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1 Introduction 

In this paper the problem of approximating a locally unique solution x* of equation 

( ) 0,F x =  (1) 

is analysed, where F : D ⊆ S → S is a nonlinear function, D is a convex subset of  
S (S = R or S = C). Newton-like methods are widely used for finding solution of equation 
(1), these methods are usually studied based on: semi-local and local convergence. The 
semi-local convergence method is based on the information around an initial point, to 
give conditions ensuring the convergence of the iterative procedure; while the local one 
is, based on the information around a solution, to find estimates of the radii of 
convergence balls (Argyros, 2008; Argyros and Hilout, 2010; Ren et al., 2009; 
Rheinboldt, 1977; Traub, 1964; Ye and Li, 2006; Zhao and Wu, 2008). 

Third order methods such as Euler’s, Halley’s, super Halley’s, Chebyshev’s (Ahmad 
et al., 2009; Amat et al., 2008; Argyros, 2008; Argyros and Hilout, 2010; Bruns and 
Bailey, 1977; Candela and Marquina, 1990a, 1990b; Chun, 1990; Ezquerro and 
Hernández, 2000, 2005, 2009; Gutiérrez and Hernández, 1998; Ganesh and Joshi, 1991; 
Hernández, 2001; Hernández and Salanova, 1999; Kantorovich and Akilov, 1982; Parhi 
and Gupta, 2007, 2010; Parida and Gupta, 2007; Ren et al., 2009; Rheinboldt, 1977; 
Traub, 1964; Wang et al., 2009, 2011; Ye and Li, 2006; Ye et al., 2007; Zhao and Wu, 
2008; Wang and Kou, 2012a, 2012b; Zhu and Wu, 2003) require the evaluation of the 
second derivative F″ at each step, which in general is very expensive. That is why many 
authors have used higher order multi-point methods (Ahmad et al., 2009; Amat et al., 
2008; Argyros, 2008; Argyros and Hilout, 2010; Bruns and Bailey, 1977; Candela and 
Marquina, 1990a, 1990b; Chun, 1990; Ezquerro and Hernández, 2000, 2005, 2009; 
Gutiérrez and Hernández, 1998; Ganesh and Joshi, 1991; Hernández, 2001; Hernández 
and Salanova, 1999; Kantorovich and Akilov, 1982; Parhi and Gupta, 2007, 2010; Parida 
and Gupta, 2007; Ren et al., 2009; Rheinboldt, 1977; Traub, 1964; Wang et al., 2009, 
2011; Ye and Li, 2006; Ye et al., 2007; Zhao and Wu, 2008; Wang and Kou, 2012a, 
2012b; Zhu and Wu, 2003). In this paper, we present the local convergence of the 
derivative free method defined for each n = 0, 1, 2, … by 

( ) ( )
( )

1

1 ,
n n n n

n n n n

y x F x F x
x y A F x

−

+

′= −
= +

α  (2) 

where x0 is an initial point, α ∈ S (S = R or S = C) is a parameter and 
1

,n
n n

QA
Q

=  

( ) ( )( )( )
( )
( )( ) ( ) ( )( ) ( )( )

( )
( ) ( )( ) ( )

2

2 2
2

,

n n n
n
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n n n n n n n

n

n n n n

F x F x F x
Q

F x

F x F x F x f x F x F x F x
F x

γ F x F x F x F x

− −
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⎡ ⎤− − − + −⎣ ⎦−

⎡ ⎤ ′− − −⎣ ⎦

 

( ) 0,1 ,n
n nQ γF x Q′=  



   

 

   

   
 

   

   

 

   

    Local convergence for a derivative free method 43    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

( ) ( )( )( )
( )( ) ( ) ( )( ) ( )( )

( )

2
0,

2 2
,

2

n n n n

n n n n n n n

n

Q F x F x F x

F x F x F x F x F x F x F x
F x

= − −

⎡ ⎤− − − + −⎣ ⎦−
 

and 

1 , if 1
1

1, if 1.
γ

⎧ ≠⎪= −⎨
⎪ =⎩

α
α

α
 (3) 

If α = 1 and S = R method (2) merges with the method studied by Parida and Gupta 
(2007) (see also Zhu and Wu, 2003). Simply eliminate yn from method (2) to obtain their 
method 

( )
( ) ( ) ( )( )

2

1 2
,n

n n
n n n n n

F xx x
q F x F x F x F x

+ = −
+ − −

 (4) 

where 

( )
( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )2

2 2
.

2
n n n n n n n

n n
n n n n

F x F x F x F x F x F x F x
q q x

F x F x F x F x

⎡ ⎤− − − + −⎣ ⎦= = −
⎡ ⎤− −⎣ ⎦

 

In this special case method (2) is cubically convergent provided that the third derivative 
F ′′′  of function F is bounded in a neighbourhood containing x*. The hypothesis on the 
third derivative limits the applicability of method (2). As a motivational let us define 

function f on 1 5,
2 2

D ⎡ ⎤= −⎢ ⎥⎣ ⎦
 by 

3 2 5 4ln , 0
( )

0, 0
x x x x x

f x
x

+ − ≠⎧
= ⎨ =⎩

 

Choose x* = 1. We have that 
2 2 4 3 2( ) 3 ln 5 4 2 , (1) 3,f x x x x x x f′ ′= + − + =  

2 3 2( ) 6 ln 20 12 10f x x x x x x′′ = + − +  

2 2( ) 6ln 60 24 22.f x x x x′′′ = + − +  

Then, function f ′′′  is unbounded on D. In the present paper we only use hypotheses on 
the first Fréchet derivative. This way we expand the applicability of method (2). 

The rest of the paper is organised as follows. The local convergence of method (2) is 
given in Section 2, whereas the numerical examples are given in the concluding  
Section 3. 
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2 Local convergence analysis 

We present the local convergence analysis of method (2) in this section. Let β > 0, L0 > 0, 

L > 0, M0 > 0, M > 1, 1[0, )
3

N ∈  and α ∈ S be given parameters. It is convenient for the 

local convergence analysis that follows to define some functions and parameters. Define 
functions g0 and h0 on the interval [0, +∞) by: 

( ) ( )0 3
0 0( ) 1 3 3

2
Lg t N t N M M= + + +  

0 0( ) ( ) 1h t g t= −  

and parameter r0 by 

( )( )
( )

0
0 2

0

1 1 3
1 3
N M M

r
N L

− +
=

+
 

Suppose that 

( )03 1N M M+ <  (5) 

Then, we have by equation (5) that 0 < r0, g0(r0) = 1 and 0 ≤ g0(t) < 1 for each t ∈ [0, r0). 

Moreover, define functions g1 and h1 on the interval 
0

1[0, )
L

 by 

( )
( )1

0

1( ) 2 1
2 1

g t Lt M
L t

= + −
−

α  

1 1( ) ( ) 1h t g t= −  

and parameters r1 by 

( )
1

0

2 1 1 .
2

Mr
L L

− −=
+

α  (6) 

Suppose that 

1 1.M − <α  (7) 

Then, we have by equation (7) that 0 < r1, g1(r1) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, r1). 

Furthermore, define functions g2 and h2 on the interval 0
0

1[0, min{ , })r
L

 by 

( )

( )( )

03 2
0 00 0

2 1
0 0

1
4( ) ( )

1 1 ( )

LM NM M γM L t
g t g t

γ L t g t

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠= +

− −
 

and 

2 2( ) ( ) 1.h t g t= −  
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Suppose that 

( )

03 2
0 0 0

0

1 4 1.
1 3

LM NM M γM
M

γ N M M

⎡ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥⎝ ⎠+ <⎢ ⎥
− +⎢ ⎥⎣ ⎦

 (8) 

We get by equation (8) that h2(0) < 0 and h2(t) → +∞ as t → 0
0

1min{ , }.r
L

 It follows 

from the intermediate value theorem that function h2 has zeros in the interval 

0
0

1[0, min{ , }).r
L

 Denote by r2 the smallest such zero. Set 

{ }1 2min , .r r r=  (9) 

Then, we have that 

0 0

2 12 4
2Ar L L L

< < = <
+

 (10) 

00 ( ) 1g t≤ <  (11) 

10 ( ) 1g t≤ <  (12) 

and 

20 ( ) 1 for each [0, ).g t t r≤ < ∈  (13) 

Let U(v, ρ), ( , )U v ρ  stand, respectively for the open and closed balls in S with centre  
v ∈ S and of radius ρ > 0. Next, we present the local convergence of method (2) using the 
preceding notation. 

THEOREM 2.1: Let F : D ⊂ S → S be a differentiable function. Suppose that there exist 

x* ∈ D, β > 0, L0 > 0, L > 0, M0 > 0, M ≥ 1, N ∈ 1[0, ),
3

 α ∈ S such that for γ given by 

equation (3) and each x, y ∈ D the following hold equations (5), (7), (8), 

( ) ( )0, 0,F x F x∗ ∗′= ≠  (14) 

( ) ( )( )1
0( ) ,F x F x F x L x x−∗ ∗ ∗′ ′ ′− ≤ −  (15) 

( )( )( ) ( ) ,F x F x F y L x y∗′ ′ ′− ≤ −  (16) 

0( ) ,F x M′ ≤  (17) 

( ) 1 ( ) ,F x F x M−∗′ ′ ≤  (18) 

( ) ,I F x N′− ≤  (19) 
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and 

( ), ,U x r D∗ ⊆  (20) 

where 

( ){ }0max ,r N M r r= +  (21) 

and r is given by equation (9). Then, the sequence {xn} generated for x0 ∈ U(x*, r) – {x*} 
by method (2) is well-defined, remains in U(x*, r) for each n = 0, 1, 2, … and converges 
to x*. Moreover the following estimates hold 

( )1n n n ny x g x x x x x x r∗ ∗ ∗ ∗− ≤ − − < − <  (22) 

and 

( )1 2 ,n n n nx x g x x x x x x∗ ∗ ∗ ∗
+ − ≤ − − < −  (23) 

where ‘g’ functions are defined above Theorem 2.1. Furthermore, if there exist  
T ∈ [r, 2/L0) such that ( , ) ,U x T D∗ ⊆  then the limit point x* is the only solution of 
equation F(x) = 0 in ( , ).U x T∗  

Proof: We shall show estimates (22) and (23) using mathematical induction. Using the 
hypothesis x0 ∈ U(x*, r) – {x*}, equation (15) and the definition of r, we get that 

( ) ( ) ( )( )1
0 0 0 0 1.F x F x F x L x x L r−∗ ∗ ∗′ ′− ≤ − < <  (24) 

It follows from equation (24) and the Banach Lemma on invertible functions (Argyros, 
2008; Argyros and Hilout, 2010; Ye et al., 2007; Wang and Kou, 2012a) that, F′(x0) ≠ 0 
and 

( ) ( )1
0

0 0

1 .
1

F x F x
L x x

− ∗
∗

′ ′ ≤
− −

 (25) 

Hence y0 and x1 are well-defined by the first substep of method (2) for n = 0.  

We can write F(x0) = F(x0) – F(x*) = 
1

0 0
0

( ( ))( ) .F x θ x x x x dθ∗ ∗ ∗′ + − −∫  Notice that  

| x* + θ(x0 – x*) – x* | = θ | x0 – x*| ≤ | x0 – x*| < 1. That is x* + θ(x0 – x*) ∈ U(x*, r). Using 
equation (17) and (18) we have that 

( )0 0 0F x M x x∗≤ −  (26) 

( ) ( )1
0 0 .F x F x M x x−∗ ∗′ ≤ −  (27) 

In view of the first substep of method (2) for n = 0, equations (12), (16), (25), (26)  
and (27) we obtain in turn that 



   

 

   

   
 

   

   

 

   

    Local convergence for a derivative free method 47    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( )

( )
( )

1
0 0 0 0 0

1 11
0 0 0 0

0

11
0 0

2
0 0

0 00 0

1 0 0 0

1

1

12 1

,

y x x x F x F x F x F x

F x F x F x F x θ x x F x x x dθ

F x F x F x F x

L x x M x x
L x xL x x

g x x x x x x r

−∗ ∗ ∗

−− ∗ ∗ ∗ ∗ ∗

−− ∗ ∗

∗ ∗

∗∗

∗ ∗ ∗

′ ′− ≤ − − + −

′ ′ ′ ′ ′≤ + − − −

′ ′ ′+ −

− −≤ +
− −− −

= − − < − <

∫
α

α  (28) 

which shows equation (22) for n = 0 and y0 ∈ U(x*, r). We have by equations (19), (20), 
(21) and (27) that 

( ) ( )( )( )( )
1

0 0 0 0
0

0 0

2x F x x I F x θ x x x x dθ

N x x x x r

∗ ∗ ∗ ∗

∗ ∗

′− − = − + − −

≤ − < − <

∫  

and 

( ) ( )( )( )( )

( )( ) ( )

( )

1
0 0 0 0

0

1
0 0

0

0 0 ( ) .

x F x x I F x θ x x x x dθ

F x θ x x x x dθ

N M x x N M r r

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

′− − = − + − −

′+ + − −

≤ + − < + ≤

∫

∫  

Hence, x0 – F(x0) ∈ U(x*, r) and 0 02 ( ) ( , ).x F x U x r∗− ∈  We also have that  
F(x0 – F(x0) ± θF(x0)) ∈ D and F(x0 – F(x0) ± 2θF(x0)) ∈ D by the convexity of D. Next, 
we shall show that Q0,0(x0) ≠ 0. We can write 

( )( )
( ) ( )( ) ( )( )( )

( ) ( ) ( )( )( )
( ) ( )( )( ) ( )

( )( ) ( ) ( )( )

0,0 0

0 0 0

0 0

1
0 0 0

0
1

0 0 0 0 0
0

3

3

2 2 ,

Q F x x x

F x F x F x F x F x

F x x F x F x x

F x I F x θ x x x x x x

F x F x F x F x θF x dθ

∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

′− −

= − − − −

′− − − −

⎛ ⎞′ ′− − + − − −⎜ ⎟
⎝ ⎠

′+ − − +

∫
∫

 (29) 

since 

( )
( ) ( )( )

( ) ( )( ) ( )( )
( )

( ) ( )( )

1
0 0 0 0

0
0 0 0

0 0
1

0 0 0
0

2 21 2
2 2

2 2

F x F x θF x F x dθ
F x F x F x

F x F x

F x F x θF x dθ

′ − +
⎡ ⎤− − =⎣ ⎦

′= − +

∫

∫
 

and 
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( )( )
( )( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )

0 0

0 0 0 0

0 0 .

F x F x

F x F x F x F x F x x F x F x x

F x x F x F x x

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

−

′= − − − − − + −

′+ − + −

 

Then, using equations (11), (17), (18), (19), (26), (27) and (29), we obtain in turn since  
x0 ∈ x* that 

( )( )( ) ( )( )( )
( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( )( )( )(
( )) ( )( )( )( )

( )( )( )( )

( ) ( )( )( )

( )( )( )( )

1
0 0,0 0

11 1
0 0 0

0

1 1
0 0

0

1
0 0

0

1
0 0

0

1 1
0 0

0

0 0

3

1

3

1

F x x x Q F x x x

x x F x F x θ x x F x x x dθ

F x F x F x θ x F x F x x

F x F x θ x x x x dθ

I F x θ x x x x dθ

F x F x θ x x F x

F x θ x x x x dθ

−∗ ∗ ∗ ∗

− −∗ ∗ ∗ ∗ ∗ ∗

−∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

−∗ ∗ ∗

∗ ∗ ∗

′ ′− − −

⎧ ′ ′≤ − + − − −⎨
⎩

′ ′+ − + − + −

′ ′− − + − −

′+ − + − −

′ ′+ + − −

′× − + − −

∫

∫

∫

∫

∫

( ) ( )( )

( )

( )

1

0

1
0 0 0

0

1 2 20 0 2
0 0 0

0 0 0

2
0 0

0 0 0

0 0

2 2

3
2 2

3
3 3

2 2
1.

F x F x θF x dθ

L Lx x x x N x x

N x x M MN x x
L L Nx x x x N M M

g x x

−∗ ∗ ∗

∗ ∗

∗ ∗

∗

⎫′× − + ⎬
⎭

⎡≤ − − + −⎢⎣
⎤+ − + − ⎦

= − + − + +

= − <

∫

∫

 (30) 

It follows from equation (30) that Q0,0(x0) ≠ 0 and 

( )
( )( )

1
0,0

0 0 0

1 .
1

Q F x
x x g x x

− ∗
∗ ∗

′ ≤
− − −

 (31) 

Similarly, we need an estimate on |Q|. We have that 

( ) ( )( )( )
( )

( )
( ) ( )( ) ( )

( )

( ) ( ) ( )( )

21
2

0 0 0 00 0 0 0
0

0 0

21
0 0 0 0

0

3
00 .

F x F x θF x dθ θF xF x F x F x
F x

F x θF x

F x F x F x θF x dθ

M x x∗

⎛ ⎞′ − + +− − ⎜ ⎟
= ⎜ ⎟+⎝ ⎠

′= − +

≤ −

∫

∫  (32) 
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We can write 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )( ) ( )

0 0 0 0 0

0 0 0 0 0 0 0

1
0 0 0 0 0 0 0

0

2 2

2

.

F x F x F x F x F x

F x F x F x F x F x F x F x

F x F x θF x F x F x θ F x F x dθ

− − + −

⎡ ⎤ ⎡ ⎤= − − + − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤′ ′= − + − − + −⎣ ⎦∫

 (33) 

Using equations (16) and (33) we have that 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

1 1
0 0 0 0 0 0 0

0

0

1

0
2 ,

F x F x F x θF x F x F x θF x F x dθ

F x

L θdθ L

−∗ ⎡ ⎤′ ′ ′− + − − +⎣ ⎦

≤ =

∫

∫β β

 (34) 

( ) ( )( )1
0 0 0F x F x F x MN x x−∗ ∗′ − ≤ −  (35) 

and 

( ) ( )( ) ( ) ( ) ( )( )
( )

1
0 0 0 0

2
0 0 00

1

1 .

γ F x F x F x F x F x F x

γM L x x x x

−∗ ∗

∗ ∗

′ ′ ′− − − +

≤ + − −
 (36) 

Using the definition of Q and summing up equations (32)–(36) we get in turn that 

( )03 2
0 0 0 00 0 1 .

4
LM NQ M γM L x x x x∗ ∗⎛ ⎞≤ + + + − −⎜ ⎟

⎝ ⎠
 (37) 

Then, using the second substep of method (2) for n = 0, equations (9), (13), (25), (26), 
(28) and (37), we get that 

( )

( )
( )

( ) ( )( )
( )

1 0 0 0

03 2
0 0 0 00 0

1 0 0
0 0 0 0

2 0 0 0

1
4
1 1

,

x x y x A F x
LM NM γM L x x M x x

g x x x x
γ L x x g x x

g x x x x x x r

∗ ∗

∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗

− ≤ − +

⎛ ⎞+ + + − −⎜ ⎟
⎝ ⎠≤ − − +

− − − −

= − − < − <

 

which shows equation (23) and x1 ∈ U(x*, r). By simply replacing x0, y0, x1 by xk, yk, xk+1 
in the preceding estimates we arrive at estimates (22) and (23). Using the estimate  
| xk+1 – x* | < | xk – x* | < r, we deduce that xk+1 ∈ U(x*, r) and limk→∞xk = x*. To show the 

uniqueness part, let 
1

0
( ( ))B F y θ x y dθ∗ ∗ ∗′= + −∫  for some ( , )y U x T∗ ∗∈  with F(y*) = 0. 

Using equation (15) we get that 

( ) ( )( ) ( )

( )

11
0

0
1 0

0
0

1 1.
2

F x B F x L y θ x y x dθ

LL θ x y dθ T

−∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

′ ′− ≤ + − −

≤ − − ≤ <

∫
∫

 (38) 
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It follows from equation (38) and the Banach Lemma on invertible functions that B is 
invertible. Finally, from the identity 0 = F(x*) – F|(y*)= B(x* – y*), we deduce that x* = y*. 

□ 

REMARK 2.2: 

1 In view of equation (15) and the estimate 

( ) ( ) ( )( )
( ) ( )( )

1 1

1

0

( ) ( )

1 ( )

1

F x F x F x F x F x I

F x F x F x

L x x

− −∗ ∗ ∗

−∗ ∗

∗

′ ′ ′ ′ ′= − +

′ ′ ′≤ + −

≤ + −

 

condition (18) can be dropped and M can be replaced by 

0( ) 1 .M t L t= +  

2 The results obtained here can be used for operators F satisfying autonomous 
differential equations (Argyros, 2008) of the form 

( ) ( ( ))F x P F x′ =  

where P is a continuous operator. Then, since F′(x*) = P(F(x*)) = P(0), we can apply 
the results without actually knowing x*. For example, let F(x) = ex – 1. Then, we can 
choose: P(x) = x + 1. 

3 The radius rA was shown by us to be the convergence radius of Newton’s method 
(Amat et al., 2008; Argyros, 2008; Argyros and Hilout, 2010) 

( ) ( )1
1 for each 0, 2,n n n nx x F x F x n−

+ ′= − = …  (39) 

under the conditions (15) and (16). It follows from the definition of r that the 
convergence radius r of the method (2) cannot be larger than the convergence radius 
rA of the second order Newton’s method. As already noted in Argyros (2008) and 
Argyros and Hilout (2010), rA is at least as large as the convergence ball given by 
Rheinboldt (1977) 

2 .
3Rr L

=  (40) 

In particular, for L0 < L we have that 

Rr r<  

and 

01 as 0.
3

R

A

r L
r L

→ →  

That is our convergence ball rA is at most three times larger than Rheinboldt’s. The 
same value for rR was given by Traub (1964). 
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4 It is worth noticing that method (2) is not changing when we use the conditions of 
Theorem 2.1 instead of the stronger conditions used in (Parhi and Gupta, 2010; 
Parida and Gupta, 2007; Zhu and Wu, 2003). Moreover, we can compute the 
computational order of convergence (COC) defined by 

1

1
ln lnn n

n n

x x x xξ
x x x x

∗ ∗
+

∗ ∗
−

⎛ ⎞ ⎛ ⎞− −= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

or the approximate computational order of convergence 

1 1
1

1 1 2
ln ln .n n n n

n n n n

x x x xξ
x x x x

+ −

− − −

⎛ − ⎞ ⎛ − ⎞= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

This way we obtain in practice the order of convergence in a way that avoids the 
bounds involving estimates using estimates higher than the first Fréchet derivative of 
operator F. 

3 Numerical examples 

We present numerical examples in this section. 

EXAMPLE 3.1: Let D = (–∞, +∞). Define function f of D by 

( ) sin( ).f x x=  (41) 

Then we have for x* = 0 that L0 = L = M = N = M0 = 1. For α = 0.5, γ = 0.95, the 
parameters are r1 = 0.3333, r2 = 0.4047, r = 0.3333. 

EXAMPLE 3.2: Let D = [–1, 1]. Define function f of D by 

( ) 1.xf x e= −  (42) 

Using equation (42) and x* = 0, we get that L0 = e – 1 < L = M = N = M0 = e. For  
α = 0.8161, γ = 1.2590, the parameters are r1 = 0.1625, r2 = 0.3815, r = 0.1625. 
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