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Abstract: This research paper is concerned with a successfully developed 
adaptive neuro-fuzzy inference system (ANFIS) for detection of indication size 
(of the penetrant) for liquid penetrant test. The evaluation of the neuro-fuzzy 
model has been comprehensive; it has been performed using a database of 
indication size containing 252 valid data points in a structural steel sample and 
468 valid data points in high-alloy steel sample. The surface discontinuities are 
artificially drilled holes varying in diameter and depth from 0.5 to 1.75 mm, 
respectively, with an increment of 0.25 mm between each hole. The test is 
conducted at varying time intervals from 2 to 30 min for structural steel 
samples and 2 to 60 min for high-alloy steel samples, respectively, and the 
results are obtained till 1/100th of an mm. The ANFIS modelling accuracy is 
very high, with R2 values reaching about 0.9924 for the test set when 83:17 
ratios for train set:test set are taken. Use of this technique can be useful as this 
would help with the correct detection of discontinuities and in deciding whether 
to reject or accept a sample. 

Keywords: adaptive neuro fuzzy systems; dye penetrant test; non-destructive 
evaluation; pin holes; subtractive clustering. 

Reference to this paper should be made as follows: Mehta, B. and Bedi, R. 
(2016) ‘Adaptive neuro fuzzy inference system in modelling/detecting cracks 
and porosity using liquid penetrant test’, Int. J. Experimental Design and 
Process Optimisation, Vol. 5, Nos. 1/2, pp.117–132. 

Biographical notes: Bharat Mehta is an Assistant Manager, Quality 
Assurance, at Maruti Suzuki India Ltd., Gurgaon. He received his bachelor’s 
degree in Mechanical Engineering from National Institute of Technology, 
Jalandhar, India. He is interested in product development, manufacturing and 
soft computing techniques. 

Raman Bedi is an Associate Professor at Department of Mechanical 
Engineering at National Institute of Technology, Jalandhar. His research 
interests include mechanical behaviour of composite materials and soft 
computing techniques. 

 



   

 

   

   
 

   

   

 

   

   118 B. Mehta and R. Bedi    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

As per American Society of Mechanical Engineering (2010), liquid penetrant test (LPT) 
is a very effective technique to detect discontinuities which are open to the surface of 
nonporous metals and other materials. Typical discontinuities detectable by this method 
are cracks, seams, laps, cold shuts, laminations and porosity. 

This technique has been use for more than a century and is still prevalent because of 
the low cost and applicability across different types of materials. It can be used with 
basically any material given that the surface roughness is low and the material is not 
porous. The application of this technique is widespread. It is used during testing of 
aircraft wings, forged/rolled sheets of steel, blades of turbine, porosity in welded joints 
etc. The disadvantages of this technique are as follows: 

1 It can only detect discontinuities, which are open to the surface. Sub-surface crack 
detection is not possible using LPT (Mehta, 2015). 

2 The detection of discontinuities and identification of defects are subjective to the 
technician performing the test, which leaves a chance of failure in the article due to 
error in human judgment. 

The former disadvantage cannot be solved effectively because of the manufacturing flaws 
in material, which will always cause sub-surface cracks. To some extent, analysis of the 
design to remove manufacturing flaws helps reduce the chances of error. The use of 
novel computational methods in the past few decades has made analysis a crucial part of 
quality enhancement. Use of finite element methods and computer aided design has aided 
in making manufacturing processes all the more automated and the flaws in those 
processes less prevalent. 

The latter can be solved by moderating human effort and reducing the chance of error 
by having an automated system. So, the author suggests the use of modelling techniques 
to develop a well-informed system for identifying the discontinuities in LPT. The use of 
artificial neural networks, genetic algorithms and fuzzy logic, being the novel techniques 
in optimisation and modelling, are used. Use of adaptive neuro-fuzzy inference system 
(ANFIS) in Baoguang Xu (2013) for the development of an intelligent system using 
ANFIS in eddy current testing to provide a user with a decision on whether a defect is 
present or not, and certain properties of unknown crack, such as depth, width and 
orientation, are anticipated. This paper considers eddy current testing, which is a non-
destructive testing method for conductive material detection and uses ANFIS to train a 
neuro-fuzzy system using signals from known cracks and then utilises this system for 
predicting the crack information output from given signals of unknown crack. 

There is another non-destructive technique, ultrasonic pulse velocity test (UPV), 
which is used to determine the compressive strength of concrete (Bilgehan and Turgut, 
2010). This paper discusses the usage of UPV and density data to predict the compressive 
strength of concrete. Such a technique can be helpful for health monitoring of structures. 

The paper deals with the ingenious use of artificial neural networks in detection of the 
dimensions of defect (two outputs: width and depth) using six inputs for pipes with the 
help of ultrasonic guided waves in pipe walls (Cannas, 2005). The utilisation of signal 
processing techniques in longitudinal and torsional wave modes has been done. The pipes 
were modelled using finite element method technique, signal processing was applied 
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using discreet wavelet transform and blind separation techniques and, finally, multilayer 
perceptron networks were used as pattern classifiers. 

Also, a paper working on similar lines as this was published, which discussed the use 
of signal processing for defect characterisation in the ultrasonic testing technique to help 
in decision-making for human operators (Meksen, 2009). The paper is based on a 
Kohonen self-organising algorithm, which clusters the signals in the similarity space and 
uses the results to distinguish between signals corresponding to non-defect, flat defects, 
and volumetric defects. The results obtained gave a 99% accuracy for the train set and 
70% accuracy in the test set, which is average, considering a 75–25 train-test set. 

In the present work, ANFIS is used to model the indication size of the penetrant in 
LPT. A valid database of 252 and 468 data points are used respectively for the 
application of the ANFIS models. A large part of the data (83%) are taken for training the 
ANFIS system and the rest (17%) are used to test the data, and the result is quite 
satisfactory for the predicted vs. actual values, which proves the validity of the proposed 
methodology. The work done in this paper is unique in its approach because it takes a 
novel approach towards automation of dye penetrant tests. To be able to identify the 
dimensions of a discontinuity and categorise it as a defect or otherwise is generally 
plagued by the possibility of human error. Applying a mathematical approach towards 
problem-solving rather than experience of a technician would be more reliable and 
accurate. 

2 Indication size data 

2.1 For artificial discontinuities (drill holes) on carbon structural steel 

A valid database created by Janusz Czuchryj (2012) is used in this work. It refers to the 
LPT conducted on structural steel plates with simulated discontinuities made on them. 
The discontinuities varied in depth and diameter from 0.5 to 1.75 mm, respectively, with 
an increment of 0.25 mm. The LPT was conducted on these discontinuities after 2, 5, 10, 
15, 20, 25, and 30 min. In total, 252 valid indication sizes were collected. The data points 
for 5, 10, 15, 20, 25, and 30 min are considered for developing an ANFIS model (216 
data points). Similarly, for the second dataset, out of 468 data points, 432 are considered. 
The ‘2 min’ data point is not considered to create a spatial distribution among data points 
and get a better learning curve. 

2.2 For artificial discontinuities (pores) on welded joints made of  
high-alloy steel 

A valid database created by Janusz Czuchryj (2015) is used in this work. It refers to the 
LPT conducted on welded joints made of X5CrNi18-10 Steel (high-alloy steel) with 
artificial discontinuities made on them. The discontinuities varied in depth and diameter 
from 0.5 to 1.75 mm, respectively, with an increment of 0.25 mm. The LPT was 
conducted on these discontinuities after 2, 5, 10, 15 … 60 min. In total, 468 valid 
indication sizes were collected. The data points for 5, 10, 15 … 60 min are considered for 
developing an ANFIS model (432 data points). 



   

 

   

   
 

   

   

 

   

   120 B. Mehta and R. Bedi    
 

    
 
 

   

   
 

   

   

 

   

       
 

3 ANFIS modelling application 

This application has been adopted as per Bedi (2008) and Tomohiro Takagi (1985): 

3.1 Fuzzy logic methods 

Fuzzy logic methods have been used to model various highly complex and nonlinear 
systems based on a set of sample data and fuzzy ‘if–then rules’. A fuzzy inference system 
can model the qualitative aspects of human knowledge without using any quantitative 
analyses. The following notation is common in fuzzy logic modelling and is adapted to 
serve the needs of the present study. 

3.1.1 Linguistic variables 

Form the basic concept underneath fuzzy logic, i.e., a variable whose values are words 
rather than numbers. The input linguistic variables specified herein for the indication size 
in LPT modelling are the following: diameter of discontinuity (d), depth of discontinuity 
(h) and development time (t). The diameter/size of indication (D) is used as the only 
output variable. 

3.1.2 Fuzzy sets 

In contrast to a classical set, a fuzzy set does not have a crisp boundary, i.e., the transition 
from the case ‘belong to a set’ to the case that does ‘not belong to a set’ is gradual. 
Normally, this smooth transition is characterised by a membership function (MF) which 
gives flexibility to the fuzzy sets in commonly used modelling linguistic expressions. For 
the case studied herein, a linguistic expression could be: ‘diameter of discontinuity is 
close to zero’ or ‘development time (t)’ is high and so on. 

3.1.3 Membership function 

It is the curve which defines the way each point in the input space is mapped to a 
membership value (or degree of membership) between 0 and 1. The MF type can be any 
appropriate parameterised MF like triangle, Gaussian or bell-shaped. 

3.1.4 Linguistic rules 

A set of linguistic ‘if–then’ rules applied on the defined linguistic variables. A single 
fuzzy ‘if–then’ rule assumes the form ‘If x is A then y is B’, where A and B are linguistic 
values defined by fuzzy sets on the ranges X and Y, respectively. The ‘if’ part of the rule 
‘x is A’ is called the antecedent or premise, while the ‘then’ part of the rule ‘y is B’ is 
called the consequent or conclusion. Fuzzy ‘if–then’ rules with multiple antecedents like 
the following are often used. 

Rule: If diameter of discontinuity is low, depth of discontinuity is low and the 
development time is low then the indication size is small. 
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The resulting output after the described fuzzy logic method has to be defuzzified or 
else converted to a crisp value by using any of the available defuzzification methods, like 
the centre of gravity method, etc. The MFs used to represent linguistic variables will have 
important effect on modelling performance as the type of the MF being used determines 
when a given rule is to be put into effect or not (in fuzzy logic ‘the rule is fired’). Three 
types of MFs, namely the triangular type, the Gaussian type and the bell-shaped type, 
have been used in this study to examine the influence of each one of them on the 
produced data. 

4 Artificial neural networks 

ANNs are very efficient in adapting and learning, and for this reason they are used as 
modelling tools in a number of applications. An ANN is made of three types of layers: an 
input layer which accepts the input variables, herein d, h, t; a set of hidden layers (one or 
more); and an output layer made of a single neuron which, in the case examined herein, 
gives the indication size (D). Hidden and output layers are in general composed of a 
number of neurons that perform a specific nonlinear function such as a sigmoid. The 
neurons of one layer are interconnected to the neurons of the previous layer and after the 
next layer through weighted links. Each neuron of the hidden and output layers is offset 
by a threshold value. The back-propagation training algorithm is commonly used to 
iteratively minimise a cost function by updating the interconnection weights and neuron 
thresholds. The training process is terminated either when the mean square error (MSE) 
between the measured data points and the predicted ANN values for all elements in the 
training set reach a pre-specified threshold or after the completion of a preselected 
number of iterative learning processes, called learning epochs. 

5 Adaptive neuro-fuzzy inference system 

Although the fuzzy inference system has a structured knowledge representation in the 
form of fuzzy ‘if-then’ rules, it lacks the adaptability to deal with a changing external 
environment. Therefore, neural network learning concepts have been incorporated in 
fuzzy inference systems, resulting in adaptive neuro-fuzzy modelling. The adaptive 
inference system is a network, which consists of a number of interconnected nodes. Each 
node is characterised by a node function with fixed or adjustable parameters. The 
network is ‘learning’ the behaviour of the available data during the training phase by 
adjusting the parameters of the node functions to fit that data. The basic learning 
algorithm, the back propagation, aims to minimise a set measure or a defined error, 
usually the sum of squared differences between the desired and the actual model outputs. 
The fuzzy modelling was first explored by Tomohiro Takagi (1985). The ANFIS 
architecture that is used in the present study is based on the first-order Takagi-Sugeno 
model and it is schematically presented in Figure 1. It is assumed that the indication size 
of the penetrant (D) is a function of the depth of discontinuity (d) of the samples, the 
diameter of discontinuity (d) of the samples and the development time (t) for LPT. Thus, 
d, h, t are the input parameters, while the indication size which corresponds to each 
combination of the three input parameters is the unique output of the ANFIS model. In 
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this model, the ith rule for the prediction of indication size of the penetrant can be 
expressed as follows: 

Rule 1: 

If d is Aj, h is Bk, t is Cl, 

Then i i i if n h o d p t= + +  (1) 

where j = 1, …, N1, k = 1, …, N2, l = 1, …, N3 and i = 1, …, N1N2N3. 

Figure 1 Developed ANFIS topology based on the first order Takagi-Sugeno model 

 

A, B and C are the fuzzy sets defined for d, h and t, respectively. N1, N2 and N3 indicate 
the number of MFs defined by the indicated fuzzy input variables, f is a linear consequent 
function defined in terms of the input variables and n, o, p, q and r are the consequent 
parameters of the Takagi-Sugeno fuzzy model (Tomohiro Takagi, 1985). In this model, 
nodes of the same layer have similar functions, as described below. The output of the ith 
node in layer l is denoted as O1,i. 

The fuzzy inference system shown in Figure 1 is composed of three layers. Each layer 
involves several nodes. The output signals from the nodes of the previous layer will be 
accepted as the input signals in the current layer. After manipulation by the node function 
in the current layer, the output will be served as input signals for the subsequent layer. 

Layer 1: 

The first layer of this architecture is the fuzzy layer. Each node of this layer makes the 
membership grade of a fuzzy set. The membership relationship between the output and 
input functions of this layer can be expressed as: 

( ), 1 , 1, ,
jl j AO d j Nμ= ⋅ = K  

( ) 2, 1, ,
kBk h k Nμ= = K  (2) 

( ), 3 , 1, ,
ll j CO t l Nμ= ⋅ = K  

In this layer, the MF can be any appropriately parameterised MF like triangular, Gaussian 
or bell-shaped. 
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Layer 2: 

Every node in layer 2 is a fixed node, marked by a circle, whose output is the product of 
all the incoming signals, i.e., T-norm operation:  

( ) ( ) ( )2, l k li A B C iO d h tμ μ μ ω= ⋅ ⋅ =  (3) 

The output signal iω  denotes the firing strength of the associated rule. The firing strength 
is also called ‘degree of fulfilment’ of the fuzzy rule and represents the degree to which 
the antecedent part of the rule is satisfied. 

Layer 3: 

Every node in layer 3 is an adaptive node marked by a square node with a node function 
like 

3,  i l iO fω=  (4) 

where 
2 3 1

i

i L Li N N N
ω

ωω
=⋅ ⋅ ⋅Σ=  is known as the normalised firing strength. The consequent 

parameters of if  in this layer are to be adapted in order to minimise the error between the 
ANFIS outputs and their experimental results. 

Layer 4: 

Every node in layer 4 is a fixed node marked by a circle node. The node function 
computes the overall output by summing the incoming signals, i.e., 

4,  i l i fO f Nω= =∑  (5) 

This ANFIS structure represents a four-dimensional space partitioned into N1 × N2 × N3 
regions, each one governed by a fuzzy ‘if–then’ rule. In other words, the premise part of a 
rule defines the fuzzy region, while the consequent part specifies the output within the 
region. 

A hybrid learning algorithm is used to adapt the parameters of the first layer, called 
premise or antecedent parameters, and the parameters of the third layer, referred to as 
consequent parameters, are adapted to optimise the network. The network uses a 
combination of back-propagation and least squares method to estimate MF parameters. 
More specifically, in the forward pass of the hybrid learning algorithm, node outputs go 
forward till layer 3 and the consequent parameters are identified by the least squares 
method. In the backward pass, error signals propagate backward and the premise 
parameters are updated by a gradient descent method. 

6 Application design 

Accurate identification of indication size is quintessential in deciding the appropriate size 
of the discontinuity and to decide whether to accept or reject an article on that basis. The 
field of LPT still uses visual inspection for identification of defects and does not use a lot 
of technology with respect to the detection of whether discontinuity has been done. 

 



   

 

   

   
 

   

   

 

   

   124 B. Mehta and R. Bedi    
 

    
 
 

   

   
 

   

   

 

   

       
 

This paper provides with a possible alternative solution to the problem of avoiding 
human error. The use of neuro-fuzzy inference systems is a first in the field of LPT 
analysis. The indication size (output) can be defined accurately by feeding in the input 
variables, namely diameter of discontinuity, depth of discontinuity and development 
time. The assumptions made in this paper are that the discontinuity is cylindrical in 
nature and the test is being conducted on a flat surface with the indication being produced 
parallel to the surface. 

There was no need for pre-processing the data and the given data points were directly 
fed into the ANFIS GUI to obtain the necessary dataset. From the resulting dataset, a 
training set was constructed by selecting a portion of the data in a random way. The 
remaining portion was used for the construction of the test set. As one of the major 
objectives of this work was to investigate the effect of the size of the training set to the 
modelling ability of the generated ANFIS model, the portion of data used for training and 
testing was varying. It was decided to start with allocating a portion of 87% of the data 
for training and the remaining 13% for testing. This case is identified in the sequel as  
87–13. During the analysis stages that followed, the portion of data used as a training set 
were gradually decreased while that used as a testing set were increased, reaching the 
extreme case of having 13% of the data used for training and 87% used for testing (case 
13–87). The performance outcome of ANFIS in all these cases was evaluated. The scatter 
of the input values is critical for the quality of the evolved model. Less scatter leads to 
higher modelling efficiency. On the other hand, the speculative nature of the method 
characterises the input-output process, since difference in general output data should be 
expected, even for identical input values processed by the same ANFIS model. However, 
the output values that are produced that way follow the same statistical distribution. 

For all the types of datasets described above, ANFIS was constructed using the ‘here’ 
types of MF, i.e., the triangular type, Gaussian type and the bell type MF. The number of 
MFs was chosen to be 5-5-5 corresponding to the inputs d, h, t respectively. In order to 
enhance the efficiency of the models, the available experimental data were clustered by 
the subtractive clustering algorithm. 

7 Clustering of data 

As per Bedi (2008), clustering of numerical data is the basis of many classifications and 
system modelling algorithms. The purpose of clustering is to identify natural groupings 
of data from a large dataset to produce a concise representation of system behaviour. A 
clustering technique can be used to generate a Takagi-Sugeno type fuzzy inference 
system which best models data behaviour using a minimum number of fuzzy rules, thus 
preventing the explosion of rules. The rules themselves can be partitioned according to 
the fuzzy qualities associated with each one of the data clusters. Various methods of 
clustering have been described in the literature (Yager and Filev, 1994; Chiu, 1994). The 
subtractive clustering method (Chiu, 1994) presents an efficient method for estimating 
cluster centres of numerical data. This method can be used to determine the number of 
clusters and their initial values for initialising iterative optimisation-based clustering 
algorithms such as fuzzy C-means. 

As per subtractive clustering, one-pass algorithm is used for estimating the number of 
clusters and the cluster centres in a dataset. The cluster estimates, which are obtained 
from the subclust function, can be used to initialise iterative optimisation-based clustering 
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methods (fcm) and model identification methods (like anfis). The subclust function finds 
the clusters by using the subtractive clustering method. The genfis2 function builds on the 
subclust function to provide a fast, one-pass method to take input-output training data and 
generate a Sugeno-type fuzzy inference system that models the data behaviour. 

So, data clustering primarily enhances the modelling accuracy, as would be clear 
from the results. This clustering would be involving the definition of 23 MFs for input 
variables as compared to 5 MFs for the triangular, Gaussian and bell-shaped MFs. The 
subtractive clustering is performed based on the default parameters, such as range of 
influence = 0.5, squash factor = 1.25, Accept ratio = 0.5, Reject ratio = 0.15. Range of 
influence is basically the cluster radius when considering the data space as unit 
hypercube. Squash factor is multiplication factor to the radii values to find 
neighbourhood of clusters involved. The accept ratio sets the potential, as a fraction of 
the potential of first cluster centre, above which another data point is accepted as a cluster 
centre. Reject ratio sets the potential, as a fraction of the potential of the first cluster 
centre, below which another data point is rejected as a cluster centre. 

8 Results and discussion 

The basic purpose of this paper is to explore the applicability of analytics in NDT 
techniques. The results obtained to detect indication size predicted by ANFIS model 
produce a R2 value as high as 0.9924, which is exemplary. 

Two different datasets of 216 and 432 data points were taken to produce a total of 
eight separate ANFIS architectures (four for each dataset). The architectures were based 
on triangular MF, Gaussian MF, bell-shaped MF and subtractive clustering. Out of these, 
four architectures comply with the indication sizes for the assessment of surface 
discontinuities in carbon structural steel and four architectures comply with the size of 
pores in welded joints made of high-alloy steel. 

Since ANFIS operates on the applicability of the given dataset, which is used in 
training the system to suit the test set which is in turn used for accurate prediction of the 
output, we saw that the dataset with 432 data points gives more accuracy because it 
avoids the problem of overfitting of the model, wherein the modelling software performs 
very well with the training data but not with the test data. Also, the results deal with two 
different types of metals: structural steel and high-alloy steels, which makes the 
applicability of these results all the more widespread. The applications can involve the 
development of a chart which can let the technicians know which sample to be rejected 
by looking at the size of the indication, thus reducing the human error of judgment and 
making the process of LPT all the more accurate. 

Comparison of modelling accuracy 432 training 62–38 compared the different sets of 
MFs for 432 data points divided in the ratio of 270/162 (train test) and showed the 
accuracy of each of them vs. the actual output set (Figure 2). We see that most of the MFs 
that provided a more or less equal value with the correlation coefficient are located 
between 0.9858 and 0.9963. 
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Figure 2 Comparison of modelling accuracy 432 training 62–38 

 

Comparison of modelling accuracy 432 training 38–62 compared the different sets of 
MFs for 432 data points divided in the ratio of 162/270 (train test) and showed the 
accuracy of each of them vs. the actual output set (Figure 3). We see that the correlation 
coefficient drops to a value as low as 0.7139 for bell-shaped MF, whereas the MF 
involving subtractive clustering technique still retained a high correlation coefficient of 
0.9877. The chart of the MFs being compared demonstrated the same graphically. 

Figure 3 Comparison of modelling accuracy 432 training 38–62 
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Comparison between 216 and 432, r and R2 described the comparison of correlation 
coefficient and R2 for both the datasets for a subtractive clustering dataset (Figure 4). It is 
used as a method to know how the variance in the above parameters can be compared 
with respect to a change in the train-test set. We observed that the dataset with 432 data 
points clearly performs more consistently than the dataset with 216 data points. This 
verified the fact that more the number of data points, more would be the accuracy of the 
neuro-fuzzy system. 

Figure 4 Comparison between 216 vs. 432, r and R2 

 

Comparison of modelling ability in ANFIS with SC has shown the comparison of R2 
values between the test set and train set for the datasets conditioned to subtractive 
clustering MF (Figure 5). These comparisons made it clear as to how R2 for a test set 
decreases from 0.9924 to 0.6054, whereas for the train set the values are always as high 
as 0.99. 
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Figure 5 Comparison of modelling ability in ANFIS with SC 
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Adaptive neuro-fuzzy inference system for different ANFIS structures 50 vs. 50, 87 vs. 
13 compared two test sets with a ratio of train-test set as 50–50 and 87–13 on the 
parameters of correlation coefficient, MSE, R2 and maximum/minimum absolute error 
(Table 1). We saw that the errors increase as we decrease the number of training data. 
This is in direct relation to the accuracy of the values being predicted by the ANFIS 
architecture for those data points. 

Table 1 ANFIS for different ANFIS structures 50 vs. 50, 87 vs. 13 

 Dataset with 50% training -  
50% testing set 

Dataset with 87% training -  
13% testing set 

Triangular 
MF 

Gaussian 
MF 

Bell 
MF 

Subtractive 
clustering 

Triangular 
MF 

Gaussian 
MF 

Bell 
MF 

Subtractive 
clustering 

Correlation 
coefficient 

0.9857 0.9782 0.9726 0.9904 0.9932 0.9909 0.9896 0.9962 

MSE 0.4514 0.686 0.8732 0.2992 0.2183 0.2981 0.3394 0.1269 

R2 0.9716 0.957 0.946 0.981 0.9866 0.982 0.9794 0.9924 

Minimum 
absolute 
error 

0.0008 0.0001 0.0009 0.0014 0.0084 0.0407 0.0105 0.0018 

Maximum 
absolute 
error 

4.6407 4.6252 4.9497 4.8363 1.2572 1.4757 1.5512 1.2282 

Adaptive neuro-fuzzy inference system for different datasets (75–25, 13–87) compared 
the two different datasets (216 and 432 data points) for different train-test sets and then 
comprehensively compared the two systems (Table 2). We could observe better accuracy 
of the system with 432 data points under parameters like correlation coefficient, R2, MSE 
and minimum/maximum absolute error. 
Table 2 ANFIS for different datasets (75–25, 13–87) 

 
Dataset with 216 data points Dataset with 432 data points 

Triangular 
MF 

Gaussian 
MF Bell MF

Subtractive 
Clustering 

Triangular 
MF 

Gaussian 
MF Bell MF 

Subtractive 
clustering 

(a) ANFIS for different datasets (75–25)   

Correlation 
coefficient 

0.927 0.865 0.6771 0.9784 0.9845 0.9836 0.98 0.9845 

MSE 2.2159 5.282 26.0872 0.473 0.4226 0.4504 0.5479 0.4264 

R2 0.8594 0.7482 0.4585 0.9572 0.9694 0.9675 0.9605 0.9693 

Minimum 
absolute 
error 

0.0098 0.0006 0.0053 0.0092 0.002 0.0128 0.0004 0 

Maximum 
absolute 
error 

7.2845 11.5555 25.9519 2.2686 2.3865 2.4916 3.0745 3.0091 
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Table 2 ANFIS for different datasets (75–25, 13–87) 

 
Dataset with 216 data points Dataset with 432 data points 

Triangular 
MF 

Gaussian 
MF Bell MF

Subtractive 
Clustering 

Triangular 
MF 

Gaussian 
MF Bell MF 

Subtractive 
clustering 

(b) ANFIS for different datasets (13–87)   

Correlation 
coefficient 

0.4014 0.4268 0.4226 0.5605 0.46 0.506 0.5079 0.8533 

MSE 43.1609 41.1833 41.8091 9.9659 34.419 28.7415 28.6827 5.1812 

R2 0.1611 0.1822 0.1786 0.3142 0.2116 0.2561 0.258 0.7282 

Minimum 
absolute 
error 

0.713 0.2047 0.143 0.0044 0.0118 0.0084 0.0019 0.0106 

Maximum 
absolute 
error 

13.47 13.1297 12.8515 14.3795 18.8 18.45 17.9388 7.1973 

Error on training/testing set SC 432 compared the errors in terms of correlation 
coefficient, R2, MSE and minimum/maximum absolute error and compared it for the 
datasets with seven ratios of train-test set, i.e., 87–13, 75–25, 62–38, 50–50, 38–62,  
25–75, 13–87 (Table 3). These tables show how the errors increase with an increase in 
the number of test set. This meant that the predicted value using ANFIS was further away 
from the actual value of the output. 

Table 3 Error on training/testing set SC 432 

 87–13 75–25 63–37 50–50 37–63 25–75 13–87 
(a) Error on testing set (subtractive clustering, 432 data points) 
Correlation coefficient 0.9962 0.9845 0.9963 0.9904 0.9877 0.778 0.8533 
MSE 0.1269 0.4264 0.1142 0.2992 0.3982 8.1087 5.1812 
R2 0.9924 0.9693 0.9927 0.981 0.9757 0.6054 0.7282 

Minimum absolute error 0.0018 0 0.0058 0.0014 0.0011 0.0067 0.0106 

Maximum absolute error 1.2282 3.0091 1.4846 4.8363 2.1493 17.1798 7.1973 
(b) Error on training set (subtractive clustering, 432 data points) 
Correlation coefficient 0.9981 0.9901 0.9985 0.9914 0.9982 0.9999 1 

MSE 0.058 0.3218 0.0447 0.0265 0.055 0.0021 0 

R2 0.9962 0.9803 0.9971 0.9982 0.9964 0.9998 1 

Minimum absolute error 0.0002 0.0027 0.0003 0.0001 0.0008 0.0001 0 

Maximum absolute error 0.826 3.9934 0.7329 0.5969 0.993 0.2108 0.0001 
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9 Conclusion 

This paper is a first of its kind in terms of its approach towards LPT. This paper not only 
quantifies the approximation made by NDT technicians all around the world while 
thinking of passing or failing a sample but also involves the use of a novel modelling 
technique in doing so. And, at the same time, the modelling technique was used 
comprehensively by involving the use of different types of steels and different MFs for 
evaluation. It was seen that using subtractive clustering technique enhances the accuracy 
of the model to a great extent. Such a system could be beneficial as there is no scientific 
study present in this non-destructive testing. To enhance the applicability of this 
technique, more testing using different types of penetrants, more comprehensive 
discontinuity sizes, different types of materials etc. should be done to develop a full-
fledged system. 
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Nomenclature 

d Diameter of discontinuity (mm) 
h Depth of discontinuity (mm) 
t Time taken for development (seconds) 
A Fuzzy set defined for d 
B Fuzzy set defined for h 
C Fuzzy set defined for t 
N1 Number of membership functions for d, herein, N1 = 5 
N2 Number of membership functions for h, herein, N2 = 5 
N3 Number of membership functions for t, herein, N3 = 5 
f Linear consequent function of Takagi-Sugeno fuzzy model 
n,o,p,q,r Consequent parameters of the Takagi-Sugeno fuzzy model 
Oi,j Output of the ith node of the jth layer of ANFIS 
µAj Membership function for d, j = 1 … N1 
µBk Membership function for h, k = 1 … N2 
µCl Membership function for t, l = 1 … N3 
ωi Firing strength of the ith rule 

 




