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Abstract: Today, e-mail has become one of the fastest and most economical 
forms of communication in modern life. However, the increase in e-mail users 
has resulted in a significant boosting in unsolicited e-mails, widely known as 
spam, during the past few years. This paper presents an application of Interval’s 
Number KNN (INKNN) for spam filtering. The INKNN algorithm was 
described lately as a lattice data domain extension of KNN classifier. In our 
experiment a spam e-mail was presented in the metric space of lattice ordered 
Interval’s Number. Indeed a population of spam e-mails was presented by an 
Interval’s Number. Then INKNN classifier was employed distinguish spam  
e-mails from non-spam. To investigate the effectiveness of our methods, we 
conduct extensive experiments on SpamAssassin public mail corpus. 
Experimental results show that the proposed model is able to achieve higher 
performance in comparison with those from a number of state-of-the-art 
machine learning techniques published in the literature. 
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1 Introduction 

Lattice computing (LC) is an interesting topic which has been taken into account by 
several authors. The term LC was introduced recently by Graña (2008). More 
specifically, LC was defined as the class of algorithms that use lattice theory either to 
achieve pattern recognition or to produce generalisations. Graña and his colleagues have 
applied LC to image analysis (Graña et al., 2010, 2009a). Moreover, they proposed an 
endmember threshold selection algorithm (ETSA) (Graña et al., 2009b). Lattices are 
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popular in mathematical morphology including image processing applications (Graña  
et al., 2010; Ritter and Wilson, 1996). Neural networks whose computation is based on 
lattice algebra are known as morphological neural networks. Moreover, algebraic lattices 
have been used for modelling associative memories (Ritter and Urcid, 2007). In Kohonen 
(1972) the problem of capacity storage limitation in associative memories (Hopfield, 
1984; Kosko, 1989) has been eliminated by proposing bidirectional lattice associative 
memories. The notion of a fuzzy lattice was proposed by Nanda in 1989 on the basis of 
the concept of a fuzzy partial order relation (Nanda, 1989). Fuzzy lattices have also been 
used in clustering and classification algorithms. More specifically, independently from 
the development of morphological neural networks, Kaburlasos and Petridis (1997; 
Sussner and Esmi, 2009) have found inspiration in lattice theory and versions of the ART 
model and have devised another successful approach to lattice-based computational 
intelligence. Hence, they proposed a fundamentally new and inherently hierarchical 
approach in neuron-computing named fuzzy lattice neuro-computing (FLN) (Kaburlasos 
and Petridis, 1997). Moreover, fuzzy lattice reasoning (FLR) classifier was announced for 
inducing descriptive, decision-making knowledge (rules) in a mathematical data domain 
including space RN and it has been successfully applied to a variety of problems such  
as ambient ozone estimation (Kaburlasos et al., 2007) as well as air quality assessment 
(Athanasiadis and Kaburlasos, 2006) Sussner and Esmi (2009) have introduced the 
morphological perceptron with a fusion of fuzzy lattices for competitive learning. A 
practical advantage of lattice theory is the ability to model both uncertain information and 
disparate types of lattice-ordered data. Since information granules are partially/lattice-
ordered, therefore, LC is proposed for dealing with them (Kaburlasos and Petridis, 1997; 
Kaburlasos, 2010; Sussner and Esmi, 2011; Kaburlasos et al., 2012). 

Especially successful, within LC, was the employment of lattice of fuzzy intervals’ 
number (FINs) to represent populations of samples/measurements (Kaburlasos, 2004). 
Various interpretations can be proposed for a FIN. For instance, a FIN may be considered 
as a conventional fuzzy number or it may be interpreted as a possibility distribution or as 
a probability distribution. Generally speaking, a FIN may be regarded as an information 
granule for dealing with ambiguity (Kaburlasos, 2006). Note that recently, Papadakis and 
Kaburlasos (2010) have employed the term intervals’ number (IN) instead of the term 
FIN. 

During the last century, the communication capabilities of humanity have been 
widely improved. In particular, one of the most important steps forward in the human 
communication domain was the genesis and popularisation of internet, emerged from a 
packet switching military network (Roberts, 1978). Today, e-mail is a fundamental tool 
for business communication and modern life, spam represents a serious threat to user 
productivity and IT infrastructure worldwide. While it is difficult to quantify the level of 
spam currently sent, many reports suggest it represents substantially more than half of all 
e-mails sent and predict further growth for the foreseeable future (Espiner, 2005; Radicati 
Group, 2004; Zeller, 2005). More recent estimates of spam traffic can be found on 
Kaspersky lab spam statistics report. Several solutions have been proposed to overcome 
the spam problem. Among the proposed methods, much interest has focused on the 
machine learning techniques including support vector machines (Cristianini and  
Shawe-Taylor, 2000) naïve Bayes (Androutsopoulos et al., 2000) neural networks (Wang, 
2006), k-nearest neighbour (Crawford et al., 2004), memory-based approach (Sakkis  
et al., 2003), active learning (Jinlong et al., 2010), boosting of C4.5 (Schapire and Singer, 
2000) and C4.5 with PART (Hidalgo et al., 2000). Most of these approaches try to 
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minimise the number of errors in the classifier and their common concept is that they do 
not require specifying any rules explicitly to filter out spam mails. Instead, a set of 
training samples is needed. Perhaps the most straightforward classifier in machine 
learning techniques is the nearest neighbour classifier. It assigns a test sample the label 
associated with a majority vote of its nearest neighbours. 

This paper presents a nearest neighbour classification algorithm for spam filtering 
based on probabilistically/possibilistically interpreted INs and lattice theory. A practical 
advantage of lattice theory is the ability to model both uncertain information and 
disparate types of lattice-ordered data (Kaburlasos and Petridis, 1997). Indeed, our 
proposed algorithm is capable of dealing with disparate type of data including real 
vectors, fuzzy sets, symbols, graphs, images, waves and even any combination of the 
aforementioned data. It can handle both points and intervals. Learning in the proposed 
algorithm is carried out fast therefore, in many application, when the data is so massiveis 
the analysis process so time consuming, the proposed algorithm can be a proper choice. 
The main advantage of employing INs is the accommodation of granular data. The 
experimental results demonstrate the effectiveness of our proposed model. 

The layout of this paper is as follows. In Section 2 the mathematical background on 
lattices is reviewed. Section 3 explains our proposed model. Section 4 provides empirical 
results that demonstrate the performance of INKNN. Finally, Section 5 summarises the 
results of this work. 

2 Mathematical background 

A lattice (L, ) is a partially ordered set (or simply, poset) such that any two of its 

elements a, b ∈ L have a greatest lower bound a  b = inf {a, b} and a least upper a  b 

= inf {a, b} bound. The lattice operations  and  are also called meet and join, 

respectively. A lattice (L, ) is called complete when each of its subsets has a least upper 

bound and a greatest lower bound in L (Birkhoff, 1967). A non-void complete lattice has 
a least element and a greatest element denoted by O and I, respectively. The inverse  of 

an order relation  is itself an order relation. The order  is called the dual order of  

symbolically ∂ or . Note that, in this work, we use, ‘straight’ symbols  ∨, ∧ and ≤, for 

real numbers whereas ‘curly’ symbols ,  and  are employed for other lattice 

elements. 
A lattice (L, ) can be Cartesian product of N constituent lattices L1,…,LN i.e., L = L1 

× … × LN. The lattice operations meet and join of product lattice are defined as below: 

( ) ( ) ( )1 1 1 1, , , , ,N N N Na b a a b b a b a b= =… … …  (1) 

( ) ( ) ( )1 1 1 1, , , , ,N N N Na b a a b b a b a b= =… … …  (2) 
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A valuation on a crisp lattice L is a real-valued function v: L → R which satisfies v(a) + 
v(b) = v(a  b) + v(a  b), a, b ∈ L. A valuation is called monotone iff a  b in L 

implies v(a)  v(b) and positive iff a ≺  b implies v(a) ≺ v(b). 

Consider the set R of real numbers. It turns out that ( { , }, )R R= −∞ + ∞ ≤∪  under the 
inequality relation ≤ between a, b ∈ R is a complete lattice with the least element –∞ and 
the greatest element +∞ (Kaburlasos and Pachidis, 2011). A lattice (L, ) is totally 

ordered if and only if for any a, b ∈ L either a  b or a ≺ b. The lattices ( , )NR  and 

([0, 1]N, ) under inequality relation are not a totally ordered lattice. 

Definition 1. Generalised interval is an element of the product lattice ( , ) ( , )R R∂≤ × ≤ ≡  

( , )R R× ≥ × ≤  which is denoted, simply, by (Δ, ) (Papadakis and Kaburlasos, 2010). 

A generalised interval will be denoted by [a, b]. We remark that (Δ, ) is a lattice 

with the ordering relation, lattice join and meet defined as below: 

[ , ] [ , ] anda b c d c a b d≡  (3) 

[ , ] [ , ] [ , ]a b c d a c b d=  (4) 

[ , ] [ , ] [ , ]a b c d a c b d=  (5) 

The set of positive (negative) of generalised intervals [a, b] characterised by [a  b (a ≻ 

b) is denoted by Δ+(Δ–). We remark that (Δ+, ) is a poset, called poset of positive 

generalised intervals. For lattice (L, ) we define the set of (closed) intervals as τ(L) = 

{[a, b] | a, b ∈ L and a  b}. Augmenting a least (the empty) interval, denoted by [I, O], 

to (τ(L), ) leads to a complete lattice (τO(L), ) = (τ(L) ∪ {[I, O]}, ). In case of 

,L R=  the lattice (τO(L), ) is equal to conventional intervals (sets) in .R  The poset (Δ+, 

) is isomorphic to the poset ( ( ), )O Rτ  i.e., ( { }, ) ( (R), ).OO τ+Δ ≅∪  Note that an 

isomorphic function ϕ from poset P to poset Q is a map, if both ‘x  y in P ⇔ ϕ(x)  

ϕ(y) in Q’ and ‘ϕ is onto Q’. Our particular interest here is in the complete lattice  
(τO([0, 1]), ) with greatest element [0, 1] and least element [1, 0]. Due to the 

aforementioned isomorphism, we employ isomorphic lattices (Δ+ ∪ {O}, ) and 

( (R), ),Oτ  interchangeably. 
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Proposition 1: A positive valuation function v: L → R in a lattice (L, ) implies a metric 

d: L × L → R≥0 given by d(x, y) = v(x  y) – v(x  y), x, y ∈ L (Birkhoff, 1967; 

Rutherford, 1965). 
It should be mentioned that the goal of positive valuation function v is to deal  

with lattice elements. Choosing a suitable valuation function is problem dependent. 
Various positive valuation functions (Kaburlasos et al., 2007; Liu et al., 2011; Khezeli 
and Nezamabadi-pour, 2012) have been proposed in the literature. 

Based on the positive valuation function v of lattice (L, ) and an isomorphic 

function θ: (L, ∂) → (L, ) a valuation function vΔ in (Δ+ ∪ {O}, ) is defined as: 

( ) ( )[ , ] ( ) ( )v a b v a v bθΔ = +  (6) 

As a consequence the distance between two intervals in lattice (Δ+ ∪ {O}, ) is 

computed as follows (Kaburlasos, 2006): 

( ) ( ) ( )[ , ], [ , ] [ , ] [ , ] [ , ] [ , ]d a b c d v a b c d v a b c dΔ Δ Δ= −  (7) 

For two N-dimensional hypercubes A = [a1, b1] × … × [aN, bN] and B = [c1, d1] × … × 
[cN, dN] the following metric distance between two intervals A and B is defined: 

( )( ) ( ) ( ) ( )( )
1

([ , ], [ , ])
N

i i i i i i i i
i

d a b c d v a c v a c v b d v b dθ θΔ

=

⎡ ⎤= ∧ − ∨ + ∨ − ∧⎣ ⎦∑  (8) 

Figure 1 Two two-dimensional hypercubes H1, H2 

 

Example: The corresponding distance between two hypercubes H1, H2 shown in Figure 1 
using the positive valuation function v(x) = x is calculated as follows: 

( ) ( ) ( )
[ ] [ ]

1 2, [0.1, 0.5], [0.7, 0.8] [0.4., 0.6], [0.5, 0.7]

(0.9 0.3) (0.8 0.5) (0.6 0.5) (0.7 0.6) 1.1

d H H d dΔ Δ Δ= +

= − + − + − + − =
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Definition 2: Generalised intervals’ number (GIN) is a function G: (0, 1] → Δ 
(Kaburlasos, 2006). 

Let G denote the set of GINs. Since (G, ) represents the Cartesian product of 

complete lattices (Δ, ). Hence, (G, ) is a complete lattice. 

Definition 3: An intervals’ number, or IN for short, is a GIN F such that both F(h) ∈ (Δ+ 
∪ (O}, ) and h1 ≤ h2 ⇒ F(h1)  F(h2) (Kaburlasos, 2006). 

An IN F can be written as the set union of generalised intervals; in particular, F = 
∪h∈(0, 1] {[ah, bh]}, where both interval-ends ah and bh are functions of h ∈ (0, 1]. A point 

entry xi ∈ R is represented by the trivial IN xi = ∪h∈(0, 1] [[xi, xi]}. Various interpretations 
can be proposed for an IN. For instance, an IN may be considered as a conventional fuzzy 
number or it may be interpreted as a possibility distribution or as a probability 
distribution. Generally speaking, an IN may be regarded as an information granule for 
dealing with ambiguity. It has been shown that (F, ) is a lattice (Kaburlasos, 2004, 

2006). 

Proposition 2: Let F1 and F2 be INs in the lattice (F, ) of INs. Assuming that the 

following integral exists, a metric function dF: F × F → R≥0 is given by 

( )
1

1 2 1 2

0

( , ) ( ), ( ) .Fd F F d F h F h dhΔ= ∫  

Note that a Minkowski dp: FN × FN → R≥0 can be defined between two N-tuple  
Ins F1 = [F1,1,…,F1,N]T and F2 = [F2,1,…,F2,N]T as 1 2 1,1 2,1( , ) [ ( , )p

p Fd F F d F F= +…  
1/

1, 2,( , )] .p p
N NFd F F+  In our experiments we have set p = 2. 

In order to compute the above integral first, both INs F1 and F2 should be represented 
by their α-cuts (intervals) for different values of h in the interval [0, 1]. Second, for each 
aforementioned value of h, the metric between the corresponding α-cuts is calculated. 
Finally, the average of the aforementioned obtained metrics is calculated. In this work we 
have used 32 values of h. 

For further information about Interval’s number we refer the reader to (Papadakis and 
Kaburlasos, 2010). 

3 The proposed model 

This section presents a nearest neighbour classifier called INKNN based on lattice theory 
for spam filtering. Note that INKNN stands for Interval’s Number K-nearest neighbour. 
The idea behind K-nearest neighbour algorithm is quite straightforward. It assigns to a 
test sample a class label of its closest neighbour using a metric distance such as Euclidean 
distance typically used in conventional nearest neighbour. INKNN classifier operates  
on the metric product lattice (F, ), where F denotes the set of conventional  
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interval-supported convex fuzzy sets. Indeed, it can deal with any pair of fuzzy sets with 
arbitrary-shaped membership functions and computes a unique distance for any pair of 
fuzzy sets. That is, it can cope with disparate type of data including real vectors, fuzzy 
sets, symbols, graphs, images, waves and even any combination of the aforementioned 
data and this shows the ability of the algorithm in combining different type of data. The 
algorithm for K = 1 is described in the following: 

 The proposed algorithm 

1 Store all labeled training data {(F1, C1), …, (Fn, Cn)} where, Fi ∈ FN, Ci ∈ L, I ∈ {1, …,n} 
and L represents the set of class labels. 

2 Consider a new unlabeled datum F0 ∈ FN for classification. 
3 For each class Ci, i = 1, …,n Compute the distance dp(F0, Fi) 
4 Let J = argmin{dp(F0, Fi)}, i ∈ {1, …,n}. 
5 The class label of F0 is defined to be CJ given that dp(F0, FJ) ≤ μ0, where μ0 is a user defined 

threshold otherwise; the label ‘unknown’ is assigned to F0. 

The above algorithm calculates the distance of a new unlabeled datum F0 from all the 
labelled training data and then F0 is assigned to the nearest sample provided that the 
corresponding distance is less than a user defined threshold μ0 otherwise F0 is treated as 
an ‘unknown’ pattern. 

Figure 2 Relation between size of INs and the classification accuracy (see online version for 
colours) 

 

It should be mentioned that an IN may include any number of data. Note that an IN may 
even include a single datum x. In the latter case, the corresponding IN as it was 
mentioned before, is represented by trivial intervals [x, x] for all h in [0, 1]. The number 
of INs required for a class depends on the data. For instance, if all the data in a class are 
both near to each other and far apart from data in different classes, then one IN per class 
is enough. However, if the data in a class are in clusters, with data from different classes’ 
in-between, then more than one IN per class is needed. The exact number of INs is not 
known ‘a priori’, Only the data can decide the numbers of required INs. This matter also 
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holds for the number of data included in the INs. Figure 2 plots the relation between size 
of INs and the classification accuracy for the SpamAssassin public mail corpus. Note that 
the size of an IN is defined as the number of training data samples used to induce an IN 
by algorithm CALCIN (Papadakis and Kaburlasos, 2010). 

It reveals that accommodating more data into an IN does not necessarily increase the 
classification accuracy because different samples of an IN may belong to different 
clusters and this causes deterioration in the percent of correct classification. In particular 
Figure 1 shows that, the INKNN achieved its highest classification accuracy for 
accommodating number of 30 training data samples in each IN. By increasing the number 
of data samples the accuracy is decreased to approximately 87%is again the classification 
accuracy improves to nearly 90% and finally, providing more data to the INs causes the 
classification accuracy to fluctuate in the range of 83–87%. The fluctuation of the 
accuracy is typically due to the intermingling of the two classes. 

4 Experimental results 

4.1 Data pre-processing 

There are several known and well-defined collections of ham and spam messages and 
many researchers use them as a basis in their comparisons (Zorkadis et al., 2005). In this 
work we have employed the proposed model to the Spam Assassin Public Corpus. The 
SpamAssassin public mail corpus is a selection of 1,897 spam messages and 4,150 
legitimate e-mails. In our experiment we have randomly selected 1,277 spam e-mails and 
2,723 legitimate messages. 

Many e-mails would contain similar types of entities (e.g., numbers, other URLs, or 
other e-mail addresses), the specific entities (e.g., the specific URL or specific dollar 
amount) will be different in almost every e-mail. Therefore, one method often employed 
in processing e-mails is to normalise these values, so that similar components of an  
e-mail such as URLs are treated the same. The following pre-processing and 
normalisation steps have been made to the data set: 

• lower-casing: the capitalisation is ignored by converting the entire e-mail into lower 
case 

• stripping HTML: all HTML tags are removed from the e-mails 

• normalising URLs: All URLs are replaced with the text ‘httpaddr’ 

• normalising e-mail addresses: all e-mail addresses are replaced with the text 
‘emailaddr’ 

• normalising numbers: all numbers are replaced with the text ‘number’ 

• normalising dollars: all dollar signs ($) are replaced with the text ‘dollar’ 

• word stemming: words are reduced to their stemmed form. For instance, ‘invest’, 
‘invested’, ‘investing’ are all replaced with ‘invest’ 

• removal of non-words: non-words and punctuation have been removed. All white 
spaces such as spaces, tabs and newlines have all been trimmed to a single space 
character. 
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The aforementioned steps of processing data typically improve the performance of a 
spam classifier. For instance Normalising URLs has the effect of letting the spam 
classifier make a classification decision based on whether any URL was present, rather 
than whether a specific URL was present. Since each e-mail contains a list of words thus, 
after pre-processing the e-mails a vocabulary list should be prepared. That means, to 
choose which words should be used in our classifier. Our vocabulary list was selected by 
choosing all words which occur at least a 100 times in the spam corpus, resulting in a list 
of 1,899 words (http://www.spamassassin.apache.org/publiccorpus/; https://www.class. 
coursera.org/ml/class/index). Figure 3 shows a sample spam e-mail and the result of the 
pre-processing steps is shown in Figure 4. 

Figure 3 A spam e-mail 

 Do You Want To Make $1,000 Or More Per Week? If you are a motivated and 
qualified individual – I will personally demonstrate to you a system that will make 
you $1,000 per week or more! This is NOT mlm. Call our 24 hour pre-recorded 
number to get the details. 000-456-789. I need people who want to make serious 
money. Make the call and get the facts. Invest two minutes in yourself now!  
000-456-789. Looking forward to your call and I will introduce you to people like 
yourself who are currently making $10,000 plus per week! 000-456-789. 

 

Figure 4 Pre-processed spam e-mail 

 do you want to make dollarnumb or more per week if you ar a motiv and qualifi 
individu i will person demonstr to you a system that will make you dollarnumb  
number per week or more thi is not mlm call our number hour pre record number  to 
get the detail number number number i need peopl who want to make seriou  monei 
make the call and get the fact invest number minut in yourself now  number number 
number look forward to your call and i will introduc you to  peopl like yourself who 
ar current make dollarnumb number plu per week number number number 

 

4.2 Comparison with previous work 

In this section, we evaluate the classification performance of the proposed model and 
compare the obtained results with those from a number of state-of-the-art machine 
learning techniques published in the literature. In order to provide a meaningful 
comparison all the algorithms have been implemented in the same environment using the 
C++ object oriented programming language, the same partitioning of data sets for 
training and testing , the same order of input patterns and a full range of parameters. In 
order to avoid overfitting, words that occur rarely in the corpus were omitted and all 
words which occur at least a 100 times in the spam corpus are added to our vocabulary 
list, resulting in a list containing 1,899 words. Thus, our selected dataset consist of 4,000 
1,899-dimensional vectors and ten-fold cross validation is used for performance 
assessment. Indeed, for a faster simulation we have used 10% of the data for training, 
which is a small value but yet sufficient for trainingis the remaining 90% as the testing 
set. To compare the learning capability, Table 1 shows the comparison of the 
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experimental results of the INKNN with the ones produced by the fuzzy-ART (Carpenter 
et al., 1991), GRNN (Specht, 1991), KNN (Tomek, 1976) and SVM (Drucker et al., 1997). 

In all our experiments in order to achieve the best performance we have considered 
GRNN for different values of variance parameter between 0 and 0.5 in steps of 0.001. 
For fuzzy-ART we have set the choice parameter to 0.01 and the values of vigilance and 
learning parameters have been adopted between zero and one in steps of 0.1. Moreover, 
for the SVM classifier here we employed linear kernel and sequential minimal 
optimisation (SMO) method to find the separating hyperplanes. The value of K for 
conventional KNN was set in the range [1, 20]. Typically K = 10 produced the best 
results. The INKNN classifier was applied for K = 1, because K = 1 gave better results 
than other values of K in this application. Furthermore we have employed isomorphic 
function and the positive valuation function θ(x) = 1 – x and v(x) = x, respectively. 
Table 1 Comparison of classification accuracy for different methods 

Accuracy\algorithm Fuzzy-ART GRNN KNN SVM INKNN 

Average 80.78 (3) 72.53 (5) 80.07 (4) 93.15 (1) 87.35 (2) 
Best 85.92 (3) 74.22 (5) 83.61 (4) 95.00 (2) 95.83 (1) 

Table 1 summarises the average and best classification accuracy and ranking of each 
classifier on the testing data. In other words, each table slot, which belongs to a specific 
classifier, contains the average of classification accuracy on ten runs and the best of ten. 
The number in brackets in each table slot indicates the ranking of each classifier based on 
the percentage of correct classification. As can be seen in Table 1, the SVM classifier has 
obtained the first ranking on the average classification accuracy followed by INKNN 
classifier. The KNN and fuzzy-ART algorithms performed poorly with rankings 4, 3. The 
GRNN has achieved the worst average ranking. Regarding the best classification accuracy 
among ten experiments, the proposed INKNN classifier outperformed all other classifiers 
and the SVM obtained the second ranking. In fact, the INKNN has demonstrated here 
considerable potential in classification, which it is attributed to the fact that all the data in 
a class, are both near to each other and apart from the data in the other class as explained 
in Section 3. 

5 Conclusions 

This paper presents a nearest neighbour classification algorithm for spam filtering based 
on probabilistically/possibilistically interpreted INs and lattice theory. A practical 
advantage of lattice theory is the ability to model both uncertain information and 
disparate types of lattice-ordered data (Kaburlasos and Petridis, 1997). INKNN was 
employed on the SpamAssassin public mail corpus which is a popular dataset for spam 
filtering. The experimental results demonstrate the effectiveness of the proposed model. 

For future work we plan to accommodate data belonging to the same cluster in each 
IN using clustering algorithms as well as evaluating the performance for more than One 
IN per class. 
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