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Abstract: The present essay presents a heuristic algorithm for the optimisation 
of coastal vessel’s routes. The task is to research the optimum connection 
between two ports, incorporating in their routes intermediate nodes, which must 
satisfy certain limitations and some preconditions related to total distance, trip 
duration, and demand coverage. This issue has many common elements with 
the overall vehicle routing problem and the team orienteering problem, but, at 
the same time, presents with significant particularities. Its particularities consist 
mainly in the fact that in the sea area, each node may be theoretically linked to 
any other node, without limitations, while a road network has a specific 
structure. The results of the algorithm implementation for its region of 
application were improved compared to that in the literature. The advantages of 
its application by the maritime companies for the search of the optimal 
itineraries will be important mainly in terms of resource saving. 
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1 Introduction 

The optimum vehicle routing problem (VRP) (Christofides et al., 1979), with regard to 
the coverage of demand of an area, under specific time limitations and resources, is a 
non-polynomial (Desrochers et al., 1992) and ‘hard’ (Savelsbergh, 1985), issue and is 
included in the category of problems of routing with time and capacity limitations 
(‘vehicle routing problem with time windows – VRPTW’) (Solomon, 1987). Given that 
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in our problem, that is coastal vessels’ routing for the coverage of the demand of an area, 
the starting point and the terminal point do not always coincide, we could say that the 
coastal vessels routing problem is closer to team orienteering problem (TOP) of multiple 
vessels (Tang and Miller-Hooks, 2005). As per Tang and Miller-Hooks (2005), the 
methodology for searching optimum solutions in TOPs is different than the one used in 
VRPs. According to Toth and Vigo (2002), the scope of vehicle routing under time and 
capacity limitations is to minimise routing costs and to serve customers. In general, in 
order to handle this problem category, there has been development, in the recent years 
numerous post-heuristic, approximation algorithms, which provided quite satisfying 
solutions. Laporte and Osman (1995) and other researches claim that the satisfactory 
solution of the VRP is provided with the use of heuristic and post-heuristic methods. 
Particularly satisfying solutions have also been provided in TOP using post-heuristic 
methods, and, in particular using the tabu search algorithm (Cordeau et al., 2001). Tang 
and Miller-Hooks claim that, for some reasons not theoretically justified yet, tabu 
algorithm provides better solutions compared to other approximation algorithms. On the 
basis of the prior experienced gained over the past decades on routing problems in 
general (Vidal et al., 2011), and specifically for the coastal vessels routing problem, we 
developed an approximation algorithm which has many common points of reference with 
tabu search method, as well as with other approximation, constructive, heuristic and  
post-heuristic algorithms. The proposed heuristic algorithm with the symbolic name 
‘NAUTILOS’ which shall be presented below, provides improved solutions with regard 
to existing routes and the structure of the current network, as well as with regard with the 
overall time-distance covered by all routes. The algorithm results’ comparisons were 
performed using all data found in related bibliography (Aifantopoulou, 2004) and with 
those found in SETHAM Project-Ministry of Merchant Marine of Greece (2001). The 
contribution of this essay is that, additionally to the search of optimum routes in the sea 
area, this algorithm can also be applied in general VRPs providing very good results. 
Moreover, the algorithm can also be applied in network design problems, where optimum 
connection between two different network nodes under certain criteria is desired. The 
good behaviour of the algorithm in all such routing and network design problems is 
attributed, in our opinion to the very structure and operation of the algorithm, which, 
essentially ‘constructs’ the optimum solutions step-by-step, based on the limitations set 
and avoiding local optima in an ‘intelligent’ way. 

In essence, the problem of optimising the maritime transportations that we deal with 
in this report is a TOP problem, since we want to design optimal itineraries by covering 
adequately the demand of a specific region. 

2 Problem description 

Assume a sea region consisting of n ports (nodes) pi, i = 1, 2, …, n. Assume, we avail k 
vessels with different features (capacity, speed, etc.). We have one departure port for 
each route and one terminal port, which in general differs from the departure port. Each 
route has a constant frequency over a specific time period (i.e., 7 times a week), a specific 
time of departure and specific time window for serving each node. That is, each vessel 
has a specific time window for the departure and arrival at each port. Each port (node) in 
the search area belongs to at least one, or more routes. A maritime company is interested 
in routing the vessels of its fleet on the routes presenting with the maximum profit. Thus, 
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the objective is to search the optimum routes which, within set time limits, shall 
assimilate the types of vessels availed and shall cover the demand of the port-nodes of the 
required sea region to be covered, at the lowest cost possible. 

3 Basic concepts and assumptions 

1 Port of departure (pd), is the port of departure, starting of the route. 

2 Port of arrival (pa), is the port at which the route terminates, which, in general, is 
different from the port of departure. 

3 Node-port (pi, i = 1, 2, …, n) is an intermediate port of a route, other than the 
departure and arrival ports. 

4 Wait time of a vessel is the time that a vessel remains in an intermediate port for 
disembarkation – embarkation (tw). 

5 Total time is the time of the route (ts). 

6 Search area (Ux) is the area in which the nodes (ports) that shall compose a route are 
to be searched. This area may be part of the sea region (i.e., Cyclades), for which we 
wish to design optimum routes, or the entire sea area (i.e., Aegean Sea). This area 
consists of various regions – neighbourhoods (i.e., Eastern Cyclades), in which we 
apply the prohibition or release policies, depending on the data. That is, during the 
search process, it is possible for a node of a distinct region (neighbourhood), though 
included in the prohibition list due to limitations, to be ultimately improving the 
value of the objective function, rendering thus its release and integration in the route 
necessary and vice versa. 

7 Value of connectivity of three ports (a, b, c) (Figure 1). This parameter is particularly 
important for the algorithm and it is the element that differentiates it from standard 
optimisation algorithms. The basic concept for introducing this parameter in the 
algorithm was created from the need to find a mathematical way to introduce a third 
port between two other ports that we wanted to link. Assume two ports a and b which 
have a distance of dab between them and assume that we want to introduce between 
them a third port, c, which has a distance of dac from a and a distance of dcb from b, 
which is going to be the criterion for the incorporation or dismissal of the third port. 
This is the connectivity value and is expressed as the quotient of the division  
(dac + dcb)/dab which is called connectivity value. This value is compared with the 
values of the interval [1, 1.5], depending on whether we wish a greater, or smaller, 
deviation from the course defined by straight line ab. This interval of values was 
selected after many tests of the algorithm on the actual distances between the ports of 
the Aegean Sea. Thus, if the connectivity parameter assumes a value of 1, then we 
have the so called, inelastic connectivity and in this case route ac –> cb does not 
deviate at all from route ab, while, if it assumes value 1.5 we have the so called 
elastic connectivity and in this case, route ac – cb deviates more from route ab. 
Obviously, in the 1st case there is only inclusion of the ports located on straight line 
ab, while in the 2nd case, many more ports are included. We assume that the 
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algorithm is applied for small sea distances (coastal links), because for much longer 
distances, it would be necessary to use sea arcs. 

Figure 1 View of two ports a, b and intervention of a third port, c, in accordance with the 
connectivity value 

 

Figure 2 The cyclical search area of intervening ports having a search angle of 90° (see online 
version for colours) 
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8 Sweep angle is the angle created by the points of the two ports a and b following the 
interposition of port c, that is, angle acb. Sweep or search area is the area of the 
cylindrical disc created each time during the process of connecting two ports a, b  
and interposing the third port c. The cylindrical disc in question has as its diameter 
distance dab, that is the distance between the two ports a and b. The third port shall be 
searched in the cyclical area created, having as its centre the middle of the distance 
dab and as its radius dab/2. This limitation provides a direction to the route from port 
a to port b, given that it dismisses all connections outside the said cyclical area and 
prevents ‘back turns’ of the routes. 

Figure 3 The elliptical (Α) search area of intervening ports with a search angle smaller than 90° 
(see online version for colours) 

 

Figure 4 The elliptical search area of intervening ports with a search angle greater than 90°  
(see online version for colours) 

 

 Applies: cos(acb) = [(ac)2 + (cb)2 – (ab)2] / 2(ac)(cb), where cos(acb) <= 0. 

 This value ensures that port c is within the cyclical area created on the basis of 
distance ab (sweep or search area). The values that can be assigned to the sweep 
angle are the values within interval [90°, 180°] that ensure that port c is located in 
the region of the cyclical disc having diameter ab (Figure 2). In some cases, angles 
smaller than 90° can also be accepted, when it is desired to broaden or narrow down 
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the search area, which is formulated on the basis of the departure and final 
destination ports. In this case, there is formation of elliptical search areas  
(Figures 3 and 4). 

9 A release strategy is followed when we release a node or subset of nodes from the 
prohibited list, in order to integrate them in a route, because they improve a previous 
solution. 

10 A prohibition strategy is followed when we prohibit one or more nodes from 
participating in a route, at some point during the search. It should be noted that such 
prohibition may be raised under certain conditions. 

11 Prohibited list. This list is populated dynamically during the search. The initial list 
includes all nodes, except for the departure and termination nodes, for which the 
values of the sweep angle and connectivity are not within the predefined limits. 
During the search process of the algorithm and depending on the limitations and the 
value of the objective function, we follow release, or prohibition strategies. That is 
we release certain nodes from search list and include in it some other nodes, 
depending on the case. It is possible for a node on a route having the same departure 
and destination, to be integrated in a route and not to be integrated to another, when 
the optimum routes searched on the basis of the search conditions are different. 

12 Ambition criterion consists in the following. As long as a node during the search 
process provides a better value for the objective function, then, prohibition can be 
raised and the node can be integrated in the route. For instance, if connectivity value 
or the sweep angle prohibits the participation of the node in the search process, if its 
participation provides a better value for the objective function, compared to the past, 
then we can raise prohibition and allow participation of the node on the route. It is 
possible, in case the participation of a node included in the prohibited list leads to an 
improved route compared to the routes created up to that point, to release the node 
and integrate it to the route. 

13 Search time. Depending on the case, it is possible to set some rules. These may be 
static, that is invariable, and in other cases we may need dynamic review, that is to 
be able to modify the duration of a route, i.e., in case of emergency conditions. In the 
model applied for the islands of the Aegean, we have set as the upper limit of the 
duration of a route, a value of 24 hours. This limitation is placed because the short 
distance itineraries do not last longer and this is also a terminating term of the 
algorithm. 

14 Search algorithm memory. In this memory there is storage of all information 
necessary, or created during the search process, in order to improve the routes 
generated. This memory shall store the information concerning prohibitions, 
releases, routes generated and any other information produced during the search 
progress. Actually, this process may require some extra time and extra memory 
resources, but it ensures non-recycling of the solutions. 
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15 Procedure of sorting during search. The sorting required to be performed during the 
search process depends on the factors defined as predominant ones. For instance, if 
distance is set as a predominant improvement factor, then this shall be necessary 
each time we look for the next move in a sub-region – neighbourhood, and shall be 
searched in the nearest neighbours – nodes of the last node integrated in the route. In 
this context, sorting by distance is necessary. 

16 Search stop conditions of the algorithm, are the conditions which, if one of them 
applies, the algorithm stops. These are: 
a the total duration of the route, which in the specific application of the algorithm 

cannot exceed 24 hours 
b the maximum vessel capacity, which may not be greater than the total demand 

of the route nodes 
c the maximum search time of the algorithm, that is, if an upper limit for search 

duration is set. 

 In this particular application for coastal routes, we have set the first two stop 
conditions in effect. 

4 Cost parameters for the participation of a node in a route 

Routing problems are generally evaluated using two methods. The first one refers to costs 
minimisation (Louis et al., 1999). The second refers to the profit (profit or reward) 
maximisation (Tang et al., 2010). In essence, these constitute the same methodology, 
given that inverting cost coefficients the problem is converted from cost minimisation to 
profit maximisation. 

On the basis of this logic, below follows an analysis of the cost parameters 
comprising the objective function of the algorithm: 

1 The total distance of the route Σdi, i = 1, 2, …, n. Each node j added to the route after 
the last node i ‘burdens’ the total distance travelled of the route per d(i, j). That is,  
Σdi = Dj + d(j, i) where i, j = 1, 2, …, n (this parameter can also be referred to as 
duration, if we convert distance to time duration, using formula v = s/t, and assuming 
v = average vessel speed, s = interval travelled and t = time). It consists of the 
various distances among nodes. 

2 The total route time Σti, i = 1, 2, …, n. This time consists of the sum of the times for 
the transition from each node of the route to the next (tij). That is, there is no 
inclusion of the times spent at each node for the embarkation and disembarkation 
process (service time). 

3 The total waiting time of each vessel at each node for the embarkation and 
disembarkation process, Σwi, i = 1, 2, …, n. This time at each node has a specific 
start time and a specific end time. This time interval is also called time window. If a 
vessel reaches node i prior to time period wi1 this is not attributed to something and 
it is responsible to wait till the time period for the commencement of the time 
window, and if it reaches the node later than the start time, then time counts as of 
that moment, or we can set a type of penalty. 
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4 Total vessel overload Σοi, i = 1, 2, …, n. This value is the positive difference 
between the demand at each node mi and the capacity of each vessel ck,  
k = 1, 2, …, K. If this value is close to zero, then demand is covered in an ideal 
manner. If the absolute value of this difference increases, then vessel capacity is 
lower than the demand and the vessel is not able to cover it, or vessel capacity is 
much greater than the demand, and in each case there is an error in the selection of 
the routing vessel type. 

5 The sum of the distance of each node from the straight line that connects each node 
with its projection to the straight line that connects the departure node with the 
terminal node, Σxi, i = 1, 2, 3, …, n (Figure 5). This parameter further burdens the 
value of the function with the participation to the route of nodes that are quite distant 
from the straight line connecting the departure and termination nodes. 

Figure 5 Vertical distances of the nodes from the axis that connects the departure node with the 
terminal node 

 

That is, the specific cost parameter ‘favours’ nodes located at close distances from axis 
pdpa and ‘discourages’ the participation of nodes located far from this axis. 

The cost of each route ri is the value of the function: 

( ) 2 3 4 5 , 1, 2, 3, ...,i i i i i i iF r λ d λ t λ w λ σ λ x i n= Σ + Σ + Σ + Σ + Σ =  (1) 

where 

Σdi the total distance of the route 

Σti the total time of the route (excluding the wait, embarkation, disembarkation times 
of the vessel at each node) 

Σwi the total delay time at each port (that is the wait, embarkation, disembarkation times 
of the vessel at each node) 

Σoi the total overload (the positive difference of vessel capacity and demand) 

Σxi the total distance of each node from the straight line that connects the departure 
node and the terminal node. 

And λ1, λ2, λ3, λ4, λ5 are the gravity coefficients for each cost factors, assuming values that 
are determined according to the criticality and weight attributed to each cost factor, 
depending the routing problem and the prioritisation provided each time. We can 
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introduce the concept of prevalence of a cost factor and define the set of optimum 
solutions which shall be subject to the dominance relation established. In the problem 
examined in the essay, that is, the search of the optimum connection between two nodes, 
we have a series of optimisation criteria, such as total distance, total time and demand 
coverage. The comparisons with the routing cases referenced in the bibliography, refer to 
the total distance and on the basis of this criterion we created, at an initial stage, a set of 
optimum routes for the required connections. Then, at this set of routes, we can apply the 
other optimisation criteria defined, in order to create final optimum solutions on the basis 
of an optimisation based on multiple criteria optimisation process. And this is because a 
maritime company is not only interested in designing the optimum routes for a 
destination, but its primary concern is whether such routes can be covered using the 
available fleet and available types of vessels. This is the exact object of the second phase 
of routes optimisation. There is search of the adequate types of vessels for the coverage 
of the demand of the destinations of each route created during the previous optimisation 
phase and vice versa. On the basis of the available vessels of the company, we search 
which of the optimum routes of the optimisation process can be covered. 

5 Mathematical model of the problem 

As stated above, the problem of routing vessels with time and capacity limitations (such 
as the coastal routes problem), is a difficult problem with non-polynomial solution, in the 
context that using the standard optimum route search algorithms, its solution becomes 
very difficult and involves exponential times. Using these data, we converted the problem 
so as to acquire a polynomial solution. 

Assume a graph, G(N, A) where Ν are all the nodes (ports) and Α is the total of 
distances dij (edges or arcs), of the connections of all nodes (i, j) between them. A node j, 
in order to be integrated in a route, has a cost related to certain cost parameters (distance, 
etc.), as analysed in cost parameters. The route that corresponds to each vessel is a path 
of given direction from the departure node to the terminal node (terminal port), that 
serves a specific set of intermediate nodes (ports). Each vessel has a given loading 
capacity (tonnage) and there is a pre-determined demand for each node (port). The sum 
of the demand of all nodes cannot exceed the total capacity of the vessel which is set for 
the specific route. The service provided to each port (node) i, must be materialised within 
a specific time interval (time window) [w1i, w2i], where w1i is the earliest time point and 
w2i the latest one, within which access to the node (port) must be performed. If the vessel 
reaches the node (port) earlier, it must wait till it is within its duty time [w1i, w2i]). 

Moreover, the total routing time (trip time) must be within a framework, i.e., [0.24 h]. 
Thus, the departure time for each destination must be specific and in conjunction with the 
time of arrival at each node and at the terminal node, so that it is never in conflict with 
the operation of the ports, as well as any other limitations that may have been set, such as 
the ability to access a port at specific times, etc. Thus, the problem is expressed as 
follows. As long as we avail a specific number of vessels (fleet of vessels), the objective 
goal is to minimise the total cost of a set of routes that satisfy the requirements of the 
problem of serving the nodes (ports) of set Ν. That is, we shall design a set of routes of 
minimum cost, one route per vessel, so as to cover the demand of each node (port). If we 
want to limit the number of vessels we can set a cost at the entry of a new vessel. Thus, 
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we can minimise the number of the fleet on the basis of the cost of introducing a new 
vessel. The vessels routing problem in its most simple version, and setting the appropriate 
values at the cost parameters of equation (1), can be converted to a minimum path 
problem. That is the search of the shortest path between two nodes. However, in this case 
too, if nodes are n, then the various paths are 1/2 n!. For instance, for n = 20, that is as 
many as the greatest ports of Cyclades, approximately, then there are 1.2 e18 different 
routes!. 

In order to formulate the objective function, we define the following: 

• Pd, the departure node (departure port) 

• Pa, the terminal node (terminal port) 

• pi, i = 1, 2, …, n the intermediate ports (nodes) of the search area 

• dij, the distance of node j from node i 

• ki, the total number of vessels i = 1, 2, …, k 

• qi, the tonnage of each vessel, i = 1, 2, …, k 

• Ν, the ports in the search area {1, 2, 3, …, n) without inclusion of the departure and 
termination ports 

• mi, the demand at each port 

• cij, the costs of connecting two ports i and j 

• tij, the time of each connection of port i with port j 

• Each route starts from the central departure port 

• The number of the final optimum routes equals the number of the vessels. 

• The tonnage of the vessels covers the demand of the ports (nodes) served. 

• Each vessel on a route, visits each port (node) of the route only once. 

• The wait time of the vessel at each port (node) wi, i = 1, 2, …, n is the vessel’s 
service time and the objective is to minimise it. This time can differ for each  
node. In the algorithm, for the routes created and for the comparisons, we set a wi,  
i = 1, 2, …, n value equal to 1/4 of an hour, which constitutes a reasonable wait time 
for a vessel at a port for the disembarkation and embarkation of vessels and 
passengers. 

• Each route must be completed within a specific time (<= 24 hours) 

• We set the decision variable X = {xijk} and i, j = 1, 2, …, N and k = 1, 2, …, K with  
i ≠ j. 

With xijk = 1 if vessel k connects port i with port j. 

And xijk = 0 otherwise. 

• We also set Y = {yik) with i = 1, 2, 3, …, N and k = 1, 2, …, K. 

With yik = 1 if vessel k visits node i. 
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And yik = 0 otherwise. 

• The problem is to minimise the objective function 

1 1

N K

i ik
i k

F f y
= =

=∑∑  (2) 

• Limitations 
a Κ vessels depart from the central port of departure 

1 1

N K

ik
i k

y K
= =

=∑∑  (3) 

b One vessel arrives to node j from node i 

1

, , 1, 2, ...,
N

ijk jk
i

x y k K i j N
=

= ∀ ∈ =∑  (4) 

c One vessel departs from node i and is directed to j 

1

, , 1, 2, ...,
N

ijk ik
j

x y k K i j N
=

= ∀ ∈ =∑  (5) 

d Each node participates only once in a route 

1

1 , 1, 2, ...,
K

ik
k

y k K i N
=

≤ ∀ ∈ =∑  (6) 

e From the departure node, each vessel departs once 

1

1 , 1, 2, ...,
K

ik
k

y k K i N
=

= ∀ ∈ =∑  (7) 

f The vessels on each route are not allowed to move on circular paths 

1 , , , 1, 2, ...,ijk ik
i S j S i S

x y S N k K S i N
∈ ∈ ∈

≤ − ∀ ⊆ ∀ ∈ ≠ ∅ =∑∑ ∑  (8) 

g The tonnage of each vessel is lower than or equal to total demand 

1

, 1, 2, ...,
N

ik i k
i

y m c k K i N
=

≤ ∀ ∈ =∑  (9) 

h The total time of each route must be less than the defined Tmax = 24 h 

max
1

, 1, 2, ...,
N

ik i
i

y t T k K i N
=

≤ ∀ ∈ =∑  (10) 

i As long as the connection of node i to node j is integrated in the route, then  
the starting time for the service of node j must be greater than or equal to the 
starting time for the service of node i plus the time of service of node i plus the 
time for the transition from node i to node j. 
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( ) 0 , 1, 2, ...,ij i i ijx t w t i j N+ + ≤ ∀ =  (11) 

j The time of service of node j must be within the defined time window. That is, if 
the vessel reaches node j earlier than the start of its time window, then the vessel 
must wait till its time window opens, while if it arrives later, service shall begin 
from the time of arrival. 

1 2
1 1 1 1

, 1, 2, ...,
N N N N

j ij i j ij
i j i j

w x t w x i j N
= = = =

≤ ≤ ∀ =∑∑ ∑∑  (12) 

6 Algorithm pseudocode 

Step Α Provide the port of departure (pd), the port of arrival (pa), the search area, the 
three ports connectivity parameter, the sweep angle, the wait times for the 
vessels at the port (tw), vessel speed (vs) and tonnage of each vessel (qk). The 
initial optimum route matrix is the one having as its data the departure and 
arrival ports. 

Step Β Loading of all ports of the search area in a p[1…n] matrix, with the exception of 
the ports that belong in the optimum route matrix. Random selection of port pi 
(FOR i = 1 to n). 

Step C Check that the connectivity value di of this port (pi) with the departure (pd) and 
arrival (pa) ports, is lower than, or equal to the connectivity parameter defined ds 
(that is whether condition di <= ds applies). If it does not apply, go to Step Β and 
proceed with the next port of the search area, while if the condition applies, go 
to the next Step D. 

Step D Check whether the intermediate port pi belongs to the sweep or search area 
created according to the sweep angle defined. If this is not the case, check first 
whether the participation of node pi improves the route generated so far, on the 
basis of the metric function of the cost for the connection of a node. If it does 
improve it, integrate the node in the route and continue with Step Ε. Otherwise, 
include the node in the prohibition list and go to Step Β to continue with the next 
port. 

Step Ε Check the stop conditions for all for all optimum routes generated. If they do not 
apply, continue search in the regions – neighbourhoods of optimum solutions for 
further optimisation by means of going to Step B, otherwise go to Step F. 

Step F Calculate the total costs for the optimum routes generated, sort end lists of 
optimum routes on the basis of the cost for each destination. 

Step G Print the final optimum routes for each destination. 
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7 The flowchart (Figure 6) of the algorithm searching optimum routers 

Figure 6 Algorithm flowchart 

 

8 Analysis of the algorithm and documentation of its accuracy 

In this section, we shall analyse the algorithm and demonstrate that the search process 
always results in optimum solutions. Assume graph G = (V, E) where V is the total 
number of ports in the search area and Ε is the total number of possible connections. We 
define the following: 

N the total number of nodes (ports) and V the totality of all distances between the nodes 

L the total number of acceptable nodes (the ports included in the optimum route) 

C the total number of candidate nodes (ports) 

Pd = s the port of departure 
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Pa = t the port of arrival 

dij the distance between two nodes (ports) i,j 

pc the connectivity parameter of two nodes (ports) 

φc the sweep angle. 

The following apply: 

dij = ∞ if (i,j) ∉ E 
L = {s, t} and C = V–L 
ΣDj = dsj for j<>s and ΣDt = dst is the shortest path s -> t 
array_opt {} = EmptySet /*Optimum route 

do while /*Loop j ∈ V 

for all i ∈ V 
 if pi <= pc *// if connectivity condition applies for each node j 
  if φi <= φc *// if node j belongs to the sweep area 
   ΣDi = min ΣDj (j ∉ L) 
    C=C – {i} 
    L = L U {i} 
    ΣDj := min [ΣDj, ΣDi + dij], j ∈ C 
   array_opt = add(i) /* add node to route 
   endif 
  endif 
next 
enddo 

8.1 Analysis 

For each node u ∈ L, distance d(u) is the shortest path s -> u: 

a for n = 1, |L| = 1 applies ds = 0 

b for n = 2, |L| = 2 applies dst = Distance (s, t) 

c inductive for n = k applies, |L| = k >= 1. 

The shortest path s -> u (Figure 7) is ΣD(u). 
Addition of a node, v, to L (Figure 8). 
Applies ΣD(v) = ΣD(u) + d(u, v). 
Assume that we have another shortest path P′: s -> v and the preceding node that does 

not belong to L is node w. 
y is the node before w and ΣD(y) is the shortest path s ->y (Figure 9). 
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Figure 7 The shortest path s – u: ΣD(u) 

 

Figure 8 The shortest path s – v 

 

Figure 9 Shortest path s -> v 

 

The following apply, consecutively: 
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( ) ( ) ( , ) ( , ) ( ) ( , ) ( ) ( )D v D y d y w d w v D y d y w D w D v′Σ = Σ + + >= Σ + >= Σ >= Σ  

Indeed, ΣD′(v) = ΣD(y) + d(y, w) + d(w, v) obviously applies. 
Moreover, it applies that: ΣD(y) + d(y, w) <= ΣD(y) + d(y, w) + d(w, v) if we deduct 

the positive term or zero d(w, v). 
However, given that node w is outside L, it applies: ΣD(w) <= ΣD(y) + d(y, w). 
Thus, ΣD′(v) >= ΣD(v). 
The algorithm always terminates. In each case we have a solution, direct connection  

s -> t which is the shortest path between s and t. 

9 Optimum routes 

The algorithm was tested on the region of the Aegean Sea, having as a cost criterion the 
total distance travelled and its results were compared with respective coastal routes found 
in the related bibliography (Aifantopoulou, 2004) for 50 ports. Tests were performed on a 
PC with CPU Xeon 3.4 GHz with 4 GB RAM. The maximum time for the generation of 
optimum routes for each destination, did not exceed 4 minutes. The comparison results 
are presented in the following Table 1, in which the search algorithm presented in this 
essay showed the best results for the majority of the routes. In the first part of Table 1, 
there are the optimal itineraries generated by our heuristic algorithm, with the total 
distance of each itinerary. In the second part, there are the itineraries of the genetic 
Aifantopoulou algorithm with the total distance of each itinerary. In addition, the total 
covered distance of the SETHAM survey is also mentioned for the same limitations. The 
compared results show that, the total covered distance of the optimal itineraries of 
Aifantopoulou and SETHAM algorithms for the same destinations, is less by 45% and 
49%, respectively. 
Table 1 Comparison of routes with genetic algorithm for 50 ports 

Code Routers heuristic algorithm Miles 

Opt.1 PIRAEUS-AGIOS KIRIKOS IKARIAS-ΦΟΥΡΝΟΙ-SAMOS 
KARLOVASI-SAMOS VATHI 

183 

Opt.2 PIRAEUS-SERIFOS-SIFNOS-FOLEGANDROS-SIKINOS-IOS-THIRA 144 
Opt.3 PIRAEUS-PSARA-ΧΙΟΣ-MITILINI 217 
Opt.4 PIRAEUS-PATMOS-LIPSI-KALIMNOS-KOS-SIMI-RODOS 286 
Opt.5 PIRAEUS-SIROS-PAROS-NAXOS-KOUFONISI-SXINOUSA-

IRAKLIAIOS-SIKINOS-FOLEGANDROS-THIRA 
190 

Opt.6 PIRAEUS-RETHIMNO-XANIA-KISSAMOS-AGIA PELAGIA 282 
Opt.7 PIRAEUS-SIROS-PATMOS-LEROS-KALIMNOS-KOS-

CHALKIRODOS 
296 

Opt.8 PIRAEUS-IOS-THIRA-ANAFI 153 
Opt.9 PIRAEUS-PAROS-NAXOS-DONOUSA-AMORGOS 

AIGIALIASTIPALAIA 
185 

Opt.10 PIRAEUS-ANDROS-AGIOS EYSTRATIOS-LIMNOS MIRINA 190 
Opt.11 PIRAEUS-AGIOS NIKOLAOS-SITIA-KASOS-DIAFANIO 

KARPATHOY 
300 
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Table 1 Comparison of routes with genetic algorithm for 50 ports (continued) 

Code Routers heuristic algorithm Miles 

Opt.12 PIRAEUS-XANIA 147 

Opt.13 PIRAEUS-KITHNOS-SERIFOS-SIFNOS-KIMOLOS-MELOS 109 

Opt.14 PIRAEUS-SIROS-TINOS-MIKONOS-MIRINA-THESSALONIKI 381 

Opt.15 PIRAEUS-FOLEGANDROS-THIRA-KATAPOLA 165 

Opt.16 PIRAEUS-SIROS-TINOS-ΜΥΚΟΝΟΣ 99 

Opt.17 PIRAEUS-ΗΡΑΚΛΕΙΟ 173 

Code Routers Aifantopoulou Miles 

R1 PIRAEUS-DONOUSA-AGIOS KIRIKOS IKARIΑΣ-SAMOS 
VATHISAMOS KARLOVASI 

207 

R2 PIRAEUS-ΜΥΚΟΝΟΣ-KIMOLOS-FOLEGANDROS-SIFNOS 195 

R3 PIRAEUS-MITILINI-ΧΙΟΣ 239 

R4 PIRAEUS-PATMOS-KALIMNOS-KOS-SIMI 261 

R5 PIRAEUS-KOUFONISI-IRAKLIA-AMORGOS 
KATAPOLAASTIPALAIA-LEROS-FOURNOI 

269 

R6 PIRAEUS-XANIA-RETHIMNO-ΚΙΣSAMOS-AGIA PELAGIA 295 

R7 PIRAEUS-SITIA-KASOS-DIAFANIO KARPATHOY-RODOS 350 

R8 PIRAEUS-THIRA-IOS-ANAFI 178 

R9 PIRAEUS-PAROS-NAXOS-SXINOUSA-AIGIALI 147 

R10 PIRAEUS-TINOS-SIROS-KITHNOS-ANDROS-MIRINA 287 

R11 PIRAEUS-IRAKLIO-MELOS-KITHNOS-KOS-CHALKI-RODOS 546 

R12 PIRAEUS-MIKONOS-PAROS-DIAFANIO KARPATHOY-AGIOS 
NIKOLAOS 

353 

R13 PIRAEUS-XANIA-RETHIMNO-IRAKLIO-FOLEGANDROS-SIKINOS 303 

R14 PIRAEUS-TINOS-SIROS-SERIFOS-SIFNOS-SAMOS VATHI-SAMOS 
KARLOVASI 

277 

R15 PIRAEUS-ΙΟΣ-ΝΑΧΟΣ-MELOS-THIRA 249 

R16 PIRAEUS-THIRA-KATAPOLA-PATMOS-LIPSI-KALIMNOS 252 

R17 PIRAEUS-PAROS-MIKONOS-MIRINA-THESSALONIKI 398 

R18 PIRAEUS-MITILINI-XIOS-PSARA 281 

 Total distance heuristic algorithm for 50 ports 3.514 

 Total distance algorithm Aifantopoulou for 50 ports 5.087 

 Total distance SETHAM Project for 50 ports 5.252 

 Difference with Aifantopoulou –1.573 

 Defference with SETHAM –1.738 

 Optimisation with Aifantopoulou –45% 

 Optimisation with SETHAM –49% 
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10 Conclusions 

The algorithm presented in this essay approached routing problems with capacity 
limitations, as well as with spatial and time limitations, in sea regions presenting with 
specific particularities. The case examined could be referred to as vessel routing problem 
with capacity, time, and space limitations (VRP with CTPC). The algorithm can be 
applied to any sea region both with smooth and irregular island distribution, as it can be 
adapted to the particularities of each area. Moreover, the algorithm can be exploited in 
generic vessel routing problems, when we are invited to formulate the search area using 
geographic and topological limitations. 

Moreover, the algorithm can be used in general problems of network design, of any 
form, in particular when we have parameters related to the structure and topology of the 
network application area. Moreover, it can be used in routing problems in which routes 
are dynamic, such as the dial-a-ride problems. 

The algorithm can also be used for searching optimum solutions in critical problems 
that concern a maritime company, such as the issues, of the sea regions in which they 
should operate and what kind of vessels they need in such regions. In combination with 
the above, an objective of each maritime company, as well as for maritime organisations 
is to design and implement an integrated decision support system for the coastal 
transports issue. Such a dynamic system can constitute a strategic tool for a maritime 
company, with the objective to establish adequate strategies and policies with regard to 
the most effective lines for routing its vessels, as well as for the formulation of an 
appropriate fleet for covering market needs. 
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