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Abstract: Fuzzy systems have remarkable capability to deal with  
imprecise and uncertain information existing in the real world complex 
problems. Evolutionary approaches, i.e., genetic algorithms are utilised to 
improvise the designing of fuzzy systems. During the design of fuzzy systems, 
interpretability and accuracy features are considered as an effort toward the 
improvement of performance and usability. One can only be improved at the 
cost of the other, leading to a new trade-off called interpretability-accuracy 
trade-off. On the other hand, the use of interval type-2 fuzzy sets in the 
development of fuzzy classifier is another dimension of improving it. In this 
paper, a fuzzy classifier named Engineering Student-Fuzzy Classification 
System (ES-FCS) is proposed and implemented using type-1 and type-2 fuzzy 
logic. The accuracy improvement has been studied by the application of 
linguistic hedges. The interpretability and accuracy assessment and their  
trade-off are experimentally studied in evolutionary multi-objective framework 
with both type-1 and type-2 fuzzy sets. 
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1 Introduction 

Fuzzy systems (Wang, 1999) are highly capable to deal with imprecision and uncertainty 
existing in the linguistic information during the modelling of real world applications and 
are applicable in control, classification and modelling areas. The fuzzy systems are 
capable to simulate the human reasoning and decision making along with their adaptive 
behaviour. In the fuzzy systems, more precisely fuzzy knowledge base systems (FKBS) 
have the knowledge about the problem, encoded in the form of fuzzy if-then rules based 
on either expert knowledge encoding or using some set of data/machine learning 
approach. 

During the development of fuzzy systems, two important aspects are considered, 

1 interpretability (Cassilas et al., 2003a; Gacto et al., 2011; Shukla and Tripathi, 2013) 

2 accuracy (Cassilas et al., 2003b). 

Interpretability is the quality of modelled system which shows if its behaviour is human 
understandable or not by seeing its functioning. On the other hand, accuracy is the feature 
in which the closeness between real and modelled system is judged. Accuracy and 
interpretability features are contradictory with each other; one can be improved at the 
cost of the other. This is called the interpretability-accuracy trade-off (Shukla and 
Tripathi, 2011, 2012a). 

In the subsequent progress of developing the fuzzy systems, genetic algorithms (GAs) 
(Holland, 1975) are well utilised and leads to a new scope of research called, genetic 
fuzzy systems (GFSs) (Cordon et al., 2001; Herrera, 2005; Cordon et al., 2004; Herrera, 
2008). Various components of fuzzy systems are optimised, learned and adapted using 
GAs. 

Evolutionary multi-objective optimisation (Deb, 2001) is used to deal with well 
known interpretability-accuracy trade-off and results in a new area called ‘evolutionary 
multi-objective fuzzy systems (EMOFS)’ (Ishibuchi, 2007; Ducange and Marcelloni, 
2011; Fazzolari et al., 2012; Shukla and Tripathi, 2012b). 

The new dimension to improve the FKBS design is the use of type-2 fuzzy logic 
(Mizumoto and Tanaka, 1976; Mendel and John, 2002) and interval type-2 fuzzy logic 
(Wu and Mendel, 2002; Wu, 2012). Use of type-2 fuzzy sets make the system 
computationally expensive and reduction in interpretability. To overcome with this 
situation, the authors propose the use of interval type-2 fuzzy sets to develop the 
evolutionary multi-objective fuzzy classifier engineering student-fuzzy classification 
system (‘ES-FCS’). Interval type-2 fuzzy sets are less computationally expensive and 
have most of the advantages of the type-2 fuzzy sets. 

In this paper the authors have proposed ‘engineering student fuzzy classification 
system (ES-FCS)’ on which multi-objective evolutionary algorithms-based (MOEA) 
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studies have been carried out dealing with interpretability-accuracy trade-off as well as 
interpretability assessment at different levels. Also, accuracy improvement has been 
studied with the integration of linguistic hedges. 

This paper continues with Section 2 that introduces and reviews application of 
MOEA in fuzzy systems. Section 3 is the introduction and review of applying linguistic 
hedges in simple and multi-objective GFSs. The proposed system EC-FCS is discussed in 
Section 4. Experimental details and results are carried out in Section 5. Section 6 is the 
conclusion of the paper. 

2 Type-2 fuzzy theory and systems 

A type-2 fuzzy set has one more dimension to deal with the uncertainty not handled in 
type-1 simple fuzzy sets. Type-2 fuzzy sets are computationally expensive, hence interval 
type-2 fuzzy sets are used to design the FKBS. In type-2 fuzzy sets, the membership 
degree is represented by a fuzzy set whereas the interval type-2 fuzzy sets have an 
interval for the membership degree and results into less computational cost. 

Type-2 fuzzy set is represented by A* and defined by membership function * ( , )Aμ x u  
where x ∈ X and u ∈ Jx ⊆ [0, 1] 

{ }*
* ( , ), ( , ) | , [0,1]xAA x u μ x u x X u J= ∀ ∈ ∀ ∈ ⊆  

Here, *0 ( , ) 1Aμ x u≤ ≤  when all * ( , ) 1Aμ x u =  then A* is called interval type-2 fuzzy set. 
The interval type-2 fuzzy set is represented as follows: 

{ } }( , ),1 , , [0,1]I
x xA x u x X u J J= ∈ ∈ ⊆  

In the above definitions, X is considered as primary domain and Jx is the secondary 
domain. Here, all secondary grades ( , )IAμ x u  are equal to 1. This is fully expressed by 

the upper and lower bound. 

3 Integration of evolutionary multi-objective optimisation in fuzzy systems 
to deal with interpretability-accuracy trade-off 

Evolutionary algorithms are powerful and robust search mechanism based on simulation 
of the concept of natural evolution. These are integrated with multi-objective 
optimisation leading to a new kind of algorithms, denoted by MOEA. The first generation 
MOEAs are; non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb, 1994), 
niched Pareto genetic algorithms (NPGA) (Horn et al., 1994), multi-objective genetic 
algorithm (MOGA) (Fonseca and Fleming, 1993) and second generation MOEA are; 
strength Pareto evolutionary algorithms (SPEA) (Zitzler and Thiele, 1999), strength 
Pareto evolutionary algorithm 2 (SPEA2) (Zitzler et al., 2001), Pareto archived 
evolutionary strategies (PAES) (Knowles and Corne, 2000), non-dominated sorting 
genetic algorithms (NSGA-II) (Deb et al., 2002), niched Pareto genetic algorithm II 
(NPGA-II) (Erickson et al., 2001) and Pareto envelop-based selection algorithm (PESA) 
(Corne et al., 2000). 
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In EMO development environment, the fuzzy systems are characterised by two 
conflicting objective functions. These are as follows; 

minimise   ( )  and  complexity  ( )
maximise   ( ) and complexity ( )

error fs fs
accuracy fs fs

 

Here, fs is a fuzzy system. 
These approaches of integrating GAs with fuzzy system are generating only one 

fuzzy system on the curve derived in between the accuracy and interpretability. But, 
further research in this field has proceeded in the new dimension of finding multiple 
number of fuzzy systems on the curve of accuracy and interpretability. One of these 
fuzzy systems may be selected as per the preference of user satisfying the problem state. 
This new dimension leads to a new field, called EMOFS as discussed in Figure 1. 

Figure 1 Single and multi-objective GFSs (see online version for colours) 

 

The simple changes in the multi-objective formulation of fuzzy system design are studied 
in Ishibuchi et al. (2010) 

To deal with interpretability and accuracy parameters several multi-objective 
formulations are developed. In Ishibuchi et al. (1997), the two objectives are; number of 
correctly classified training patterns (accuracy) and number of selected fuzzy rules 
(interpretability). In Ishibuchi et al. (2001), the above formulation has been extended with 
one another objective. The objectives in this formulation are; number of correctly 
classified training patterns, number of selected fuzzy rules and total number of antecedent 
conditions [total rule length (TRL)]. 

Error and complexity are represented by many parameters, like error may be 
expressed by mean square error (MSE) and root mean square error (RMSE) and 
interpretability can be expressed by TRL, number of rules (NOR) and average rule length 
(ARL). 
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Nauck’s (2003) index (NI) has been proposed for the assessment of the 
interpretability of fuzzy rule-based classifiers. It can be defined as follows; 

NauckI comp part cov= × ×  

Here, comp – number of classes/total number of premises (it measures the complexity), 

1
 1

           (it is average normalised partition index),

part
number of labels

=
−  

cov is the average normalised coverage degree of the fuzzy partition which is equal to 1 
for strong fuzzy partition (SFP). 

A global fuzzy index has been introduced in Alonso et al. (2006) and its next version 
has been discussed in Alonso et al. (2008). In this approach the index has been computed 
as the output of inference of hierarchical fuzzy system. 

4 Linguistic hedges 

The linguistic hedges are used and applied on the tuned MFs as discussed in Venturini 
(1993). The main linguistic hedges are very, more-or-less, extremely, very-very, 
positively, negatively. Linguistic hedges are playing the role of adjective and adverbs in 
the languages, responsible to change the qualitative statements. 

Several linguistic hedges are proposed and used in the literature. For the basic 
knowledge of readers these are summarised in Table 1 based on the Zadeh interpretations 
(Shi and Ward, 2001) and see Venturini (1993) and Zadeh (1972) for more details. 
Table 1 Linguistic hedges 

Name of linguistic hedges Mathematical definition 
Very 2

( ( ) 1)

( ) ( ( ))
( ) ( ( ))exp MF

very
MFMF

very μ x
MFMF

μ x μ x
μ x μ x −

=

=
 

Extremely 3( ) ( ( ))extremely
MFMFμ x μ x=  

Very very  4( ) ( ( ))very very
MFMFμ x μ x=  

More-or-less - - 0.5

- - 1/

( ) ( ( ))
( ) ( ( ))   where  1

more or less
MFMF

more or less p
MFMF

μ x μ x
μ x μ x p

=

= >
 

Positively 2

2

2( ( ))   if  ( ) 0.5
( )

1 2( ( ))   if  ( ) 0.5
MF MFpositively

MF
MF MF

μ x μ x
μ x

μ x μ x
<⎧

= ⎨
− ≥⎩

 

Negatively 2

1 11

2( ( ))   if  ( ) 0.5
( )

1 (0.5) (1 ( ))   if  ( ) 0.5

MF MFnegatively
MF

n nMF MF

μ x μ x
μ x

μ x μ x−

<⎧⎪= ⎨
− − ≥⎪⎩
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5 Proposed system 

5.1 Engineering student fuzzy classification system 

The authors propose ‘ES-FCS’. This is the fuzzy classification system that classifies the 
students of one class into four groups. These four groups are denoted by 1, 2, 3 and 4 
numerical digits with following description given in Table 2. 
Table 2 Classification of students 

1 2 3 4 
Excellent Good Average Poor 

The classification uses three parameters to take decisions for a student to classify him/her 
in a particular class. The parameters are; 

1 internal assessment (IA) 

2 external assessment (EA) 

3 attendance (AT) 

The descriptions of the above parameters are as follows: 

1 Internal assessment: In this assessment, the students are appearing in the internal 
examination in their department. Three examinations are conducted in the whole 
semester on the approximate competition of 30%, 60% and 100% completion of the 
syllabus. Finally the sessional marks of each subject are awarded on behalf of the 
marks achieved by the students and the assignments/ tutorial sheets submitted to the 
subject teacher along with the attendance in that particular subject. 

2 External assessment: This assessment is basically the external examination 
conducted by the affiliating university at the end of the semester. The examinations 
have subjective paper in each subject with full syllabus. The preparation of the 
question paper and evaluation of answer sheets are conducted by the affiliating 
university. 

3 Attendance: Attendance is an important criteria to judge the sincerity and 
hardworking of the student. So attendance % is calculated at the end of the semester 
in all theory and lab sessions. The block diagram of the proposed fuzzy classifier is 
given in Figure 2. 

Figure 2 Proposed student classification system 
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5.2 Type-1 fuzzy set implementation 

The membership functions of all three assessment parameters are shown in  
Figures 3 to 5. 

Figure 3 MF of internal assessment (IA) (see online version for colours) 

 

 

 
     Average 

     Good 

     Excellent 

    Poor 

 

Note: The above linguistic values are applicable on all performance assessment 
parameters. 

Figure 4 MF of external assessment (EA) (see online version for colours) 

 

Figure 5 MF of attendance (AT) (see online version for colours) 
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5.3 Interval type-2 fuzzy set implementation 

The interval type-2 fuzzy sets (Shukla and Tripathi, 2014b) are used to implement the 
proposed system. The used membership function is given in Figure 6. 

Figure 6 Interval type-2 fuzzy set 

          a    b          c        d   e  

In GAs, the membership function is represented as follows; 

Figure 7 Chromosome representing membership function of interval type-2 fuzzy set (see online 
version for colours) 

a b c d e 
 

If the rule R1 is as follows: 

1 1 2 2 1if is , is ,........and is then isi i ix MF x MF x MF y MF +  

the encoding of the RB is expressed as given in Figure 8. 

Figure 8 Chromosome of knowledge base representation (see online version for colours) 

a1 b1 c1 d1 e1 a2 b2 c2 
d2 e2 ................. ai bi ci di 
ei ai+1 bi+1 ci+1 di+1 ei+1  

The rule base is represented by decision tree using Thrift’s approach (Thrift, 1991) as 
given in Figure 9. 

Let A1 and A2 are the input variables and the output Y is as given below. 

{ , , }Y E G A=  

 

 



   

 

   

   
 

   

   

 

   

    Interpretability and accuracy issues 63    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 9 Decision table for knowledge base (see online version for colours) 

     A1                            A2

R1 
          A 

R2 
           
A 

R3 
           - 

R4 
          G 

R5 
           - 

R6 
           
A 

R7 
           
G 

R8 
           - 

R9 
           
A 

R10 
           
G   

R11 
            -

R12 
           
E 

R13 
           
A 

R14 
           
G 

R15 
-

R16 
           
E   

 

The output is encoded as given in Figure 10. 

Figure 10 Output encoding 

E G A 
1 2 3 

 

The encoded rule base is expressed by Figure 11. 

Figure 11 Encoded rule base (see online version for colours) 

0 3 0 2 0 3 2 
0 3 0 2 1 3 2 
0 1  

The interval type-2 fuzzy membership functions are given in Figures 12 to 14. 

Figure 12 MF of internal assessment (see online version for colours) 

 
 

 

 



   

 

   

   
 

   

   

 

   

   64 P.K. Shukla and S.P. Tripathi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 13 MF of external assessment (see online version for colours) 

 

Figure 14 MF of attendance (see online version for colours) 

 

6 Experiments and result analysis 

The proposed ES-FCS has been implemented using the open access software Guaje 
(Alonso and Magdalena, 2011a, 2011b) with type-1 fuzzy implementation. The EMO 
experimentations are carried out with the help of MATLAB. The interpretability of the 
proposed system is assessed in terms of NOR, TRL, ARL, average fired rules (AFR) and 
NI. On the other hand, accuracy is measured in terms of percentage of correctly classified 
students (PCCS). 

6.1 Type-1 implementation 

The results of interpretability and accuracy on different values of NOR are given in  
Table 3. 
Table 3 Interpretability and accuracy parameters 

Experiments 
Interpretability Error 

Nauck’s index NOR TRL ARL AFR PCCStst 
E1 0.056 8 24 3 3.50 71.4% 
E2 0.037 12 36 3 4.67 71.4 % 
E3 0.026 17 51 3 7.92 76.9% 
E4 0.021 21 63 3 7.41 80.9% 
E5 0.018 25 73 2.92 9.11 90.8% 
E6 0.016 29 85 2.93 9.50 93.8% 
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On the different input MFs, the effect of using linguistic hedges has been studied. The 
linguistic hedges are; more-or-less and strictly. The linguistic modifiers have improved 
the accuracy as per the results in Table 4. 

Table 4 Comparative results: linguistic hedges 

Condition Accuracy Nauck Index NOR TRL 
Without LH 80.9% 0.021 21 63 
With LH 84.1 % 0.021 21 63 

Note: LH – linguistic hedges 

As discussed in Alcala et al. (2009) and Shukla and Tripathi (2014a), the multiobjective 
formulations are as follows: 

1

2

3

( ) Number of rules ( )
( ) Total  rule length ( )

( ) Percentage error in  correctly classified students  ( )
g x NOR
g x TRL

g x PECS
=
=

=
 

• formulation 1: 

minimise   and minimise PECS NOR  

• formulation 2: 

minimise   and minimise PECS TRL  

The single objective maximisation formulations are as follows: 

• formulation 1: 

1 1 1 2

2 2 1 1

( ) ( ) ( )
( ) ( ) ( )

f S g S w g S
f S g S w g S

= −
= −

 

• formulation 2: 

1 1 2 3

2 3 2 1

( ) ( ) ( )
( ) ( ) ( )

f s g x w g x
f s g x w g x

= −
= −

 

The non-dominated solution as per the formulation 1 and 2 are shown in  
Figures 15 and 16. 

It is to be noted that the formulations are indirectly representing 

minimise error  and  minimise interpretability  

The error is measured in terms of PECS and interpretability is measured in terms of NOR 
and TRL. 

 
 
 



   

 

   

   
 

   

   

 

   

   66 P.K. Shukla and S.P. Tripathi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 15 Pareto front with formulation 1 (see online version for colours) 

 

Figure 16 Pareto front with formulation 2 (see online version for colours) 

 

6.2 Type-2 implementation 

The results of interpretability and accuracy on different values of NOR are given in  
Table 5. 
Table 5 Interpretability and accuracy parameters 

Experiments 
Interpretability 

 
Accuracy 

NOR TRL ARL AFR PCCStst 
E1 8 24 3 3.69  70.3% 
E2 12 36 3 4.89  72.3 % 
E3 17 51 3 8.15  77.8% 
E4 21 63 3 7.98  82.7% 
E5 25 73 2.92 10.15  91.6% 
E6 29 85 2.93 10.97  94.5% 

7 Conclusions 

Interpretability and accuracy are the important features to be considered during the 
development of fuzzy systems. The trade-off between these two features is handled by 
evolutionary multi-objective optimisation of fuzzy systems. In this paper the authors have 
developed a new ‘engineering student-fuzzy classification system (ES-FCS)’ in 
evolutionary multi-objective optimisation framework. The proposed system is 
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implemented using type-1 and interval type-2 fuzzy sets. The interpretability and 
accuracy measures are evaluated and compared in both implementation of type-1 and 
interval type 2 fuzzy set. The required Pareto fronts are also generated. 
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