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1 Introduction 

Eigenvalue problems occur in many physical and engineering applications. They have 
been studied extensively in the research literature. One way of improving the orders of 
convergence of the approximate eigenelements is to establish asymptotic expansion for 
the eigenelements and then use Richardson extrapolation. Asymptotic expansions of 
approximate eigenvalues of integral operators with smooth kernels have been studied by 
Baker (1977) and Kulkarni (1997). Asymptotic expansions of approximate eigenvalues of 
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integral operators with Green’s kernel have been studied in Baker (1977), Kulkarni and 
Rane (2012). In this article, we consider the following integral operator 

( )( ) ( , ) ( ) , [ , ],
b

a
Tx s k s t x t dt s a b= ∈∫  (1) 

with a weakly singular periodic kernel of the form 

1 2( , ) ( , ) log ( , ).k s t H s t s t H s t= − +  (2) 

1 We assume that k(·, ·) is periodic in both variables with period Q = b – a, and that for 
an even positive integer m, H1, H2 ∈ Cm+2 ({(s, t): |s – t| ≤ 3Q/2, t ∈ }),R  the space 
of m + 2 times continuously differentiable complex valued functions. 

2 In addition, we also assume that H1(s, s) and H2(s, s) are periodic with period Q. 

An example of such a kernel (see Sidi, 1989) is 

( , ) log 4sin , , [0, 2 ].
2

s tk s t s t π⎛ − ⎞= ∈⎜ ⎟
⎝ ⎠

 

The above kernel k(s, t) can be written as 

1 2( , ) ( , ) log ( , ),k s t H s t s t H s t= − +  

where 

1 2

4sin
2( , ) 1 and ( , ) log .

s t

H s t H s t
s t

⎛ − ⎞
⎜ ⎟

= = ⎜ ⎟
−⎝ ⎠

 

Moreover H1(s, s) = 1 and H2(s, s) = log 2. Clearly the kernel k(s, t) is 2π periodic in both 
the variables. H1(s, s) = 1 and H2(s, s) = log 2 are constant functions so that they are 
periodic of any period and hence 2π periodic. Thus assumptions 1 and 2 in the 
introduction about the kernel are trivially satisfied. Let ( )QC \  be the space of all 
continuous functions on \  that are periodic with period Q = b – a. Then 

: ( ) ( )Q QT C C→\ \  is a compact operator (see Xu and Zhao, 1996). Since T is a 
compact, the spectrum of T, σ(T), which is the complement of the resolvent  
ρ(T) = {z ∈ ^  : (T – zI)–1 : ( ) ( )Q QC C→\ \  bounded linear}, forms a countably infinite 
set with possibly 0 as the only limit point. Moreover, the non-zero elements of σ(T) are 
eigenvalues with finite algebraic multiplicities. We are interested in an approximate 
solution of the eigenvalue problem 

, 0 , 0 ( ).QTφ λφ λ φ C= ≠ ∈ ≠ ∈^ \  (3) 

Xu and Xhao (1996) have considered the case of an approximate solution of the operator 
equation. They define a modified Nyström scheme Tn, which is a collectively compact 
family of operators converging to T pointwise. An asymptotic expansion for Tn is 
obtained and then an asymptotic expansion for the approximate solution of an operator 
equation is studied. The main purpose of this article is to obtain an asymptotic expansion 
for a simple eigenvalue λn. 
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Since, for a fixed t ∈ [a, b], k(·, t) is periodic with period Q, we obtain 

( ) ( , ) ( )

( , ) ( )

( ), [ , ].

b

a
b

a

λφ s Q k s Q t φ t dt

k s t φ t dt

λφ s s a b

+ = +

=

= ∈

∫
∫  

Since λ ≠ 0, it follows that 

( ) ( ), [ , ].φ s Q φ s s a b+ = ∈  

This shows that the eigenfunction φ is periodic with period Q. 
In general, the eigenfunction φ = Cm+2(a, b), but the derivatives of φ may be 

unbounded at a or b (see Richter, 1976; Schneider, 1979). However, we show that in this 
particular case, 2 ( ).mφ C +∈ \  

Since k is periodic in both variables and x ∈ ( ),QC \  we can write 

( )( ) ( , ) ( ) ( , ) ( ) ,
b b

a a
Tx s k s t x t dt k s t x t dt

′

′
= =∫ ∫  

where b′ – a′ = b – a = Q. Choose a′ and b′ such that b′ – a′ = b – a = Q and a ∈ (a′, b′). 
Then since 

[ ]( )( ) ( , ) ( ) ( ), , ,
b

a
Tφ s k s t φ t dt λφ s s a b

′

′
′ ′= = ∈∫  

it follows that φ = Cm+2(a′, b′) and hence, in particular, φ is m + 2 times continuously 
differentiable at a. In a similar manner, it can be shown that φ is m + 2 times continuously 
differentiable at b. In fact, 2 ( ).mφ C +∈ \  

2 Generalised Euler-MacLaurin formula and Nyström scheme 

Let n ∈ `  and .b ah
n
−=  Let 

( 1) , 1, , 1.it a i h i n= + − = +…  

Then a = t1 < t2 < … < tn+1 = b, is a uniform partition of [a, b]. We quote a result about 
the Euler-MacLaurin summation formula for a function of the form 

1 2( ) ( ) log ( ), , , [ , ],
2 2
Q QG t g t s t g t t a b s a b⎡ ⎤= − + ∈ − + ∈⎢ ⎥⎣ ⎦

 

where 2
1 2, [ , ]

2 2
m Q Qg g C a b+∈ − +  (see Theorem 2.2 of Xu and Zhao, 1996). 

Theorem 2.1: Assume that G is periodic with period Q = b – a on \{ } .ks kQ ∞
=−∞+\  Then 
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( )

1 2
0,

2
2 2 1 2
1

1

( ) ( ) ( ) log ( )
2

( 2 )2 ( ) ,
(2 )!

b

a j a s jh b

m
μ μ m

μ

hG t dt h G s jh g s h hg s
π

ζ μ g s h O h
μ

≠ < + ≤

+ +

=

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

′ −+ +

∑∫

∑
 

where ζ is the Riemann zeta function. 

Let T be the integral operator, with kernel defined by equation (2). Let 2 ( ),m
Qx C +∈ \  the 

space of Q periodic functions in 2 ( ).mC + \  For a fixed s ∈ [a, b], applying Theorem 2.1 
to G(t) = k(s, t)x(t) = H1(s, t) log |s – t|x(t) + H2(s, t)x(t), we obtain 

( )

( ) ( ) ( )

1
0,

2 2
2 1

2 12
1

2

2
2 1 2

2
1

( )( ) ( , ) ( ) ( , ) ( ) log
2

( 2 )( , ) ( ) 2 ( , ) ( )
(2 )!

.

( ) ( ) , [ , ],

j a s jh b

m μ
μ

μ
μ t s

m

m
μ m

n μ
μ

hTx s h k s s jh x s jh H s s x s h
π

ζ μhH s s x s H s t x t h
μ t

O h

T x s C x s h O h s a b

≠ < + ≤

+

= =

+

+ +

=

⎛ ⎞= + + + ⎜ ⎟
⎝ ⎠

′ − ∂⎛ ⎞+ + ⎜ ⎟∂⎝ ⎠

+

= + + ∈

∑

∑

∑

 (4) 

where 

( ) 1
0,

2

( ) ( , ) ( ) ( , ) ( ) log
2

( , ) ( ),

n
j a s jh b

hT x s h k s s jh x x jh H s s x s h
π

hH s s x s
≠ < + ≤

⎛ ⎞= + + + ⎜ ⎟
⎝ ⎠

+

∑  (5) 

is a modified Nyström scheme proposed in Xu and Zhao (1996) and 

2
2 2

2 12
( 2 )( ) 2 ( , ) ( ) ( ).

(2 )!

μ
m μ

μ μ
t s

ζ μC x s H s t x t C
μ t

+ −

=

′ − ∂⎛ ⎞= ∈⎜ ⎟∂⎝ ⎠
\  (6) 

Assume that, for i =1, …, m, 1( , )
i

i
t s

H s t
t =

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 is periodic with period Q. If 

2 ( ),m
Qx C +∈ \  then 

2 2
2 ( ).m μ
μ QC x C + −∈ \  

This fact is used in the proof of the Theorem on asymptotic expansion of approximate 
solution of an operator equation in Xu and Zhao. Consider the following operator 
equation 

.u Tu f− =  (7) 

Assume that 1 belongs to the resolvent set of T. Replacing T by Tn and u by un in  
equation (7), we obtain 
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.n n nu T u f− =  (8) 

Since 1 belongs to the resolvent set of T and Tn is a collectively compact family of 
operators converging to T pointwise, for n large enough, equation (8) has a unique 
solution. The following asymptotic expansion for the approximate solution un has been 
proved (see Theorem 2.3; Xu and Zhao, 1996). In what follows, the notation ,q⎢ ⎥⎣ ⎦  
denotes the largest integer not greater than q. 

Theorem 2.2: Let T be an integral operator with the kernel of the class defined in  

Section 1. Suppose that for i =1, …, m, 1( , )
i

i
t s

H s t
t =

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 is a periodic function with 

period Q. Then for s ∈ [a, b], the following asymptotic expansion holds: 

( ) [ ] ( )
1

1 1 3 2
3

5

( ) ( ) ( ) ( ) ( ) ,
m

q m
n q

q

I T f s I T f s s h s h O h
+

− − +

=

⎡ ⎤− = − − − +⎣ ⎦ ∑ν ν  (9) 

where ( )2 2 2 ( )m q
q QC + − ⎢ ⎥⎣ ⎦∈ \ν  are as follows: 

[ ] [ ]( )1
2 1 2( ) ( ) , 1, 2,q qI T C I T f q−

+− = − =ν  

[ ] [ ]( ) ( )
1

1
2 1 2 2 2 2

2

( ) ( ) , 3, , 2
q

q q q μ μ
μ

I T C I T f C q m
−

−
+ −

=

− = − − =∑ …ν ν  

and 

[ ] ( )
2

4 2 2 2 2 2 1
1

0, ( ) , 3, , 2.
q

q q μ μ
μ

I T C q m
−

− − +
=

= − = − =∑ …ν ν ν  

Consider the modified Nyström operator Tn defined by equation (5). For computing the 
solutions of 

, 0 , [ , ],n n n n n n QT φ λ φ λ φ C a b= ≠ ∈ ∈^  (10) 

evaluate the above equation at ti = a +(i – 1)h, i =1, 2, …, n + 1. Using the periodicity of 
k and φn, we obtain the following matrix eigenvalue problem: 

( ) ( ) ( ) ( ) ( ) ( )

( )

1

1 2
, 1

, , log ,
2

, 1, , 1.

n

i j n j i i n i i i n i
j i j

n n i

hh k t t φ t H t t φ t h hH t t φ t
π

λ φ t i n

+

≠ =

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

= = +

∑
…

 

3 Main results 

Let λ ≠ 0 be a simple eigenvalue of T. Let ε be such that 0 < ε < dist(λ, sp(T)\{λ}) and Γ 
be a positively oriented circle with centre λ and radius ε. Then Γ ⊆ ρ(T), 
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1
Γ

1 ( )
2

P T zI dz
πi

−= − −∫  

is the spectral projection associated with T and λ and its rank is 1. 
Let Tn be the modified Nyström approximation of T given by equation (5). Since Tn is 

a collectively compact family of operators converging to T pointwise, (see Xu and Zhao, 
1996) it follows that, for all n large enough, Γ ⊂ ρ(Tn). Let 

( ) 1

Γ

1
2n nP T zI dz
πi

−= − −∫  

be the spectral projection associated with Tn and Γ. Then the rank of Pn = 1 and hence the 
spectrum of Tn inside Γ consists of a simple eigenvalue, say λn (see Ahues et al., 2001). 

Let φ be an eigenvector of T associated with λ and normalised by 2( ) 1.
b

a
φ s ds =∫  

Recall that 2 ( ).m
Qφ C +∈ \  Let φn = Pnφ. Then for all n large enough, 0 ≠ φn is an 

eigenvector associated with Tn and λn. Using Theorem 2.2, we obtain the asymptotic 
expansion for Pnφ. 

Proposition 3.1: Let T be an integral operator with the kernel defined by equation (2). 

Suppose that for i = 1, …, m, 1( , )
i

i
t s

H s t
t =

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 is a periodic function of period Q. Then 

for s ∈ [a, b], we have 

( )
1

3 2
3

5

( ) ( ) ( ) ( ) ,
m

q m
n q

q

φ s φ s χ s h χ s h O h
+

+

=

= − − +∑  (11) 

where 

,
Γ

1( ) ( ) ,
2q q zχ s s dz
πi

= − ∫ ν  

and 

[ ] [ ]( )1
2 1, 2( ) ( ) , 1, 2,q z qT zI C T zI φ q−

+− = − − =ν  

[ ] [ ]( ) ( )
1

1
2 1, 2 2 2 2 ,

2

( ) ( ) , 3, , 2
q

q z q q μ μ z
μ

T zI C T zI φ C q m
−

−
+ −

=

− = − − + =∑ …ν ν  

and 

[ ] ( )
2

4, 2 , 2 2 2 2 1,
1

0, ( ) , 3, , 2.
q

z q z q μ μ z
μ

T zI C q m
−

− − +
=

= − = =∑ …ν ν ν  

Proof: From equation (4), we have 

( ) ( ) ( )
2

2 1 2
2

1

( )( ) ( ) ( ) , [ , ].
m

μ m
n μ

μ

Tx s T x s C x s h O h s a b+ +

=

= + + ∈∑  
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For z ∈ ρ(T), we have 

( )[ ] ( ) ( )
2

2 1 2
2

1

( ) [( ) ]( ) ( ) , [ , ].
m

μ m
n μ

μ

T zI x s T zI x s C x s h O h s a b+ +

=

− = − − + ∈∑  

Now using Theorem 2.2, for all 2 ( )m
Qx C +∈ \  and s ∈ [a, b], we obtain 

( ) [ ] ( )
1

1 1 3 2
3, ,

5

( ) ( ) ( ) ( ) ( ) ,
m

q m
n z q z

q

T zI x s T zI x s s h s h O h
+

− − +

=

⎡ ⎤− = − − − +⎣ ⎦ ∑ν ν  (12) 

where 

[ ] [ ]( )1
2 1, 2( ) ( ) , 1, 2,q z qT zI C T zI x q−

+− = − − =ν  

[ ] [ ]( ) ( )
1

1
2 1, 2 2 2 2 ,

2

( ) ( ) , 3, , 2
q

q z q q μ μ z
μ

T zI C T zI x C q m
−

−
+ −

=

− = − − + =∑ …ν ν  

and 

[ ] ( )
2

4, 2 , 2 2 2 2 1,
1

0, ( ) , 3, , 2.
q

z q z q μ μ z
μ

T zI C q m
−

− − +
=

= − = =∑ …ν ν ν  

Note that ν3,z, νq,z depends upon z and belong to ( )2 2 2 ( ).m q
QC + − ⎢ ⎥⎣ ⎦ \  Integrating along the 

curve Γ, we get 

( ) [ ]

( )

1 1
Γ Γ

3
3,

Γ

1
2

,
Γ5

1 1( ) ( ) ( )
2 2

1 ( )
2

1 ( ) .
2

n

z

m
q m

q z
q

T zI x s dz T zI x s dz
πi πi

s dz h
πi

s dz h O h
πi

− −

+
+

=

⎡ ⎤− − = − −⎣ ⎦

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

∫ ∫

∫

∑ ∫

ν

ν

 

Define 

,
Γ

1( ) ( ) , [ , ],
2q q zχ s s dz s a b
πi

= − ∈∫ ν  

for q = 3, 5, …, m + 1, and we have 

( )
1

3 2
3

5

( ) ( ) ( ) ( ) , [ , ].
m

q m
n q

q

P x s Px s χ s h χ s h O h s a b
+

+

=

= − − + ∈∑  

Substituting x = φ in the above equation and noting that Pφ = φ, Pnφ = φn we obtain 
equation (11). □ 

We now prove the following proposition. 
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Proposition 3.2: Let the conditions of Proposition 3.1 hold. Then for n large enough and  
s ∈ [a, b], the following asymptotic expansion holds: 

( ) ( )

( )
( )

( )

2 1
2 1

2
1 3, 4

2 21
2 1 2

2
3, 4 1

( ) ( )( ) ( ) ( )

( ) ,

m m
μ q

n n μ q
μ q q

m qm
μ q m

μ q
q q μ

T φ s Tφ s C φ s h Tχ s h

c χ s h O h

+
+

= = ≠

−⎢ ⎥− ⎣ ⎦
+ + +

= ≠ =

= − −

+ +

∑ ∑

∑ ∑
 (13) 

where C2µx is defined in equation (6). 

Proof: For s ∈ [a, b] and a < s + jh ≤ b, from equation (11) we have 

( )
1

3 2
3

5

( ) ( ) ( ) ( )
m

q m
n q

q

φ s φ s χ s h χ s h O h
+

+

=

= − − +∑  (14) 

and 

( )
1

3 2
3

5

( ) ( ) ( ) ( ) .
m

q m
n q

q

φ s jh φ s jh χ s jh h χ s jh h O h
+

+

=

+ = + − + − + +∑  (15) 

For s ∈ [a, b] 

( )
0,

1 2

( ) ( , ) ( )

( , ) ( ) log ( , ) ( ).
2

n n n
j a s jh b

n n

T φ s h k s s jh φ s jh

hH s s φ s h hH s s φ s
π

≠ < + ≤

= + +

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

∑
 

Using the asymptotic expansions for φn(s) and φn(s + jh) in the above equation, we get 

( )

( )

1
3

3
0, 5

1
3

1 3
5

1
3 2

2 3
5

( ) ( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) log
2

( , ) ( ) ( ) ( ) , [ , ].

m
q

n n q
j a s jh b q

m
q

q
q

m
q m

q
q

T φ s h k s s jh φ s jh χ s jh h χ s jh h

hH s φ s χ s h χ s h h
π

hH s s φ s χ s h χ s h O h s a b

+

≠ < + ≤ =

+

=

+
+

=

⎛ ⎞
= + + − + − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞

+ − − + ∈⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑

∑

 

On arranging the terms, for s ∈ [a, b], we get 
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( )
0,

1 2

3
0,

3
1 2 3

0,

( ) ( , ) ( )

( , ) log ( , ) ( )
2

( , ) ( )

( , ) log ( , ) ( )
2

( , ) ( )

n n
j a s jh b

j a s jh b

q
q j a s jh b

T φ s h k s s jh φ s jh

hh H s s H s s φ s
π

h k s s jh χ s jh

hh H s s H s s χ s h
π

h k s s jh χ s jh

≠ < + ≤

≠ < + ≤

= ≠ < + ≤

⎛= + +
⎜
⎝

⎞⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎠
⎛− + +
⎜
⎝

⎞⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎠

⎛− + +
⎜
⎝

∑

∑

∑

( )

1

5

1 2

2

( , ) log ( , ) ( )
2

, [ , ].

m

q
q

m

hh H s s H s s χ s h
π

O h s a b

+

+

⎞⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎠
+ ∈

∑

 

Thus 

( ) ( )
1

3 2
3

5

( ) ( ) ( ) ( ) , [ , ].
m

q m
n n n n n q

q

T φ s T φ s T χ s h T χ s h O h s a b
+

+

=

= − − + ∈∑  (16) 

For q = 3, 5, …, m +1, ( )2 2 2 ( )m q
q Qχ C + − ⎢ ⎥⎣ ⎦∈ \  and 2 ( ).m

Qφ C +∈ \  Using equation (4), for  
s ∈ [a, b], we have 

( ) ( ) ( ) ( )( )
( 2) 2

2 2 22 1
2

1

( ) ( ) ( ) ,

3, 5, 6 , 1,

m q
m qμ

q n q μ q
μ

Tχ s T χ s C χ s h O h

q m

−⎢ ⎥⎣ ⎦
+ − ⎢ ⎥+ ⎣ ⎦

=

= + +

= −

∑
…

 (17) 

and 

( ) ( ) ( )
2

2 1 2
2

1

( )( ) ( ) ( ) .
m

μ m
n μ

μ

Tφ s T φ s C φ s h O h+ +

=

= + +∑  (18) 

Note that for s ∈ [a, b], 

( ) ( ) ( ) ( ) ( ) ( )2 2
1 1( ) ( ) and ( ) ( ) .m n m m n mTχ s T χ s O h Tχ s T χ s O h+ += + = +  

Substituting equations (17) and (18) and the above expansions in equation (16), for  
s ∈ [a, b] we get 
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( )

( )

( 2) 3 22
2 1 2 1 3

2 3 2 3
1 1

( 2) 21
2 1

2
5 1

1 2
1

( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( ) .

mm
μ μ

n n μ μ
μ μ

m qm
μ q

q μ q
q μ

m m m
m m

T φ s Tφ s C φ s h Tχ s C χ s h h

Tχ s C χ s h h

Tχ s h Tχ s h O h

−⎢ ⎥⎣ ⎦
+ +

= =

−⎢ ⎥− ⎣ ⎦
+

= =

+ +
+

⎧ ⎫⎪ ⎪= − − −⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪− −⎨ ⎬
⎪ ⎪⎩ ⎭

− − +

∑ ∑

∑ ∑  

This completes the proof. □ 

Using the asymptotic expansion of φn(s) and ( ),nφ s  we obtain the following proposition. 

Proposition 3.3: Let the conditions of Proposition 3.1 hold. Then we have 

( )
1

2 2 3 2
3

5

( ) ( ) ,
mb b

p m
n p

a a
p

φ s ds φ s ds h h O h
+

+

=

= + + +∑∫ ∫ α α  (19) 

where 

( )( ) ( ) ( ) ( ) , 3, 5, 7
b

p p p
a
φ s χ s φ s χ s ds p= − + =∫α  (20) 

( )6 6 6 3 3( ) ( ) ( ) ( ) ( ) ( ) ,
b

a
φ s χ s φ s χ s χ s χ s ds= − − +∫α  (21) 

3

3

( ) ( ) ( ) ( ) ( ) ( ) , 8.
pb

p p p j p j
a j

φ s χ s φ s χ s χ s χ s ds p
−

−
=

⎛ ⎞
= − − + ≥⎜ ⎟

⎜ ⎟
⎝ ⎠

∑∫α  (22) 

Proof: From Proposition 3.1, we have 

( )
1

3 2
3

5

( ) ( ) ( ) ( ) , [ , ].
m

q m
n q

q

φ s φ s χ s h χ s h O h s a b
+

+

=

= − − + ∈∑  (23) 

Taking the complex conjugate value of the above equation, we obtain 

( )
1

3 2
3

5

( ) ( ) ( ) ( ) , [ , ].
m

q m
n q

q

φ s φ s χ s h χ s h O h s a b
+

+

=

= − − + ∈∑  (24) 

Multiplying the above equations memberwise, we get 

( )

( )

1

3, 4

1 1
2

3, 4 3, 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) , [ , ].

n n
m

q
q q

q q

m m
q r m

q r
q q r r

φ s φ s φ s φ s

φ s χ s φ s χ s h

χ s χ s h O h s a b

+

= ≠

+ +
+ +

= ≠ = ≠

=

− +

+ + ∈

∑

∑ ∑

 (25) 

Integrating the above equation from a to b we get equation (19). □ 

We now prove the main result concerning asymptotic expansion of λn. 
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Theorem 3.4: Let the conditions of Proposition 3.1 hold. Let λ be a non-zero simple 
eigenvalue of T. Then for n large enough, there exists βp independent of h such that the 
following asymptotic expansion holds: 

( )
1

3 2
3

5

.
m

p m
n p

p

λ λ h h O h
+

+

=

− = + +∑β β  (26) 

Proof: From equation (13), we have 

( ) ( ) ( )

( ) ( )

2 1
2 1

2
1 3, 4

( 2) 21
2 1 2

2
3, 4 1

( ) ( )( ) ( ) ( )

( ) , [ , ].

m m
μ q

n n μ q
μ q q

m qm
μ q m

μ q
q q μ

T φ s Tφ s C φ s h Tχ s h

C χ s h O h s a b

+
+

= = ≠

−⎢ ⎥− ⎣ ⎦
+ + +

= ≠ =

= − −

+ + ∈

∑ ∑

∑ ∑
 (27) 

Since Tφ = λφ and Tnφn = λnφn, it follows that 

( ) ( )

( ) ( )

2 1
2 1

2
1 3, 4

2 21
2 1 2

2
3, 4 1

( ) ( ) ( ) ( )

( ) , [ , ].

m m
μ q

n n μ q
μ q q

m qm
μ q m

μ q
q q μ

λ φ s λφ s C φ s h Tχ s h

C χ s h O h s a b

+
+

− = ≠

−⎢ ⎥− ⎣ ⎦
+ + +

= ≠ =

= − −

+ + ∈

∑ ∑

∑ ∑
 (28) 

From equation (11) of Proposition 3.1 we have 

( )
1

3 2
3

5

( ) ( ) ( ) ( ) , [ , ].
m

q m
n q

q

φ s φ s χ s h χ s h O h s a b
+

+

=

= + + + ∈∑  (29) 

Thus 

( ) ( ){ }

( ) ( )

2 1
2 1

2
1 3, 4

( 2) 21
2 1 2

2
3, 4 1

( ) ( ) ( ) ( )

( ) , [ , ].

m m
μ q

n n μ q q
μ q q

m qm
μ q m

μ q
q q μ

λ λ φ s C φ s h λχ s Tχ s h

C χ s h O h s a b

+
+

= = ≠

−⎢ ⎥− ⎣ ⎦
+ + +

= ≠ =

− = − + −

+ + ∈

∑ ∑

∑ ∑
 (30) 

Multiplying the above equation by ( ),nφ s  s ∈ [a, b], we obtain 

( ) ( )

( ){ }

( )

2
2 1

2
1

1

3, 4

2 21
2 1

2
3, 4 1

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

m
μ

n n n μ
μ

m
q

q q
q q

m qm
μ q

μ q
q q μ

λ λ φ s φ s φ s C φ s h

φ s λχ s Tχ s h

φ s C χ s h

+

=

+

= ≠

−⎢ ⎥− ⎣ ⎦
+ +

= ≠ =

− = −

+ −

+

∑

∑

∑ ∑
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( )

( ){ }

( )

( )

2 1
2 1

2
1 3, 4

1 1

3, 4 3, 4

2 21 1
2 1

2
3, 4 1 3, 4

( 2)

( ) ( )

( ) ( ) ( )

( ) ( )

.

m m
μ r

r μ q
μ r r

m m
q r

r q q
q q r r

m qm m
μ q r

r μ q
q q μ r r

m

χ s C χ s h

χ s λχ s Tχ s h

χ s C χ s h

O h

+
+ +

= = ≠

+ +
+

= ≠ = ≠

−⎢ ⎥− +⎣ ⎦
+ + +

= ≠ = = ≠

+

+

− −

−

+

∑ ∑

∑ ∑

∑ ∑ ∑

 (31) 

It can be seen that the above expression has terms of order h3, h5, h6, h7 , … It is possible 
to write the above equation as 

( ) ( )
1

3 ( 2)
3

5

( ) ( ) ( ) ( ) , [ , ].
m

p m
n n n p

p

λ λ φ s φ s ω s h ω s h O h s a b
+

+

=

− = + + ∈∑  (32) 

A first few terms ωp are of the form 

( ) ( ){ }3 2 3 3 ,ω φ C φ φ λχ Tχ= − + −  

( ) ( ){ }5 4 5 5 ,ω φ C φ φ λχ Tχ= − + −  

( ) ( ) ( ){ } { }6 2 3 3 2 6 6 3 3 3 ,ω φ C χ χ C φ φ λχ Tχ χ λχ Tχ= + + − + −  

( ) ( ){ }7 6 7 7ω φ C φ φ λχ Tχ= − + −  

and 

( ){ } ( ) ( )
( ) ( ) ( ){ } ( ){ }

8 8 8 4 3 2 5

3 4 5 2 3 5 5 5 3 3 .

ω φ λχ Tχ φ C χ φ C χ

χ C φ χ C φ χ λχ Tχ χ λχ Tχ

= − + +

+ + + − + −
 

Integrating equation (32) with respect to s and using equation (9), we obtain 

( )
( )

( )

( )

( )

( )

1
3 ( 2)

3
5

1
2 3 2

3
5

1
3 ( 2)

3
5

1
3 2

3
5

1
3 2

3
5

( ) ( )

( )

( ) ( )

1

,

mb b
p m

p
a ap

n mb
p m

p
a p

mb b
p m

p
a ap

m
p m

p
p

m
p m

p
p

ω s dsh ω s dsh O h

λ λ
φ s ds h h O h

ω s dsh ω s dsh O h

h h O h

h h O h

+
+

=
+

+

=

+
+

=
+

+

=

+
+

=

+ +

− =
+ + +

+ +

=
+ + +

= + +

∑∫ ∫

∑∫

∑∫ ∫

∑

∑

α α

α α

β β

 (33) 
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where βp are recursively chosen as 

3 3 5 5 7 7( ) , ( ) , ( ) ,
b b b

a a a
ω s ds ω s ds ω s ds= = =∫ ∫ ∫β β β  

6 3 3 6 ( ) ,
b

a
ω s ds+ = ∫β α β  

and 
3

3
4, 4

( ) , 7.
p b

p j p j p
aj

j p

ω s ds p
−

−
=

≠ −

+ = >∑ ∫β β α  

□ 

4 Extrapolation 

We propose an extrapolation scheme for the eigenvalue and consider a numerical 
example. Let 

(0) (0)
(0) (1) 28, ,

7
nn

n n n
λ λ

λ λ λ
−

= =  

and 
( 1) ( 1)3

( ) 2
3

2 , 2, 3,
2 1

l ll
nl n

n l

λ λλ l
− −+

+

−
= =

−
…  

Theorem 4.1: Let the conditions of Proposition 3.1 hold. Let λ be a simple non-zero 
eigenvalue of T. Then 

( )
1

( ) ( ) 2

4

, 1, 2,
m

l l j m
n j

j l

λ λ h O h l
+

+

= +

= + + =∑ …ν  (34) 

where ( )l
jν  are scalars independent of h. 

4.1 Numerical example 

Consider 
2

0
( , ) ( ) ( ), 0 2 ,

π
k s t φ t dt λφ s s π= ≤ ≤∫  (35) 

with 

( , ) log 4sin , , [0, 2 ].
2

s tk s t s t π⎛ − ⎞= ∈⎜ ⎟
⎝ ⎠
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We approximate the eigenvalue –π by ( )l
nλ  using the modified trapezoidal rule. The 

expected orders of convergence are α0 =3, α1 =5, α2 = 6 and α3 =7. 
Table 1 Modified trapezoidal rule 

n nλ λ−  α0 (1)
nλ λ−  α1 (2)

nλ λ−  α2 (3)
nλ λ−  α3 

4 1.25 × 10–1        
8 1.50 × 10–2 3.06 7.37 × 10–4      
16 1.85 × 10–3 3.05 2.18 × 10–5 5.09 1.36 × 10–6    
32 2.31 × 10–4 3.00 6.69 × 10–7 5.02 9.99 × 10–9 7.09 1.15 × 10–8  
64 2.88 × 10–5 3.00 2.08 × 10–8 5.01 7.69 × 10–11 7.02 8.05 × 10–11 7.16 
128 3.60 × 10–6 3.00 6.50 × 10–10 5.00 5.99 × 10–13 7.00 6.12 × 10–13 7.04 

The numerical results thus match the theoretical rates of convergence. 
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