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Abstract: In this paper, a linear robust PID controller is presented for satellite 
attitude stabilisation and attitude tracking control. The PID controller presented 
in this paper has the advantage that: 1) the Lyapunov function is modified thus 
the stability of the system is easier to prove; 2) the constraints of the parameters 
are broadened thus parameters are easier to choose comparing with existing 
methods; 3) the controller is robust to bounded disturbance torque and the 
satellite inertia matrix; 4) the controller is linear thus it is convenient for 
practical application. The proof of the stability and the constraints of the 
parameters are given in this paper. The simulation results verify the feasibility 
of the controller presented in this paper. 
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1 Introduction 

PD control algorithm is the most mature and widely used control algorithm in satellite 
attitude control system. For satellite attitude stabilisation and tracking control, PD control 
with negative feedback is global asymptotically stable. In order to improve the accuracy 
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of the system, the integration item is brought into the control law. However, the 
appearance of the integration item makes it difficult to prove the stability of the system. 

Jin and Sun (2009) presented a PID controller for flexible spacecraft attitude tracking 
in 2009. In his work, a Lyapunov function with coupled item of angular velocity, 
quaternion and integration item was presented and based on this Lyapunov function the 
integration item was eliminated in the derivative of Lyapunov function. Thus, the order 
of the system was reduced and the stability of the system was proved. In his work in 2008 
(Jin et al., 2008), he presented a PID controller for decentralised satellite formation 
control. In this work, the Lyapunov function with coupled item was also used to achieve 
the goal of reducing the system order. In Kamesh (2004), the author constructed a 
modified Lyapunov function with integration item and simplified the proof of the system 
stability. However, this work was mainly focused on rigid spacecraft. In Clarke et al. 
(1997), the PID controller for attitude tracking issue was discussed. The attitude tracking 
system was treated as non-autonomous system and its strict stability proof was given. In 
this work, the stability of discontinuous system was discussed and the stability of control 
law with sign function was proved. In Vadali and Junkins (1990) and Chaturvedi et al. 
(2006), the non-autonomous system stability was discussed and the Lyapunov function 
was constructed in a relatively complicated way to prove the convergence of the system 
state. It is worth noticing that most of these PID controllers presented were nonlinear. In 
Li et al. (2014), a parameter optimisation method based on genetic algorithm for PID 
controller is presented for attitude control systems. In Su et al. (2011), a nonlinear PID 
controller robust to disturbance torque was presented for quadrotor aircraft and the strict 
stability proof was given. However, in this work, the accurate inertia matrix was needed 
to design the controller. In Sakamoto et al. (2006) and Zhang et al. (2010), the fuzzy PID 
controller and robust PID controller is presented for helicopter attitude control. The 
author considered the complicated environment and modified traditional PID control 
algorithm in order to enhance its robustness. In Lu et al. (2008), the author designed PID 
controller based on the idea of sliding mode for rigid satellite. 

In this paper, the attitude stabilisation and attitude tracking issue is discussed for rigid 
satellite. Inspired by Jin and Sun (2009) and Jin et al. (2008), the Lyapunov function with 
coupled items is constructed and modified. Thus the proof of stability and the constraints 
of parameters become easier to achieve. Also, in order to hold the advantage of 
robustness to inertia matrix of PD controller, the controller designed in this paper does 
not need the accurate value of satellite inertia matrix. The simulation results examine the 
feasibility of the algorithm. 

2 Dynamic and kinetic model 

The dynamic model of satellite could be written as follow: 

Jω ω Jω u d×+ = +  (1) 

where J is the inertia matrix of satellite which is a symmetric matrix, d is the unknown 
disturbance torque with upper bound | | .id d<  The product matrix r× of vector r is 
defined as 
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3 2

3 1

2 1

0
0

0

r r
r r r

r r

×

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (2) 

The product matrix has an important property which will be used in the later part of this 
paper that the eigenvalues of r× satisfies 

( )

( ) max

0, || ||

|| ||

λ r r i

λ r r

×

×

= ±

=
 (3) 

The kinetic model of satellite could be written as follow: 

( )
0

0 3
0 3

1
12

1 2
2

T
v T

v

v v
v

q ωq q
q ω

q q I qq I q ω
×

×

⎡ ⎤−⎢ ⎥ −⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎢ ⎥ ⎣ ⎦+⎢ ⎥⎣ ⎦

 (4) 

In satellite attitude tracking issue, the error quaternion and error angular velocity are 
defined as follow: 

( ) ( )
( )

0 0*

0 0

2
3 00 2 2

T
d vdv

e d
d v dv dv v

T T
e ev ev ev ev e eve

e e d

q q q q
q q q

q q q q q q

R q q q q I q q q q

ω ω R q ω

×

+⎡ ⎤
= ⊗ = ⎢ ⎥− − ×⎣ ⎦

= − + −

= −

 (5) 

where qd and ωd are desired quaternion and angular velocity. 
The model of error angular velocity and quaternion could be written as follow: 

( ) ( ) ( ) ( )e e d e e d e e d e e dJω JR q ω Jω R q ω ω R q ω J ω R q ω u d
×× ⎡ ⎤ ⎡ ⎤+ − + + + = +⎣ ⎦ ⎣ ⎦  (6) 

( )
0

0 3
0 3

1
12

1 2
2

T
ev e T

e ev
e e

ev e ev
e ev e

q ωq q
q ω

q q I qq I q ω
×

×

⎡ ⎤−⎢ ⎥ −⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎢ ⎥ ⎣ ⎦+⎢ ⎥⎣ ⎦

 (7) 

3 PID attitude stabilisation control law 

The linear PID attitude stabilisation control law presented as follow: 

( )2sgnd p v I vu k ω k q k d ω l q= − − − − +ϑ β  (8) 

where kd, kp, kI, β, l2 are all positive scalars and variable ϑ is defined as follow: 

1 2
1
2vc ω c q Fω= + −ϑ α  (9) 

 



   

 

   

   
 

   

   

 

   

    Robust linear PID controller for satellite attitude stabilisation 67    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

where c1, c2, α are positive scalars and F is defined as follow: 

0 3 vF q I q×= +  (10) 

The eigenvalues of satisfies following equation: 

2
0 0 0

max

( ) , 1

( ) 1

λ F q q i q

λ F

= ± −

=
 (11) 

where λ(A) represents the eigenvalues of matrix A. 
Consider equation (8), the control torque u could be rewritten as follow: 

( ) ( )

( ) ( ) ( )

1 2 2

1 2 2

sgn

(0) sgn

d p v I v I v v

d p v I v I v v v

u k ω k q k c ω c q dt k q dt d ω l q

k ω k q k c ω c q dt k q q d ω l q

= − = = + + − +

= − − − + + − − +

∫ ∫
∫ ∫

α β

α β
 (12) 

Based on equation (12), it can be found that the control law presented in this paper is a 
linear PID control law without nonlinear item. 

The next step is to prove that by choosing proper parameters, system (1), (4), (8) is 
global asymptotically stable. 

Choose Lyapunov function as follow: 

( ) ( ) ( )1 0 2 3
12 1
2

TT T
v v vV l q ω Jω l q Jω l q q= − + + + + +β ϑ α ϑ α  (13) 

where l1, l2, l3, α, β are positive scalar. 
Considering that 

( )2
0 00

11 1 , [ 1, 1]
2

q q q− ≥ − ∀ ∈ −  (14) 

It can be got that 

( ) ( )

[ ]

1 2 3

1 2

min 3 2 max 3

2 max 3 1 3

1
2
1
2

1 1( ) ( )
2 2
1 ( )
2

TT T T
v v v v v

T T T
v v v

T T
v

v

V l q q ω Jω l q Jω l q q

l q q ω Jω l q Jω

λ J I l λ J I ω
ω q

ql λ J I l I

≥ + + + + +

≥ + +

⎡ ⎤
⎢ ⎥ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

β ϑ α ϑ α

β

β

 (15) 

Thus, if following inequality is satisfied, V is positive definite. 

2 2
1 min max2

1 1( ) ( ) 0
2 4

l λ J l λ J− >β  (16) 

Calculate the derivative of V, it can be got that 
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( ) ( )

( )

( )( ) ( ) ( )( )
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2 2 3 1 2 1

3
2

1
2

1 12
2 2

sgn
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T T T T
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T
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T T T T
v d p v I v v

TT T T
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T
d

V l ω q ω ω Jω u d l ω JFω l q ω Jω u d

l q c ω c q Fω Fω

ω l q k ω k q k ω l q d ω l q d

l ω JFω l q ω Jω l q c ω c q l ω q

ω k I ω q
l JF

× ×

×

= + − + + + + − + +

⎛ ⎞+ + + − +⎜ ⎟
⎝ ⎠

= + − − − + + − + +

+ − + + + +

⎛ ⎞≤ − − −⎜ ⎟
⎝ ⎠

β

ϑ α α α

β ϑ β β

ϑ α

β ( ) ( )

( ) ( )

2 3 2 2 3 1 3

2 3 2 1 2 1 3 2

2 2

2 2

T T
v p v O

T T T
I v p d v v

l k I c l l q c l k ω

c l l k q l k l k c l q ω l q ω Jω×

− + −

+ − + − − + −

α β ϑ

ϑ β α

 (17) 

Choose proper parameters to satisfy following equation. 

3 1 3 2 2 1 2 1 32 2 2 0I I p dl c k l c l k l k l k c l− = − = − − + =β β α  (18) 

Assume that the norm of angular velocity satisfies || || ,ω ω≤  and consider property (3) 
and (10), equation (17) could be transformed to 

[ ]
( )

3 2 max 3 2 max 3

2 max 3 2 3

1 1( ) ( )
2 2

1 ( )
2

d
T T

v
v

p I

k I l λ J I l ωλ J I ω
V ω q

ql ωλ J I l k k I

⎡ ⎤−⎢ ⎥ ⎡ ⎤
≤ − ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥−⎢ ⎥⎣ ⎦

β

α
 (19) 

Thus, if the following inequality is satisfied, V  is negative definite. 

( ) 2 2 2
2 2 max max2

1 1( ) ( ) 0
2 4d p Il k l λ J k k l ω λ J⎛ ⎞− − − >⎜ ⎟

⎝ ⎠
β α  (20) 

Thus, if (16), (18) and (20) are satisfied, V > 0, 0,V <  the system is global 
asymptotically stable. 

4 PID attitude tracking control law 

In this paper, the tracking target is cooperative which means qd and ωd are all known. 
Assume the norm of real angular velocity is upper bounded which means || || .ω ω≤  

The PID attitude tracking law could be written as follow: 

( ) ( )

( )
max

max max

sgn ( )

( ) ( )
d e p ev I e e e

e e d e e

u k ω k q k d s λ J s Rωd

λ J s ω Rω ωλ J s ω×

= − − − − −

− −

ϑ
 (21) 

where ϑe and se satisfies 

1 2

0 3

2

1
2e e ev e e

e e ev

e e ev

c ω c q F ω

F q I q
s ω l q

×

= + −

= +
= +

ϑ α

β
 (22) 
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And λmax(J) in equation (21) represents the maximum eigenvalue of J. The operator  is 
defined as follow: 

( ) ( ) ( )1 1 1 2 2 2 3 3 3sgn sgn sgn
T

a b a b b a b b a b b⎡ ⎤= ⎣ ⎦  (23) 

The next step is to prove the stability of control law (21). Choose Lyapunov function as 
follow: 

( ) ( ) ( )1 0 2 3
12 1
1

TT T
e e e e ev e e ev e evV l q ω Jω l q Jω l q q= − + + + + +β ϑ α ϑ α  (24) 

Consider equation (14), it can be got that 

( ) ( )

[ ]

1 2 3

1 2

min 3 2 max 3

2 max 3 1 3

1
2
1
2

1 1( ) ( )
2 2
1 ( )
2

TT T T
e ev ev e e ev e e ev e ev

T T T
ev ev e e ev e

eT T
e ev

ev

V l q q ω Jω l q Jω l q q

l q q ω Jω l q Jω

λ J I l λ J I ω
ω q

ql λ J I l I

≥ + + + + +

≥ + +

⎡ ⎤
⎢ ⎥ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

β ϑ α ϑ α

β

β

 (25) 

Thus, if following inequality is satisfied, Ve is positive definite. 

2 2
1 min max2

1 1( ) ( ) 0
2 4

l λ J l λ J− >β  (26) 

Calculate the derivative of Ve, it can be got that 

( ) ( )
( )

( )

1 0 2 2 3

1 2 2

3 1 2

1 2 3 1 3 2 3 1

2 2

1 12
2 2

1 2 2 2
2

TT T T
e e e e e ev ev e e ev e ev

TT T
ev e e e e e ev e

T
e ev e ev e e e e

T T T T T
ev e e e e e e e ev ev

V l q ω Jω l ω Jq l q Jω l q q

l q ω l ω JF ω ω l q Jω

l q c ω c q F ω F ω

l q ω l ω JF ω l c ω l c q l c q ω

= − + + + + + +

= + + +

⎛ ⎞+ + + − +⎜ ⎟
⎝ ⎠

= + + + +

β ϑ α ϑ α

β

ϑ α α α

ϑ ϑ α

( ) ( )

( ) ( )

( ) ( )
( ) ( )

3 2

2

3 2 2 3 2 1 3

2 3 2 1 2 1 3

2

2

1 2 2
2

2 2

T
e ev ev

T
e ev d e d

T T T
e d e e ev p ev I e e

T T
I e ev ev p d e

T
e ev d e d

l c q q

ω l q u d JRω Jω Rω ω Jω

ω k I l JF ω q l k l c q c l k ω

c l l k q q l k l k c l ω

ω l q τ d JRω Jω Rω ω Jω

× ×

× ×

+

+ + + − + −

⎛ ⎞= − − − − + −⎜ ⎟
⎝ ⎠

+ − + − − +

+ + + − + −

α

β

β α β ϑ

ϑ β α

β

(27) 

Choose proper parameters to satisfy following equation 

3 1 3 2 2 1 2 1 32 2 2 0I I p dl c k l c l k l k l k c l− = − = − − + =β β α  (28) 

Equation (27) could be transformed to 
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( )

( )

3 2 2 2
1
2

T T
e e d e e ev p I ev

T
e d e d

V ω k I l JF ω q l k l k q

s τ d JRω Jω Rω ω Jω× ×

⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

+ + − + −

β α
 (29) 

where τ satisfies 

( ) ( ) ( )max max maxsgn ( ) ( ) ( )e e d e e d e eτ d s λ J s Rω λ J s ω Rω ωλ J s ω×= − − − −  (30) 

Considering the following property 

( ) ( ) ( ) ( )

( )
1 1 1 2 2 2 3 3 3

1

sgn sgn sgn

sgn

0

TT T T T
e e e e e e e e

ei i ei ei i

ei i ei i

s s r s r s s r r s r r s r r s r

s r s r s r

s r s r

⎡ ⎤− ± = − ±⎣ ⎦

= − ±

= − ± ≤

∑ ∑
∑ ∑

 (31) 

It can be got that 

( )
( ) ( )
( ) ( )

( )

max

max

max

sgn 0
( ) 0

( ) 0

( ) 0

T T
e e e

T T T T
e e d e d e e d e d

T T T T
e e e d e e d e e e d e e d

T T T T
e e e e e e e

ds s s d
λ J s s Rω s JRω s s JRω s JRω

λ J s s ω Rω s Jω Rω s s Jω Rω s Jω Rω

ωλ J s s ω s ω Jω s s ω Jω s ω Jω

× × × ×

× × ×

− + ≤

− − ≤ − − ≤

− + ≤ − + ≤

− − ≤ − − ≤

 (32) 

Thus, equation (29) could be transformed to 

( )

( )

3 2 2 2

2 max 2 2

1
2

1 ( )
2

T T
e e d e e ev p I ev

T T
e d e ev p I ev

V ω k I l JF ω q l k l k q

ω k l λ J ω q l k l k q

⎛ ⎞≤ − − − −⎜ ⎟
⎝ ⎠
⎛ ⎞≤ − − − −⎜ ⎟
⎝ ⎠

β α

β α
 (33) 

Thus, if following inequality is satisfied, 0.eV <  

2 max
1 ( ) 0, 0
2d p Ik l λ J k k− > − >β α  (34) 

Therefore, the attitude tracking system is global asymptotically stable. 
Comparing the necessary parameter constraints in attitude stabilisation and attitude 

tracking issues, it can be found that the constraints of V positive definite and the 
constraints to eliminate integration items are all the same. The difference is that the 
constraint of V  negative definite. Based on equation (15) and (34), it can be found that 
the constraint in attitude tracking issue is easier to satisfy. 

5 Simulation 

Set the system parameters for attitude stabilisation control as follow. 
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( )

[ ] [ ]
1 2 1 2 3

[50 75 100] , 0.2, 500, _ 0.5

1, 0.05, 20, 5, 1, 0.001
0.25, 0.05, 0.4, 0.01, 0.1

0.1 0.05 0.04 , 0.51 0.3 0.4 0.7

d p I

T T
initial initial

J diag ω T t sample

k k k d
c c l l l

ω q

= = = =

= = = = = =

= = = = =

= − − = −

α β
 (35) 

The simulation of attitude stabilisation control law is given from Figure 1 to Figure 3. 
Based on Figure 1 to Figure 3, it can be found that the angular velocity and attitude 

quaternion converges to zero. Except the initial ten control cycle, the norm of control 
torque is constrained in an acceptable range. 

Then, set the system parameters for attitude tracking control as follow: 

( )

1 2 1 2 3

3 1

[50 75 100] , 0.2, 500, _ 0.5

1, 0.05., 20, 5, 1, 0.001
0.25, 0.05, 0.4, 0.01, 0.1

[0.05 0.05 0.1] , 0.5 0.5 3 3 6 6

[0.01 0.005 0] , 0 , [1 0 0 0]

d p I

T
T

initial initial

T T
d d d

J diag ω T t sample

k k k d
c c l l l

ω q

ω ω q×

= = = =

= = = = =

= = = = =

⎡ ⎤= − = −⎣ ⎦
= − = =

α β
 (36) 

The simulation of attitude tracking control is given from Figure 4 to Figure 6. 

Figure 1 Curve of angular velocity (see online version for colours) 
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Figure 2 Curve of quaternion (see online version for colours) 

 

Figure 3 Curve of control torque (see online version for colours) 

 

Based on Figure 4 to Figure 6, it can be found that the error angular velocity and error 
quaternion converges to zero. Except the initial 20 control cycles, the norm of control 
torque is constrained in an acceptable range. 
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Figure 4 Curve of error angular velocity (see online version for colours) 

 

Figure 5 Curve of error quaternion (see online version for colours) 
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Figure 6 Curve of control torque (see online version for colours) 

 

6 Conclusions 

In this paper, a method for design PID attitude stabilisation and attitude tracking control 
law is given. The traditional Lyapunov function is modified thus the constraints on 
control parameters are easier to satisfy comparing with existing methods (Jin and Sun, 
2009; Jin et al., 2008). Also, the integration item in control law is modified to eliminate 
the integration items in Lyapunov function. Both of these two improvements make it 
easier to prove the stability and choose proper parameters. 

The stability proof of the control law is given in this paper. Also, the constraints of 
the system parameters are given in the proof of the system stability. The simulation 
results indicate that when choosing proper parameters the system is asymptotically stable. 

The attitude stabilisation and attitude tracking PID control law in this paper has the 
advantages that: 

1 easier to prove the stability 

2 easier to choose the control parameters 

3 only the maximum eigenvalue of inertia matrix is needed which means the controller 
is robust to the inertia matrix uncertainty 

4 the controller is linear thus it is convenient for practical application. 
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