
   

  

   

   
 

   

   

 

   

   Int. J. Computational Complexity and Intelligent Algorithms, Vol. 1, No. 1, 2016 99    
 

   Copyright © 2016 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Pathfinding for the navigation of visually impaired 
people 

Kai Li Lim* 
School of Electrical, Electronic and Computer Engineering, 
The University of Western Australia, 
35 Stirling Highway, Crawley WA 6009, Australia 
Email: kaili.lim@research.uwa.edu.au 
*Corresponding author 

Kah Phooi Seng 
School of Computing and Mathematics, 
Charles Sturt University, 
Locked Bag 588, 
Wagga Wagga NSW 2678, Australia 
Email: kseng@csu.edu.au 

Lee Seng Yeong 
Department of Computing and Information Systems, 
Sunway University, 
5 Jalan Universiti, Bandar Sunway, 
47500 Petaling Jaya, Selangor, Malaysia 
Email: leesengy@sunway.edu.my 

Li-Minn Ang 
School of Computing and Mathematics, 
Charles Sturt University, 
Locked Bag 588, 
Wagga Wagga NSW 2678, Australia 
Email: lang@csu.edu.au 

Sue Inn Ch’ng 
Department of Computing and Information Systems, 
Sunway University, 
5 Jalan Universiti, Bandar Sunway, 
47500 Petaling Jaya, Selangor, Malaysia 
Email: sueinnc@sunway.edu.my 

 

 



   

 

   

   
 

   

   

 

   

   100 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Abstract: A navigation system using an Android mobile device for the visually 
impaired is explored in this paper. This paper focuses on pathfinding 
algorithms and their implementations on Java platform. The boundary  
iterative-deepening depth-first search (BIDDFS) pathfinding algorithm is 
extended for bidirectional searching. Fast pathfinding is applied for the 
BIDDFS by reducing memory read and writes cycles, proposing the optimised 
BIDDFS. Fast pathfinding is also extended for the bidirectional BIDDFS, 
proposing the fast bidirectional BIDDFS. The fast bidirectional BIDDFS uses 
Java’s thread feature to implement a parallel structure. The optimised BIDDFS 
was able to record drastic improvements in pathfinding speeds compared  
to the standard BIDDFS. Likewise, the fast bidirectional BIDDFS recorded 
significant speed improvements over the parallel bidirectional BIDDFS. 

Keywords: pathfinding; visually impaired; uninformed search; bidirectional 
search. 

Reference to this paper should be made as follows: Lim, K.L., Seng, K.P., 
Yeong, L.S., Ang, L-M. and Ch’ng, S.I. (2016) ‘Pathfinding for the navigation 
of visually impaired people’, Int. J. Computational Complexity and Intelligent 
Algorithms, Vol. 1, No. 1, pp.99–114. 

Biographical notes: Kai Li Lim received his BEng degree (with first-class 
honours) in Electronic and Computer Engineering from the University of 
Nottingham in 2012, and the MSc degree (with distinction) in Computer 
Science from Lancaster University and Sunway University in 2014. He is 
currently a PhD candidate at the University of Western Australia with the 
School of Electrical, Electronic and Computer Engineering. His research 
interests cover the fields of navigational algorithms, autonomous mobile robots, 
and ubiquitous computing. 

Kah Phooi Seng received her BEng (first class) and PhD from University of 
Tasmania, Australia, in 1997 and 2001, respectively. She is currently with the 
School of Computing and Mathematics, Charles Sturt University. She was a 
Professor at Sunway University before returning to Australia. Prior to joining 
Sunway University, she was an Associate Professor at School of Electrical and 
Electronic Engineering, Nottingham University. Her research interests include 
the fields of visual processing, multi-biometrics, artificial intelligence and 
wireless visual sensor networks. 

Lee Seng Yeong graduated from the University of Nottingham in 2015 with a 
PhD in Engineering. He is currently a Lecturer at Sunway University. His 
topics of research include wireless sensor networks, image processing and 
embedded systems. 

Li-Minn Ang received his BEng (first class) and PhD from Edith Cowan 
University, Australia, in 1996 and 2001, respectively. He is currently attached 
with the School of Computing and Mathematics, Charles Sturt University. His 
research interests include the fields of video compression, visual processing, 
wireless visual sensor networks and reconfigurable computing. 

Sue Inn Ch’ng received her ME and PhD degrees from the University of 
Nottingham in 2009 and 2014, respectively. She is currently attached with the 
Department of Computer Science and Networked Systems, Sunway University, 
Malaysia. Her research interest is in biometrics, image processing and artificial 
intelligence. 

 



   

 

   

   
 

   

   

 

   

    Pathfinding for the navigation of visually impaired people 101    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

Human navigation is defined as the process for a human to travel between two points on a 
location, usually associated with the act of walking or running. Navigation systems are 
electronic devices that assist human navigation by planning and guiding the user along a 
route during navigation. Therefore, the process of navigation starts by identifying the 
position of the user (positioning); and then a route is planned for the user to take during 
travelling (pathfinding); and finally, the user guided by the planned path, travels to the 
destination (guidance). The navigation process is illustrated in Figure 1. 

Figure 1 The process of human navigation 

Positioning Pathfinding Travelling 
+ Guidance

 

Pathfinding in navigation is defined as the plotting by a navigation system to find the best 
route between two points. Routes from pathfinding are normally optimised for one more 
of the following: shortest distance, fastest travelling time, or lowest cost. Navigation 
system employs pathfinding algorithms to perform pathfinding. Pathfinding algorithms 
are classified into informed searches and uninformed searches. In an informed search, the 
general direction of the destination from the current position is known. In uninformed 
searches, the direction of the destination is unknown from the current position. This leads 
to an exhaustive search from the current position until the destination is found. 
Uninformed searches are preferred in applications where it guarantees the shortest path 
from the starting point to the goal; and it has a faster node expansion speed than informed 
searches. Examples of uninformed search algorithms are the Dijkstra’s (1959) algorithm 
and the iterative-deepening depth-first search (Korf, 1985). The IDDFS was proposed to 
solve the exponential memory requirements of the Dijkstra’s algorithm with larger map 
size. However, the reduced memory of the IDDFS led to searching redundancy where the 
algorithm repeatedly expands from the starting location to find the goal. 

Pathfinding algorithms are often used in video and computer games. This is due to the 
effective usage of artificial intelligence (AI) in video games that allows intelligent 
decision making and responses to produce a more dynamic and realistic environment. 
Examples such as Björnsson et al. (2005), Cai et al. (2011), Khantanpoka and Chinnasarn 
(2009), Leigh et al. (2007), Sturtevant (2012), and Wu and Zhang (2011) are few among 
the many. Of which, Bulitko et al. (2011) investigated real-time informed searches, 
Khantanpoka and Chinnasarn (2009) used informed algorithms for multi-layer searching; 
Leigh et al. (2007) employed an A*-like genetic algorithm for a naval real-time strategy 
(RTS) game; Sturtevant (2012) ran benchmarks for algorithms on a grid-based map for 
games; and Wu and Zhang (2011) introduced a faster A*-like algorithm with wider 
heuristics applied on game maps. However, there are fewer resources on pathfinding for 
the visually impaired (Di Giampaolo, 2010; Folmer et al., 2009; Hua et al., 2007; Oktem 
et al., 2008), and the available research is not as widespread. The Dijkstra’s algorithm is 
used in Di Giampaolo (2010) and Hua et al. (2007) and the A* search is used in Folmer 
et al. (2009) and Oktem et al. (2008). The effort in Folmer et al. (2009) employed the 



   

 

   

   
 

   

   

 

   

   102 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

visually impaired navigation on a virtual environment, translating virtual objects into 
text, which is read to the user in synthesised speech. 

In this paper, new pathfinding algorithms are proposed for navigation of visually 
impaired people. The bidirectional boundary iterative-deepening depth-first search 
(BIDDFS) is proposed, which is an extended version of the BIDDFS. The BIDDFS (Lim 
et al., 2013) is an uninformed pathfinding algorithms proposed as a compromise for the 
Dijkstra’s algorithm’s exponentially increasing memory footprint on larger maps, and the 
IDDFS’ node expansion redundancy. Experiments performed showed that the BIDDFS 
has a faster single-node expansion time than the iterative-deepening A* (IDA*), fringe 
search, and the iterative deepening depth first search (IDDFS). The bidirectional BIDDFS 
offers faster pathfinding by searching from both the starting and the goal until both 
searches meet. This effectively reduces the search area compared to unidirectional search 
algorithms. As a result, time and memory consumption is reduced. 

The pathfinding algorithms are good for implementation on an Android device, and 
Android applications are programmed in Java. Java source codes can be implemented 
across different hardware platforms, it is known as a write once, run anywhere (WORA) 
language (Oracle Corporation, 2014). The pathfinding algorithms are programmed using 
NetBeans, an integrated development environment (IDE) by Oracle Corporation 
primarily for Java development. This simplifies the implementation of the pathfinding 
algorithms onto a navigation system running on the Android platform. Furthermore, 
programming the pathfinding algorithm in Java allows the identification of critical points 
that can be optimised for faster pathfinding. Therefore, the optimised BIDDFS is 
proposed in this paper. Java’s thread functions allows easy implementation of parallel 
programming for the pathfinding algorithms, increasing the utilisation of multi-core 
processors found in smartphones and computers today. The parallel approach is extended 
for the bidirectional BIDDFS and thus the fast bidirectional BIDDFS is proposed. 

The remainder of this paper is organised as follows: Section 2 proposes the 
bidirectional BIDDFS. Section 3 proposes a fast implementation of the BIDDFS.  
Section 4 describes the simulation experiments of the algorithms, comparing their 
pathfinding efficiency. Section 5 discusses about navigation for the visually impaired and 
how pathfinding can be applied. Section 6 concludes this paper. 

2 The proposed bidirectional BIDDFS 

In this section, a new algorithm called bidirectional boundary iterative-deepening  
depth-first search (bidirectional BIDDFS) is proposed. The BIDDFS as previously 
designed by Lim et al. (2013), was enhanced to allow searching from the starting node 
and the goal node simultaneously, yielding higher pathfinding efficiencies. It is based on 
the idea that faster pathfinding will result if the search expansions of a pathfinding 
algorithm is to be performed from both the starting node and goal node concurrently, due 
to the resulting expansion area being smaller than that of a unidirectional search. Hence, 
bidirectional search will also lead to a reduction of memory footprint. 

To index the expanded nodes from each direction (starting node direction and goal 
node direction), a new variable is introduced as a two-dimensional matrix with the same 
dimensions of the field map, with each value on the matrix representing direction, and 
their locations reflecting the location on the field map. This new variable is required so 



   

 

   

   
 

   

   

 

   

    Pathfinding for the navigation of visually impaired people 103    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

that the algorithm can determine whenever and wherever the two expansion directions 
meet, the pathfinding process will then terminate. 

The location where the two expansion directions meet is called the meeting node. For 
each completed pathfinding process, there are two meeting nodes – each representing the 
direction it originates. Each meeting node will plot its way back in the opposite direction 
of the other using the calculated least cost path to ensure the shortest path from the 
meeting node to the starting or goal node. Once the route plotting is completed, there 
would be a path connecting the starting node to the ending node, which is the resultant 
route. This search pattern is as illustrated in Figure 2, with the line connecting the two 
starting nodes being the resultant path, with the expansions from each originating node as 
shown. Likewise, the bidirectional BIDDFS can be represented by the following 
pseudocode in Figure 3. The flowchart of the bidirectional BIDDFS is given as Figure 4 
and it illustrates the logical process of the algorithm. 

Figure 2 Search pattern of the bidirectional BIDDFS (see online version for colours) 

 

Pathfinding for navigation can be optimised for faster speeds. For example, assumptions 
such as BIDDFS will perform on uniform grid maps allow the cost across the map to be 
uniform, simplifying calculations. Calculation redundancies such as using multiple 
variables for calculation can allow these variables to be condensed into fewer variables. 
Ultimately, the BIDDFS was then optimised for faster pathfinding by reducing the 
memory read and write cycles. At the initialisation stage, the number of variables were 
reduced from six to three. Noting that some variables can be combined, i.e., having cost 
calculation occupying the positive values and the types of nodes occupying negative 
values in a matrix. This reduced the memory requirement by half. During the expansion 
of nodes, the reduction of variables brought one reduction of read cycle and two 
reductions of write cycle for every node expanded. 

 



   

 

   

   
 

   

   

 

   

   104 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 Pseudocode of the bidirectional BIDDFS 

init 

 boundary B = s 

 cache C[beginning] = (0, null) 

 for x in C, x != beginning 

  C[x] = null 

 threshold = h(start) 

 reachedgoal = false 

 while NOT goal=true AND B NOT empty 

  fmin = ∞ 

  for x in F, from left to right 

   (g, parent) = C[n] 

   if g > threshold 

    fmin = min(g, fmin) 

    continue 

   if x = goal 

    reachedgoal = true 

    break 

   for s in children(n), from right to left 

    g(s) = g + cost(x, s) 

    if C[s] != null 

     (g’, parent) = C[s] 

     if g(s) >= g’ 

      continue 

    if s in B 

     remove s from B 

    insert s in F past x 

    C[s] = (g(s), x) 

   remove n from B 

  threshold = fmin 

  if beginning node is starting node 

   beginning node = goal node 

  else 

   beginning node = starting node 

 if reachedgoal = true 

  make path from cache 

The open and closed sets, the cost calculation, and the initialised field, which are all 
condensed into a single variable ‘field’. Variables containing route directions and the 
node cost chart remains independent. This means that the large, closed set array is no 
longer present in both algorithms. When the program initialises, the ‘field’ variable is 



   

 

   

   
 

   

   

 

   

    Pathfinding for the navigation of visually impaired people 105    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

first initialised with a set of negative numbers, indicating the field map of the 
environment. Negative numbers distinguishes itself where it stores the state of each node, 
such as walls, unexpanded nodes, or the starting and goal node. Hence, the cost at each 
node is recorded as a positive number on the field. For the calculation of the resultant 
route, instead of marking down the directions to the goal node during pathfinding, 
directions are now calculated on the fly after pathfinding is completed. The algorithms 
trace back the least cost path from the goal node to the starting node and store them in a 
two-dimensional character array variable ‘directions’, which is initialised using location 
data of walls, goal, and starting node, obtained from ‘field’, which is then printed out in 
text. When the time saved for a single node expansion is applied across the map, 
pathfinding speeds can increase tremendously. 

Figure 4 Flowchart of the bidirectional BIDDFS 

Start

Initialize threshold

Expand from 
starting node until  

threshold

Expansions 
meet?

No

Update cost Threshold++

Yes

Trace route from 
least cost path

End

Beginning node 
is starting node?

Set beginning node 
as goal node

NoSet beginning node 
as starting node

Yes

 



   

 

   

   
 

   

   

 

   

   106 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3 Fast implementation of the bidirectional BIDDFS 

The optimisation of the BIDDFS has been performed in Section 2. The nature of 
bidirectional searches, which searches from both the starting node and the goal node, 
encouraged the implementation of a parallel structure. This further shortened pathfinding 
time. Searching in parallel means that the node expansions from both the starting and the 
goal nodes happen simultaneously, unlike the search that alternates between the starting 
node and the goal node in serial bidirectional algorithms. It is introduced by incorporating 
Java’s thread function. The optimised BIDDFS algorithm is thus enhanced for parallel 
bidirectional searching, proposing the fast bidirectional BIDDFS. 

Figure 5 Flowchart of the fast bidirectional BIDDFS 

Start

Initialize threads, 
threshold, buffer, 
originating node

Expand from 
boundary nodes 
simultaneously

Expansions 
meet?

No

Update cost, 
remove node 
from buffer

Boundary node 
scanning

Update buffer

Yes

Trace route from 
least cost path to 
originating node

End

Nodes in 
buffer?

Yes

No

Threshold++

 



   

 

   

   
 

   

   

 

   

    Pathfinding for the navigation of visually impaired people 107    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

This algorithm is proposed following the analysis of the bidirectional BIDDFS, and 
identifying sections of the algorithms that can be simplified or omitted to fit the purpose 
of the application in Section 5. For example, the queue for future node expansions was 
simplified into a linear buffer, utilising Java’s ArrayList; and that multiple variables were 
condensed into fewer variables. The resulting algorithm was then completely 
reprogrammed in Java and its pathfinding time was compared. 

For parallel searching, a ‘pattern’ variable is instantiated to monitor the node 
expansions originating from the starting node and the goal node. When the expansion 
meets, the nodes that connects one expansion to another is called the meeting nodes. 
When the meeting nodes are found, the search terminates. The ‘pattern’ variable is placed 
in a dedicated thread that is introduced to detect the meeting of the two expansion 
patterns. 

To achieve fast bidirectional searching, each pathfinding runtime from each 
originating node is assigned as its own class with its own thread, which will be inherited 
from the original pathfinding class as the parent class. A pair of buffer is used in parallel 
bidirectional searching for each pathfinding runtime, which prevents the clashing of node 
locations stored by two different runtimes. The parent class monitors the node expansion 
patterns for the meeting nodes, and hence the ‘pattern’ variable will be shared among the 
classes, hence allowing the parent class to terminate pathfinding when the expansion 
patterns meet. Therefore, there are three processes running during a parallel bidirectional 
search – an expansion from the starting node, an expansion from the goal node, and a 
process to detect the meeting of both expansions. 

On the fast bidirectional BIDDFS, pathfinding from the two originating nodes are 
independently initialised and threaded, and then are started and run simultaneously. 
When the first node is expanded, boundary nodes are identified as the four-connecting 
nodes of the originating node. Nodes stored in the buffer are flagged for expansion and 
are subsequently removed from the buffer once that node has been expanded. Subsequent 
iterations of the algorithm will scan for the edges (boundaries) for the expanded nodes 
until both expansion patterns meet, and the meeting nodes are located, and the resultant 
route can be plotted from the least cost path. The flowchart for the fast bidirectional 
BIDDFS is as illustrated in Figure 5. 

4 Experimental results 

Pathfinding algorithms were programmed in Java and simulated using different maps and 
environments to measure pathfinding efficiency. Experiments are performed on open 
maps with no obstacles unless otherwise stated, which enables the algorithm to expand to 
more nodes, better demonstrating the rate of node expansion of the algorithms. The 
proposed algorithms were simulated using NetBeans IDE 7.4 with JRE 1.7 running on 
Mac OS 10.9 on an Apple iMac. The CPU used is an Intel Core i5 3470S quad-core 
processor at 2.9 GHz, with 8GB of DDR3 RAM; the GPU used is an NVIDIA GeForce 
GTX 660M. 



   

 

   

   
 

   

   

 

   

   108 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.1 Example 1 – standard BIDDFS vs. optimised BIDDFS 

First, the performance of the optimised BIDDFS was simulated for different parameters, 
e.g., field size and obstacles. The first set of simulations measures the performance gains 
of the optimised BIDDFS on open maps, i.e., no obstacles are presented on the map, 
allowing all nodes within the expansion area to be expanded, as the presence of obstacles 
will not allow that node to be expanded. This simulation is performed on maps of sizes 
between 25 × 25 nodes and 75 × 75 nodes. The threshold is measured to gauge the 
number of nodes expanded – the higher the threshold, the larger the expansion area, the 
more nodes are expanded. Table 1 tabulates the results of these simulations. 

Comparing the algorithms on the 25 × 25 map, the optimised implementation is more 
than 2,336.33 times faster than the standard implementation. This is credited to the 
significantly reduced redundancy in cost calculation, including the removal of separate 
variables for OPEN and CLOSED sets. The threshold number is also much lower on the 
fast implementation, since it scans and identifies the boundary nodes and hence it is able 
to streamline expansion of boundary nodes. Scanning boundary nodes enables the 
algorithm to identify all possible boundary nodes for node expansion, eliminating any 
possibility of node re-expansion. 
Table 1 Results comparing optimised BIDDFS to standard BIDDFS on open maps 

Size Type Time (s) Threshold 

25 × 25 Standard 28.828 617 
Optimised 0.012339 45 

50 × 50 Standard 496.631 2,492 
Optimised 0.041683 95 

75 × 75 Standard 2798.105 5,617 
Optimised 0.088793 145 

On the 75 × 75 map, optimised BIDDFS is able to register 31,512.67 times improved 
pathfinding time compared to the standard implementation on a map nine times larger 
than the 25 × 25 map. Node expansion is the greatest contributor to pathfinding time and 
memory efficiencies. This means that an improvement on a single number of node 
expansion can greatly alter the whole efficiency of pathfinding. The optimisations made 
by reducing the number of variables and calculations performed on node affects the 
whole map. 

4.2 Example 2 – fast bidirectional BIDDFS vs. parallel bidirectional BIDDFS 

This example measures and compares the time efficiency of the parallel bidirectional 
BIDDFS with the fast bidirectional BIDDFS proposed in Section 4. The maps used for 
this example is the same as the open maps used in example 1, with 25 × 25 and 75 × 75 
nodes. 

From the results in Table 2, a parallel bidirectional algorithm is able to register 
551.25 times time improvement over the optimised BIDDFS on the 25 × 25 map. An 
increase in time efficiency of 9,041.95 times was recorded on the 75 × 75 map. Parallel 
bidirectional search algorithms searches from both the starting node and the goal node 
simultaneously, which is the main contributor to the increase in time efficiency recorded. 



   

 

   

   
 

   

   

 

   

    Pathfinding for the navigation of visually impaired people 109    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 Results comparing parallel bidirectional BIDDFS to the optimised BIDDFS on open 

Size Algorithm Time (s) 
25 × 25 Parallel bidirectional BIDDFS (PBD-BIDDFS) 6.185 

Fast bidirectional BIDDFS 0.01122 
75 × 75 Parallel bidirectional BIDDFS (PBD-BIDDFS) 542.246 

Fast bidirectional BIDDFS 0.05997 

4.3 Example 3 – comparison 

The fast bidirectional BIDDFS algorithm is compared against other pathfinding 
algorithms, namely the IDDFS, Dijkstra’s algorithm, A* search, IDA*, the standard 
bidirectional BIDDFS (BD-BIDDFS), and the fast bidirectional BIDDFS (fast  
BD-BIDDFS). Simulations are performed on open maps of increasing sizes from 10 × 10 
to 30 × 30, with the starting and goal nodes placed at opposite ends of the map, giving an 
edge-to-edge search. The results are tabulated in Table 3. Bidirectional algorithms are 
denoted with the prefix ‘BD-’. Furthermore, the results of the parallel new bidirectional 
A* (PNBA*) algorithm in Figure 2 in Rios and Chaimowicz (2011) simulated on the 
uniform cost grid pathfinding domain is compared and tabulated in Table 4. 
Table 3 Results comparing fast bidirectional BIDDFS with other algorithms on open maps 

Algorithm 
Time (s) 

10 × 10 15 × 15 20 × 20 25 × 25 30 × 30 
Dijkstra’s 0.247 0.487 0.604 0.930 1.229 
A* 0.142 0.267 0.573 0.777 1.229 
IDDFS 0.794 3.997 11.89 32.204 64.801 
IDA* 0.408 3.083 8.210 27.051 63.797 
BD-BIDDFS 0.222 0.691 2.347 6.199 13.072 
Fast BD-BIDDFS 0.0055 0.0062 0.0088 0.0122 0.0161 

Table 4 Results comparing the fast bidirectional BIDDFS with the PNBA* algorithm 

Size Algorithm Time (s) 

40 × 40 PNBA* (Rios and Chaimowicz, 2011) 0.1 
Fast bidirectional BIDDFS 0.0202 

50 × 50 PNBA* 0.2 
Fast bidirectional BIDDFS 0.0286 

60 × 60 PNBA* 0.5 
Fast bidirectional BIDDFS 0.0373 

Since an edge-to-edge search is used, the majority of the map (> 80%) has to be 
expanded to reach the goal. With informed pathfinding algorithms having a slower single 
node expansion speed due to its heuristic function calculation, it is possible for 
uninformed searches to be as fast as an informed search (see Dijkstra’s algorithm vs. A* 



   

 

   

   
 

   

   

 

   

   110 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

search at 30 × 30 map). This means that an informed search is possible to be slower than 
an uninformed search when the same number of nodes is expanded during pathfinding. 

The fast bidirectional BIDDFS up to 4,024 times faster than the IDDFS on the 30 × 
30 map. This is credited to two factors in addition to bidirectional searching. Firstly, the 
fast bidirectional BIDDFS is based off the optimised BIDDFS, where its reduced read 
and write cycles on less variables yielded savings in time taken. Secondly, while standard 
bidirectional algorithms expands nodes originating from the starting node and goal node 
back and forth, parallel bidirectional searching expands nodes from the starting node and 
goal node simultaneously, increasing pathfinding time efficiency. 

The fast bidirectional BIDDFS was also faster than the PNBA* in all simulations. 
The PNBA* registers a steeper increase in pathfinding time with map size. The parallel 
bidirectional BIDDFS was up to 13.4 times faster than the PNBA* when simulated on a 
60 by 60 node map. The parallel bidirectional BIDDFS was faster than the PNBA* is due 
to the algorithm being an optimised algorithm for simplified searching, where the 
optimised BIDDFS had drastic increase in pathfinding speeds. 

4.4 Example 4 – image-converted map performance measures 

This section presents simulations performed on two image maps – a 50 × 50 node maze 
(see Figure 6) and a 250 × 250 node hotel floor plan (see Figure 7). This aims to allow 
the algorithm to simulate on real-world maps. A fast Dijkstra’s algorithm is programmed 
for comparison with the optimised BIDDFS. For both maps, the starting node is placed at 
the upper left side of the map and the goal node at the lower right side of the map. 

Figure 6 The 50 × 50 maze 

 

Figure 7 The 250 × 250 hotel floor plan 

 



   

 

   

   
 

   

   

 

   

    Pathfinding for the navigation of visually impaired people 111    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 5 Results comparing optimised BIDDFS to standard BIDDFS on image-converted maps 

Map Algorithm Time (s) 
Maze Dijkstra’s 0.126627 

Optimised BIDDFS 0.115573 
Fast BD-BIDDFS 0.019341 

Hotel Dijkstra’s 2.041175 
Optimised BIDDFS 1.856176 
Fast BD-BIDDFS 0.843959 

Results of this example are tabulated in Table 5. On the maze map, the optimised 
BIDDFS was 10% faster Dijkstra’s algorithm. However, the fast bidirectional BIDDFS 
was 5.97 times faster than the optimised BIDDFS. On the hotel floor plan map, the 
optimised BIDDFS was 9% faster than the Dijkstra’s algorithm. The fast bidirectional 
BIDDFS was 2.20 times faster than the optimised BIDDFS on the same map. The 
optimised BIDDFS was able to record a faster node expansion because the BIDDFS have 
fewer memory read and write cycles than the Dijkstra’s algorithm. 

5 Navigation for visually impaired people 

While human navigation is often associated with the sense of sight to recognise 
directions, the visually impaired people are devoid of their sense of sight. Hence, the 
visually impaired often use navigational aids such as the white cane to support their 
navigation. A navigation system for the visually impaired can be built by converting the 
visual interface of a typical navigation with audio or tactile feedbacks. Therefore, a 
navigation system using Android device for the visually impaired can be built by 
referring to the block diagram in Figure 8. 

Figure 8 Example of the system block diagram for the proposed navigation system 

Android Platform
Samsung Galaxy 

Note II

Arduino
Mega ADK

DRM
Honeywell 

DRM4000L

Digital Compass
Honeywell 
HMC6352

ZigBee
XBee Pro Rev. 2

ZigBee
XBee Pro Rev. 2

Bluetooth 
Headset

RFID
RFID-RC522
(13.56 MHz)

BluetoothWi-Fi

UART
(TTL)

SPI

I2C
UART

(RS232)

Wireless

 

Note: Wireless interfaces in dotted arrows. 



   

 

   

   
 

   

   

 

   

   112 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Positioning of the navigation system is provided via the radio frequency identification 
(RFID) (NXP Semiconductors, 2014) transponder. A Mifare RFID-RC522 is 
recommended for this system. RFID transponders are places on the navigation map as 
waypoints or point of interests (POIs), ensuring that the user is treading on the correct 
path. Therefore, increasing the number of RFID transponders in an area will increase 
positioning accuracy. With an array of RFID transponders placed on a map, a wireless 
many-to-one connection is required for the transponders to communicate with the user’s 
device. Therefore, ZigBee (Digi International, 2008) is used for the wireless interfacing 
of RFID transponders. The XBee Pro Series 2 is used for the system and they 
communicate through transistor-transistor logic (TTL) serial. 

While RFID provides absolute positioning (based on map), relative positioning 
(based on user’s location) can be provided by a dead reckoning module (DRM) 
(Honeywell, 2011). The Honeywell DRM4000L can be used. To provide orientation data 
for relative positioning, a digital compass such as the Honeywell HMC6352 (Honeywell, 
2006) can be implemented. This means that the RFID transponder determines the user’s 
initial location for pathfinding to start, and that the DRM and digital compass tracks the 
movement of the user during navigation. At the same time, the user’s position can be 
enhanced by allowing the user to tread on the RFID transponders until the destination is 
reached. The user interfaces the system using voice input to the system to specify the 
destination for pathfinding. Once the route has been found, guidance is provided in a 
visually impaired navigation system through audio feedbacks (e.g., text-to-speech). 
Therefore, a processing device is required in a navigation system to receive positioning 
data, perform pathfinding, and guide the user. An example of a processing device is an 
Android smartphone, in this case, a Samsung Galaxy Note II (Samsung Electronics Co. 
Ltd., 2014). 

An Arduino is used to collect the positioning data sent by positioning devices (RFID 
transponder, DRM, and digital compass) to be sent to the Android device, because the 
positioning devices interfaces through different serial methods. To interface with these 
devices, an Arduino (2014) Mega ADK is recommended due to its multiple serial ports 
supporting multiple inputs and outputs. To communicate wirelessly to the Android 
device, a Wi-Fi shield is attached to the Arduino. 

To use an Android smartphone as a processing device, a navigation application is 
programmed and installed onto the device. This application contains pathfinding and the 
interfacing source codes required to communicate with the system. An implemented 
pathfinding algorithm is imperative to ensure that the navigation system is able to provide 
the best route for the visually impaired user’s navigation. Positioning devices connected 
to the Arduino interfaces to the Android device through user datagram protocol (UDP) 
over Wi-Fi, and audio feedback can be channelled through a Bluetooth headset. To allow 
communication with the visually impaired, the programmer to take advantage of the 
Google’s text-to-speech application programming interface (API) (Google, 2014b) for 
speech synthesis for the user’s guidance, and Google’s speech-to-text API (Google, 
2014a) for speech recognition of the user’s input commands. 

The pathfinding algorithms proposed in this paper, especially the fast bidirectional 
BIDDFS, are suitable for the application of this navigation system proposal. The 
proposed algorithms are to be programmed onto the Android platform of the system in 
Figure 8. Being completely programmed in the Android-native Java means that the 
algorithm is able to perform natively for that platform without the need for external 
compilers, guaranteeing the results demonstrated in this paper when it is implemented. It 



   

 

   

   
 

   

   

 

   

    Pathfinding for the navigation of visually impaired people 113    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

also means that the program in NetBeans can be directly ported onto this platform. The 
programmed algorithm will use data from the connected positioning devices to ascertain 
the user’s location and orientation before pathfinding commences. Once pathfinding 
completes, the result will be used for the user’s guidance through synthesised speech. 
Using an uninformed pathfinding algorithm allows the system to work in the absence of a 
map, therefore, the visually impaired user can freely navigate even in unknown 
environments. 

6 Conclusions 

This paper presented a navigation system for the visually impaired. The navigation 
system uses an Android device for processing. The pathfinding algorithms proposed for 
the Android device were programmed in Java to ensure that the algorithms ran natively. 
Firstly, the BIDDFS was extended for bidirectional searching in this paper, proposing the 
bidirectional BIDDFS. The bidirectional BIDDFS was faster than the IDDFS and the 
IDA* during experiments due to expansions from the starting and goal node. Fast 
searching was investigated for the BIDDFS, the BIDDFS was optimised for fast 
searching and the optimised BIDDFS was proposed. The optimised BIDDFS performed 
significantly faster than the standard BIDDFS with the reduction of read and write cycles. 
Fast searching was applied on the bidirectional BIDDFS using Java’s parallel structure 
and thus proposing the fast bidirectional BIDDFS. The fast bidirectional BIDDFS was 
compared against the parallel bidirectional BIDDFS, and the fast approach made the fast 
bidirectional BIDDFS much faster than the parallel bidirectional BIDDFS. 

Acknowledgements 

This project has been supported by the Malaysian Ministry of Science, Technology and 
Innovation (MOSTI) eScience Fund number 01-02-16-SF0024. 

References 
Arduino (2014) Arduino – ArduinoBoardMegaADK [online] 

http://arduino.cc/en/Main/ArduinoBoardMegaADK (accessed 14 April 2014). 
Björnsson, Y., Enzenberger, M., Holte, R.C. and Schaeffer, J. (2005) ‘Fringe search: beating A* at 

pathfinding on game maps’, Paper presented at the Proceedings of IEEE Symposium on 
Computational Intelligence and Games. 

Bulitko, V., Björnsson, Y., Sturtevant, N. and Lawrence, R. (2011) ‘Real-time heuristic search for 
pathfinding in video games’, in González-Calero, P.A. and Gómez-Martín, M.A. (Eds.): 
Artificial Intelligence for Computer Games, pp.1–30, Springer, New York. 

Cai, C., Yan, L. and Tie-Song, L. (2011) ‘KM-A* pathfinding algorithm based on hierarchical 
clustering and strengthened DB index criteria’, Paper presented at the 2011 International 
Conference on Machine Learning and Cybernetics (ICMLC), 10–13 July. 

Di Giampaolo, E. (2010) ‘A passive-RFID based indoor navigation system for visually impaired 
people’, Paper presented at the 2010 3rd International Symposium on Applied Sciences in 
Biomedical and Communication Technologies (ISABEL), 7–10 November. 



   

 

   

   
 

   

   

 

   

   114 K.L. Lim et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Digi International (2008) XBee™ ZNet 2.5/XBee-PRO™ ZNet 2.5 OEM RF Modules Datasheet, 
Datasheet, 2/11/2008. 

Dijkstra, E.W. (1959) ‘A note on two problems in connexion with graphs’, Numerische 
Mathematik, Vol. 1, No. 1, pp.269–271. 

Folmer, E., Yuan, B., Carr, D. and Sapre, M. (2009) ‘TextSL: a command-based virtual world 
interface for the visually impaired’, Paper presented at the Proceedings of the 11th 
International ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh, 
Pennsylvania, USA. 

Google (2014a) android.speech | Android Developers [online] 
http://developer.android.com/reference/android/speech/package-summary.html  
(accessed 18 April 2014). 

Google (2014b) TextToSpeech | Android Developers [online] 
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html  
(accessed 18 April 2014). 

Honeywell (2006) Digital Compass Solution – HMC6352 Datasheet, January 2006. 
Honeywell (2011) DRM™4000L Dead Reckoning Module Datasheet, September 2014. 
Hua, W., Marshall, A. and Wai, Y. (2007) ‘Path planning and following algorithms in an indoor 

navigation model for visually impaired’, Paper presented at the Second International 
Conference on Internet Monitoring and Protection, 2007, ICIMP 2007, 1–5 July. 

Khantanpoka, K. and Chinnasarn, K. (2009) ‘Pathfinding of 2D & 3D game real-time strategy with 
depth direction A* algorithm for multi-layer’, Paper presented at the Eighth International 
Symposium on Natural Language Processing, Bangkok, Thailand. 

Korf, R.E. (1985) ‘Depth-first iterative-deepening: an optimal admissible tree search’, Artif. Intell., 
Vol. 27, No. 1, pp.97–109, DOI: 10.1016/0004-3702(85)90084-0. 

Leigh, R., Louis, S.J. and Miles, C. (2007) ‘Using a genetic algorithm to explore A*-like 
pathfinding algorithms’, Paper presented at the IEEE Symposium on Computational 
Intelligence and Games, 2007, CIG 2007, 1–5 April. 

Lim, K.L., Seng, K.P., Yeong, L.S., Ch’ng, S.I. and Ang, L-M. (2013) ‘The boundary  
iterative-deepening depth-first search algorithm’, Paper presented at the Second International 
Conference on Advances in Computer and Information Technology – ACIT 2013,  
Kuala Lumpur, Malaysia. 

NXP Semiconductors (2014) MFRC522 – Standard 3V MIFARE Reader Solution Product data 
Sheet, Product Data Sheet, 17 September 2014. 

Oktem, R., Aydin, E. and Cagiltay, N.E. (2008) ‘An indoor navigation aid designed for visually 
impaired people’, Paper presented at the 34th Annual Conference of IEEE Industrial 
Electronics, 2008, IECON 2008, 10–13 November. 

Oracle Corporation (2014) Learn about Java Technology [online] http://www.java.com/en/about/ 
(accessed 18 April 2014). 

Rios, L.H.O. and Chaimowicz, L. (2011) ‘PNBA*: a parallel bidirectional heuristic search 
algorithm’, Paper presented at the Proceedings of the XXXI Congresso da Sociedade 
Brasileira de Computação, Natal, Brazil. 

Samsung Electronics Co. Ltd. (2014) Samsung GALAXY Note2 – Samsung Mobile [online] 
http://www.samsung.com/global/microsite/galaxynote/note2/spec.html (accessed 15 April 
2014). 

Sturtevant, N.R. (2012) ‘Benchmarks for grid-based pathfinding’, IEEE Transactions on 
Computational Intelligence and AI in Games, Vol. 4, No. 2, pp.144–148. 

Wu, X. and Zhang, S. (2011) ‘The study and application of artificial intelligence pathfinding 
algorithm in game domain’, Paper presented at the International Conference on Computer 
Science and Service Systems, Nanjing, China. 


