diagonal stepped crack with cracks in the units led to the collapse of the wall. 

Figure 13 Crack pattern in walls: (a) this work; (b) wall J4D, experiment by Lourenço (1996);  
(c) wall J5D, experiment by Lourenço (1996) 
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Figure 14 shows the behaviour of the wall after collapse. This example highlights the 
ability of a combined FEM/DEM in simulating the behaviour of the structure after 
reaching ultimate load, which can be important in analysing the progressive collapse of 
structure. 

Figure 14 Collapse mechanism of the wall at displacement: (a) δ = 18 mm, (b) δ = 21 mm and  
(c) δ = 24 mm 

 

3.3 Dry stone wall exposed to monotonically increasing loading 

This example demonstrates the ability of the numerical model to reproduce the main 
features that characterise the behaviour of dry stone masonry shear wall under 
monotonically increasing horizontal displacement. 

For this purpose, the experimental program conducted by Oliveira (2003) was chosen 
to compare the experimental results with the numerical results obtained by FEM/DEM 
method. 

The experimental program consisted of a series of quasi-static monotonic tests 
conducted on a small stone wall sample whose geometry is shown in Figure 15a. The 
wall discretisation used in numerical analysis is presented in Figure 15b. 

Figure 15 Schematic view of a stone wall: (a) geometry and load; (b) discretisation of the 
structure 
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The wall consisted of stone blocks of regular dimensions. Average values of the 
mechanical characteristics of the granite used in the experiment are taken from literature 
and are presented in Table 3. 

Table 3 Mechanical characteristics of stone used in numerical analysis 

Modulus of elasticity 
(MPa) 

Tensile strength 
(MPa) 

Compressive strength 
(MPa) 

Fracture energy 
(N/m) 

15500 3.7 57.0 110 

Source: Oliveira; 2003 

The shear behaviour of walls was analysed for a vertical longitudinal force of 100 kN, 
which corresponds to the pre-compression stress of 0.5 MPa. The coefficient of friction  
μ = 0.62 between stone blocks was obtained by experiment (Oliveira, 2003). After 
applying vertical stress, the wall was exposed to the horizontal load, which is achieved 
through the controlled displacement of the rigid beam at the top of the wall. The loading 
rate was 20 μmm/s in order to obtain quasi-static loading characteristics. 

Comparison of experimental results (Oliveira, 2003), numerical results obtained by 
Oliveira (2003) and numerical results obtained by the presented numerical model is 
shown in Figure 16. The numerical model developed by Lourenco and Rots is based on 
the finite element method containing also contact elements whose constitutive law of 
behaviour is based on the theory of plasticity. 

Figure 16 Comparison of numerical and experimental results 

 

A good correspondence can be observed between results obtained by model based on the 
FEM/DEM method and numerical results obtained by Oliveira (2003). The 
correspondence between numerical and experimental results can be considered 
satisfactory taking into account the fact that the experiment was conducted with a dry 
wall made of natural stone. In such walls, the irregularities between blocks has a 
considerable effect on wall behaviour, and this effect is very hard to model by numerical 
procedure. The comparison of failure mode obtained by numerical model and physical 
experiment is presented in Figure 17. It can be observed that failure of wall appears by 
rotation of the wall accomplished by cracking of stone blocks, and the FEM/DEM model 
used in the study reproduced these effects accurately. 
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Figure 17 Failure mechanism of wall: (a) experimental; (b) numerical (see online version for 
colours) 

 

4 Conclusion 

This paper presents a numerical model for the analysis and prediction of the collapse of 
dry stone masonry structures and masonry structures with mortar joints. The presented 
numerical model is based on the FEM/DEM and considers the numerical model in finite 
element, which simulates the behaviour of units; contact interaction algorithm, which 
simulates the interaction between stone blocks in dry joint; and a material model in an 
interface element used for simulating the behaviour of the mortar joints and unit-mortar 
interface. 

Material model in finite element takes into account orthotropic and cyclic behaviour, 
failure, and softening. The interaction between stone blocks in dry joint is considered 
through the contact interaction algorithm based on the principle of potential contact 
forces and the Coulomb-type law for friction, while the numerical model in contact 
element takes into account the possibility of failure and softening behaviour in tension 
and shear, increasing the fracture energy in shear due to increasing pre-compression 
stress, decreasing friction coefficient due to increasing shear displacement and the cyclic 
behaviour in interface element. 

The performance of the presented numerical model was investigated using two 
masonry walls with mortar joints and one dry stone masonry shear wall. The numerical 
results show that the presented model is able to capture the main features that characterise 
the behaviour of masonry shear walls through the whole range of loading history. 

The advantage of the presented model is its ability to simulate the behaviour of the 
masonry structure through the entire failure mechanism from the continuum to the 
discontinuum using the discrete representation of cracks and discontinuities. 
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