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Abstract: In the literature, several studies have focused on introducing fuzzy 
extensions to the relational and/or object database models in order to store the 
imprecision. Indeed, on one hand, fuzzy EER and fuzzy UML are both applied 
for fuzzy object-oriented database modelling. On the other hand, Fuzzy ER is 
adapted for fuzzy relational database models. All these previous fuzzy 
conceptual modelling methods are not adapted to fuzzy spatiotemporal data. In 
this paper, we propose an approach for modelling imprecise data in object and 
relational databases based on the representation of data using connected and 
normalised fuzzy sets stored via α-cuts. The approach is applied to 
geographical information systems in order to handle imprecise spatiotemporal 
data. 
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1 Introduction 

The representation of imperfect data and its exploitation in information systems is a 
major theme of the artificial intelligence domain (Sapir et al., 2008; Druzdzel, 1996; 
Yang et al., 2009). Thus, several studies have focused on proposing new conceptual data 
modelling approaches to store imperfect information and to establish fuzzy queries that 
consider the data imperfection (Bosc and Pivert, 1995). 

Among existing tools for modelling information systems, the unified modelling 
language (UML) (OMG, 2000) is considered as a standard. However, the data 
represented in UML models were far from reflecting the real-world situations due to 
uncertainty, imprecision, etc. To respond to this new requirement, an extension called 
fuzzy UML (Ma, 2005; Ma and Yan, 2010) has been introduced in order to enable the 
conceptual modelling of imprecise data. Thus, different levels of imprecision have been 
mainly introduced into the UML class model. However, as fuzzy UML does not 
explicitly consider imprecise spatial and temporal data, it is possible but complex to 
model them. Moreover, fuzzy UML allows constraints for fuzzy sets defined on R but not 
on R2. Therefore, it is not the easiest way for modelling information in geographical 
information systems (GIS) that are distinguished by the fact that the data is considered 
either according to its spatial or temporal component or according to its spatiotemporal 
component. 

In this article, we propose an approach based on connected and normalised fuzzy sets 
stored via α-cuts. It aims to handle imprecise data in relational and object-oriented 



   

 

   

   
 

   

   

 

   

   32 A. Zoghlami et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

databases. The approach is then applied in a GIS in order to implement a fuzzy 
spatiotemporal database storing imprecise data. It is based upon the F-perceptory 
approach, presented in Zoghlami (2013), which is an extension to handle fuzziness in the 
perceptory data model (Bédard et al., 2004). The latter enriches the UML approach to 
support the space/time modelling through the PictograF language formerly called plug-in 
for visual language (PVL). 

This article is structured as follows. Section 2 defines the different basic nature of 
data imperfection and presents the fuzzy set theory. Section 3 highlights the approach that 
we propose in order to model imprecise information in an object database view and then 
in a relational database view. Our approach makes the distinction between the fuzzy data 
case and the possibilistic data case. Thus, we identify the main constraints implemented 
in both cases. Section 4 presents an application of our approach in the geographic 
information field aiming to handle imprecise spatiotemporal data. Therefore, we 
introduce the F-perceptory approach devoted to modelling imprecise spatial and temporal 
data in the perceptory data model. Section 5 exposes a case study dedicated to construct a 
fuzzy GIS for the representation and the analysis of archaeological data. Section 6 
establishes a discussion in which we first make a comparative study between the main 
fuzzy conceptual models and F-perceptory and then a second comparative study between 
the basic spatiotemporal conceptual data models and F-perceptory. The last section (7) is 
devoted to the conclusion and the perspectives of this work. 

2 Data imprecision and imperfection 

2.1 Nature of imperfection 

Human reasoning as an information source is often imperfect. The terms commonly used 
to describe imperfect information are: incomplete, uncertain, imprecise, fuzzy etc. 
(Smets, 1996). Figure 1 illustrates the three main types of imperfection as presented in 
Bouchon-Meunier, 1995). 

Figure 1 Example of the main imperfection types 

 

The imprecision raises difficulty in a statement due to not knowing the exact data or to 
the fact that the natural language terms used to describe a system characterise it in a 
vague way. The following statement illustrates an example of imprecision: ‘the 
residential building is about 30 m high’. In this case the possible values are a priori in the 
interval (25, 35). 

The uncertainty concerns a doubt on the validity of the knowledge. It is due to the 
reliability of the observer who is unsure, so he cannot determine the true value of the 
knowledge. We can illustrate the concept of uncertainty through the following example: 
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‘what we see seems to be a residential building’. In this case, it may be a residential 
building or it may not. 

The incompleteness is a lack of knowledge or a partial knowledge of some system 
specifications. 

There are various more detailed taxonomies of the imperfection types. The most 
commonly used in the geographic information community is the one introduced in Fisher 
et al. (2006) and illustrated in Figure 2. To denote the imperfection, the authors of this 
model use the term ‘uncertainty’ as a global concept that includes all the other concepts. 
They consider that the principal source of uncertainty is the real-world abstraction 
process, mainly through the definition of classes and the assignment of an object to a 
class. As shown in Figure 2, the modelling of imperfect data may be done using a lot of 
theories (probabilities, possibilities, fuzzy sets, etc.). All of them use a paradigm of the 
attribution of weights [between (0, 1)] to each element of the studied domain. 

Figure 2 The spatial uncertainty model (see online version for colours) 

 

Source: Fisher et al. (2006) 

2.2 Dealing with imprecision: the fuzzy set theory 

Imprecision should be considered in the modelling of the information. As the sorites 
paradox makes it evident that probabilities are not adapted to imprecision, Zadeh 
introduced the fuzzy set theory (Zadeh, 1965). Indeed, the fuzzy set theory defines the 
notion of partial and valued membership of a value to a class. A fuzzy set A is 
characterised by a membership µA function taking values in (0, 1). For each domain 
value x, a membership degree µA(x), defined in (0, 1), is proposed. Therefore, concepts 
like young, old, etc. may be easily modelled by fuzzy sets. 
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An α-cut Aα, for all α > 0, is the set of the domain values (the set of x) having a 
membership degree higher or equal to α (µA(x) ≥ α). By convention, A0 is the set of x 
such as µA(x) > 0. 

A fuzzy set A is connected if and only if, for all α in (0; 1) Aα is connected. Aα is 
connected if for all nonempty sets B and C, such as Aα, is their union and there exists at 
least one point of B adhering to C or one point of C adhering to B. On R, Aα is 
connected if and only if, it is an interval. In other words, a fuzzy set A is connected if and 
only if, for all α in [0; 1], Aα is not composed with separate sets. 

3 Modelling imprecise information 

We distinguish two types of data imprecision. The first type corresponds to the fuzzy 
object. A fuzzy object corresponds to an object for which we have a core (restrictive) 
definition and a set of soft (less restrictive) definitions including the more restrictive 
definitions. The less restrictive definition is: the larger the set of values, the lower the 
membership degree. 

Figure 3 Example of fuzzy data (see online version for colours) 

 

Figure 3 shows an example of fuzzy spatial data relating to the delimitation of a wooded 
area. In this case, the question that arises is the following: which areas form a part of the 
wooded area and when can we say that we are no longer in a wooded area? 

To answer this question, a representation of the different areas according to a fuzzy 
model is interesting. This representation involves a scale of degrees of membership to the 
wooded area between 0 and 1. Thus, area 1 entirely belongs to the wooded area with a 
membership degree of 1. Area 2 belongs to the wooded area with a membership degree 
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greater than 0.5 and area 3 belongs to the wooded area with a membership degree greater 
than 0. 

The second type of imprecision corresponds to the possibilistic object. A possibilistic 
object is an object for which we have a set of possible definitions (hypotheses) with 
confidence values (one value for each definition). Those definitions may overlap. If one 
of them includes another one, the confidence value of the first one does not have to be 
lower than the second definition confidence value. 

Figure 4 Example of possibilistic data (see online version for colours) 

 

Figure 4 illustrates an example of a possibilistic spatial data corresponding to the value of 
the distance between two points: A and B. In this case, we retain the two values of the 
distance obtained according to the two cartographic data sources, by associating to each 
value a degree of possibility. 

3.1 Modelling fuzzy data 

In this article, we propose an approach based on the use of a set of connected α-cuts in 
order to model and store the imprecision in both object databases and relational 
databases. Our modelling approach allows us to reduce the cost and the complexity of the 
storage, to maintain the possibilities of exploitation and to keep at the same time a global 
view of the fuzzy set. The notion of connection is particularly useful in applications 
dedicated to classification, optimisation, etc. 

In our case, the use of connected α-cuts allows us to store different values of the 
imprecise data in the form of a multi-valued set. Their use enables us to draw the 
boundaries between a very low confidence membership (the 0-cut), a rather low 
confidence membership, a moderately low confidence membership, a low confidence 
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membership, etc. which may also be interpreted as a range of values between almost 
impossible and very possible (Figure 5). 

Figure 5 Interpretation examples on connected α-cuts (see online version for colours) 

 

3.1.1 Object view 

We can model the fuzzy object according to the representation proposed in Figure 6. In 
this figure, the fuzzy object is composed of n objects belonging to the class ‘fuzzy object 
imprecision’ where n is the chosen number of α-cuts and the ‘fuzzy object imprecision’ 
class is devoted to store the fuzzy information as a multivalent set of values (Akdag et al., 
1992). In fact, each fuzzy set referenced in the latter class is characterised by its identifier 
(fuzzy set-id), the different values of its n α-cuts (α-value), the minimum value and the 
maximum value of each α-cut (min-level and max-level). 

Figure 6 A fuzzy object representation in an object database view 

 

In this case, we check three constraints. The first constraint is to ensure that the value of 
the min-level is always lower than or equal to the value of the max-level. The second 
constraint consists in verifying that the set of α-cuts form a connected and normalised 
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fuzzy set. The third constraint is to ensure that a fuzzy object is composed of exactly n 
objects belonging to the class ‘fuzzy object imprecision’. 

In Figure 7, we represent an example of a fuzzy object corresponding to a stone rate 
in a wall as an expert can describe. In this example, the stone rate is represented by a 
fuzzy set described by four alpha cuts which respectively correspond to the values 0, 0.4, 
0.8 and 1. 

Figure 7 A fuzzy object example represented in an object diagram 

 

3.1.2 Relational database view 

In a relational database, the fuzzy object class is transformed to the table ‘Fuzzy_object’. 
This table is connected to the fuzzy object imprecision table which stores the fuzzy 
information as a multivalent set of values through the foreign key fuzzy set-id (Figure 8). 



   

 

   

   
 

   

   

 

   

   38 A. Zoghlami et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 8 A fuzzy object representation in a relational database view (see online version  
for colours) 

 

In this article, as we have opted for the spatial relational database PostGIS, the integrity 
constraints are expressed in the procedural language PL/pgSQL. 

Figure 9 Trigger for the verification of the fuzzy set structure of a fuzzy object 
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The constraint related to the connection verification of the fuzzy sets and which verifies 
the structure of the fuzzy sets in the table ‘fuzzy_object_imprecision’ is expressed in 
Figure 9. 

3.2 Modelling possibilistic data 

3.2.1 Object database view 

The possibilistic object modelling is illustrated in Figure 10. According to this model, it 
is composed of at least one object of the class ‘fuzzy object imprecision’. Thus, it has one 
or several possible hypotheses with different possibility degrees. 

Figure 10 A possibilistic object representation in an object database view 

 

In this case, we check three constraints. The first constraint is to ensure that the value of 
the min-level is always less than, or equal to, the value of the max-level in the ‘fuzzy 
object imprecision’ class. The second constraint consists of verifying that the sum of the 
possibility degrees assigned to each possibilistic object is lower than or equal to 1. The 
third constraint is to ensure that a possibilistic object is composed of at least one object 
belonging to the ‘fuzzy object imprecision’ class. 

3.2.2 Relational database view 

The possibilistic object representation is a particular case of the fuzzy object 
representation. In fact, its possibility degrees correspond to one or several tuples of the 
table ‘fuzzy_object_imprecision’. Thus, the possibilistic object class is transformed at the 
logical data model in the table ‘possibilistic_object’. The latter is connected to the fuzzy 
object imprecision table through the foreign keys fuzzy set-id and α-value (Figure 11). 
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Figure 11 A possibilistic object representation in a relational database view (see online version  
for colours) 

 

The constraint that checks the sum of the possibility degrees of each possibilistic object is 
expressed in PL/pgSQL in Figure 12. 

Figure 12 Trigger for the verification of the sum of the possibility degrees 

 

4 Handling imprecise spatiotemporal information with F-perceptory 

4.1 Conceptual modelling of spatiotemporal data 

The geographic information field proposed several methods for the design of 
spatiotemporal information systems. Some of these methods result from the adaptation of 
non-specific methods by the spatialisation and temporalisation of conceptual models like 
the perceptory model which is a spatiotemporal extension of the UML data model 
(Bedard, 1999). The other methods have their own tools for the design of geographic 
information systems. The most well known among them are MADS (Parent et al., 1997) 
and CONGOO (Pantazis, 1994). 
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In this article, we are particularly interested in the perceptory method. This approach 
joins two main advantages. Firstly, it extends the standard object modelling language 
(UML) meta-model by spatial and temporal stereotypes. These allow an enriching of the 
UML data model by creating new spatial and temporal modelling elements and by 
assigning to them particular graphic representations called pictograms. As UML is 
usually exploited for designing information systems, extending UML is a critical point 
for our choice. MADS and CONGOO are not UML friendly. Secondly, perceptory is 
often used in GIS modelling because an extension to Visio was proposed and because its 
pictograms called PictograF can be used with other modelling tools such as modelio. 

4.1.1 Spatial data modelling  

The main pictograms used to model the spatial dimension of geographic entities are 
presented in Table 1. In this table, we have three simple geometries. The first one is a 
point geometry that represents the zero-dimensional objects. For instance, a building is 
represented by point geometry on a map if its size is smaller than 500 m2. The second one 
represents the one-dimensional objects. That is the case of a road which may have a 
linear geometry on a small scale. The third one is a polygon geometry that represents the 
two-dimensional objects. For example, a building is represented by polygon geometry on 
a map if its surface area is bigger than 500 m2. 
Table 1 Main spatial pictograms in perceptory 

 Pictogaram Description 

 Objects represented by a point (O D) 

 Objects represented by a line (1 D) 

Simple geometry 

 Objects represented by a polygon (2 D) 

4.1.2 Temporal data modelling 

Temporal modelling relies on two fundamental concepts: the existence and the evolution. 
The existence of an object corresponds to its period of life which begins at its appearance 
date and ends at its disappearance date. The evolution characterises the various state 
changes of an object during its life. The pictograms used to model the temporal 
dimension of geographical entities are presented in Table 2. 
Table 2 Temporal pictograms 

Pictogram Description 

 One date recording 

 Two dates recording (time arrival) 

The fuzzy extension introduced to UML is an inspiration source for the approach that we 
propose in order to model imprecise spatial and temporal data and that we detail in the 
next section. Indeed, fuzzy UML is used to model imprecise semantic and descriptive 
information in the class diagram through the introduction of new concepts like the fuzzy 
class and the fuzzy relations. However, despite its imprecision representation potential, 
fuzzy UML does not consider the temporality and the spatiality in its fuzzy model. 
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Therefore, we propose to adapt the perceptory model to have a conceptual representation 
allowing the modelling of imprecise spatial, temporal and descriptive information  
(Figure 13). 

Figure 13 Principle of F-perceptory (see online version for colours) 

 

The conjunction of fuzzy UML and perceptory is the strength of our approach:  
F-perceptory. In fact, we adopt the fuzzy representation of classes and relations modelled 
by dashed lines in fuzzy UML, to enable the modelling of fuzzy temporality and 
spatiality in perceptory. 

4.2 Imprecise spatial data constraints 

We distinguish two types of spatial data imprecision. The first type is the fuzzy geometry 
that includes the forms fuzzy polygon, fuzzy line and fuzzy point. This type corresponds 
to spatial objects of which we cannot accurately determine boundaries. It is represented 
by enclosing the perceptory’s spatial pictograms by a rectangular outline with dashed 
lines. The second type of spatial imprecision includes the valued geometries – which are 
geometries that are associated to a degree of possibility d. Thus, we have the polygon 
shape associated to a degree of possibility d (‘polygon with d’), the line shape associated 
to a degree of possibility d (‘line with d’) and the point shape associated to a degree of 
possibility d (‘point with d’). The hierarchy of the spatial imprecision that we introduce 
into the perceptory data model is illustrated in Figure 14. 

A set of spatial integrity constraints has to be checked in order to ensure the data 
consistency. We distinguish two types of spatial constraints: the constraints on fuzzy 
spatial data and the constraints on possibilistic spatial data. 

We associate to each spatial imprecision type its equivalent representation in UML. 
In this representation, each spatial class will be connected to the class ‘shape imprecision’ 
that has a geometric type attribute (geom) and a degree of membership associated to it. 
The navigation from the spatial class to the class ‘shape imprecision’ is provided by the 
role ‘geometries’. Inversely, the navigation from the class ‘shape imprecision’ to the 
spatial class is provided by the role ‘spatial object’. 
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Figure 14 Spatial imprecision in F-perceptory 

 

4.2.1 Fuzzy geometries constraints 

The fuzzy geometry is related to geometric shapes of which we cannot accurately 
determine boundaries. Figure 15 presents a representation example of a fuzzy spatial 
object as the different interpretations that we can make on it through a set of connected 
α-cuts. 

Figure 15 Interpretation examples on connected α-cuts for a fuzzy spatial object 

 

Figure 16 illustrates the UML representation of the fuzzy polygon. In the case of all the 
fuzzy geometries (fuzzy polygon, fuzzy line and fuzzy point), three main constraints have 
to be respected. The first constraint is to verify that the α-cuts form a connected and 
normalised fuzzy set which means that: 

• whatever the geometry G1 with a degree d1, all the geometries concerning our fuzzy 
set and having a degree higher than d1 are included in G1 

• the geometric shapes are connected 

• the maximum degree is equal to 1. 
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Figure 16 Example of constraints applied to fuzzy spatial data 

 

The second constraint ensures that each spatial object is composed of n geometries. The 
last constraint is to check that the attribute ‘geom’ has the type: 

• polygon: in case of the fuzzy polygon 

• line: in case of the fuzzy line and only if the degree is equal to 1 

• point: in case of the fuzzy point and only if the degree is equal to 1. 

Figure 17 Trigger for the verification of the topological relation ‘contains’ on fuzzy polgon 
geometries 
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Figure 17 illustrates an example of the connection constraint verification on the fuzzy 
polygon geometry. 

Figure 18 A wooded area representation in an object diagram (see online version for colours) 

 

If we take the example of Figure 3, the wooded area will be composed of three areas as 
illustrated in the object diagram of Figure 18. In this representation, the geometry that 
determines each area is indicated in the form of numbers. 

4.2.2 Possibilistic geometries constraints 

In the case of the valued geometries, a spatial object is composed of one or many 
geometries with varying degrees of possibility. Thus, we need first to check that the sum 
of the possibility degrees of these different geometries is lower than or equal to 1. 
Second, a spatial object has to be composed of at least one geometry and of at most n 
geometries. Finally, the geometry defined in the ‘shape imprecision’ class has to be: 

• a polygon: for the valued polygon 

• a line: for the valued line 

• a point: for the valued point. 

The valued polygon constraints are represented in Figure 19. 
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Figure 19 Example of constraints applied to possibilistic spatial data 

 

Figure 20 illustrates an example of a trigger expressed in the Pl/pgSQL language that 
checks the sum of the possibility degrees assigned to each valued polygon Pi of the table 
Sc-polygon, so that: ( )1 1.k

n
geometry ik μ P= ≤∑  

Figure 20 Trigger for the verification of the sum of the possibilty degrees assigned to a valued 
polygon 

 

For instance, the distance between A and B shown in Figure 4 is composed of two 
possible values corresponding to the two data sources as illustrated in Figure 21. In this 
case, the geometry which determines each possible path between A and B is indicated in 
the form of numbers. 
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Figure 21 A path representation in an object diagram (see online version for colours) 

 

4.3 Imprecise temporal data constraints 

As in the spatial imprecision, we distinguish two types of imprecision in the temporal 
case. The first type is a fuzzy timestamp that takes the form of a fuzzy period or a fuzzy 
date. This kind of imprecision is represented by enclosing the perceptory’s classic time 
pictograms by a rectangular outline with dashed lines. The second type corresponds to a 
valued timestamp that associates to the temporality a value d indicating a degree of 
possibility. Thus, we have the time period associated to a degree of possibility (‘period 
with d’) and the date associated to a degree of possibility (‘date with d’). These temporal 
imprecision types that we introduce to the perceptory data model are illustrated in  
Figure 22. 

Figure 22 Temporal imprecision in F-perceptory 
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A set of temporal integrity constraints has to be checked in order to ensure the data 
consistency. We distinguish two types of temporal constraints: the constraints on fuzzy 
temporal data and the constraints on possibilistic temporal data. 

We associate to each temporal imprecision type its equivalent representation in UML. 
In this representation, each temporal class will be connected to the class ‘temporal 
imprecision’. The navigation from the latter to the temporal class is provided by the role 
‘date’ or ‘period’ depending on whether the temporal class is respectively related to a 
fuzzy date or to a fuzzy period. Inversely, the navigation from the class ‘temporal 
imprecision’ to the temporal class is provided by the role ‘temporal object’. 

4.3.1 Fuzzy temporal data constraints 

Figure 23 shows an example of constraints applied to fuzzy temporal data. There are 
three temporal constraints common to the fuzzy date and to the fuzzy period. The first 
one is related to the verification of the consistency of dates. Thus, the minimum date 
must be less than or equal to the maximum date in the ‘temporal imprecision’ class. The 
second constraint consists in ensuring that the fuzzy sets represented in the class 
‘temporal imprecision’ and referring to dates or periods, are connected and normalised. 
The third constraint checks that a temporal object is composed of n dates (in the fuzzy 
date case) and n periods (in the fuzzy period case). In addition to these three constraints, 
we must check in the fuzzy date case that the values of the min-date and the max-date are 
equal if alpha is equal to 1. 

Figure 23 Example of constraints applied to fuzzy temporal data 

 

4.3.2 Possibilistic temporal data constraints 

In addition to the classical constraint verifying the consistency of dates, the first 
constraint related to the valued dates and periods is to verify that, for a fuzzy date, a 
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temporal object is composed of at least one date and of at most n dates and that for a 
fuzzy period, it is composed of at least one period and of at most n periods. In the second 
constraint, we check that the sum of the possibility degrees of the different dates and 
periods is lower than or equal to 1. These constraints are illustrated in Figure 24. 

Figure 24 Example of constraints applied to possibilistic temporal data 

 

5 Application on the construction of a spatiotemporal information system 
devoted to archaeological data 

By enquiring about the past, archaeological information is, by its essence, imperfect and 
its quality should be considered from the information system modelling to the analysis 
phase. Thus, data imperfection may be identified, characterised, memorised and 
queryable in an archaeological GIS. In the following section, we present an application 
that handles imprecise data in an archaeological information system. 

5.1 F-GISSAR: a fuzzy GIS for the representation and the analysis of 
archaeological data 

Since the beginning of the 1980s, the need of excavation data storage has appeared and 
some information systems devoted to archaeological data were deployed. The first 
archaeological database in Reims (France) called GISSAR (Piantoni and Pargny, 2005; 
Desjardin and Pargny, 2009) was built in 1983. The first objective of GISSAR was to 
gather data belonging to an older database and collected during the different excavations 
of archaeological sites. Then, it aimed to provide archaeologists with a tool enabling the 
entry of new sites. 
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5.1.1 The GISSAR archaeological data model 

Handling urban archaeological data is the main issue in order to understand the past and 
to restore knowledge to citizens. In Europe and particularly in Reims (France), there were 
many invasions and wars and, therefore, much destruction/construction. Thus, the storage 
and visualisation of archaeological data are essential. 

In urban excavations, there are two principal studied spatial objects. On one hand, the 
studied site is of prime importance because it locates the phenomenon and it may give 
information about the global past print. On the other hand, there are the archaeological 
entities that are present in an excavation site. 

Those entities correspond to the excavated objects that represent marks about the past 
structure such as a wall, a room or a building. 

An urban archaeological entity is structured over seven spatial scales from the 
stratigraphic unit to the interurban area. On a more global scale, an entity may be 
composed by some objects representing data at a more local scale. Therefore, the 
information system may allow the storage of archaeological sites which contain 
archaeological entities. An archaeological entity may aggregate other archaeological 
entities. The scales of objects are obtained by specialising archaeological entities. 

GISSAR is a spatiotemporal database devoted to storing archaeological data related 
to the city of Reims. We developed the GISSAR data model using the PictograF language 
of perceptory. 

Urban excavation data in this database are considered according to the triplet time-
space-description as detailed in Rodier and Saligny (2007). In this triplet, there are 
generally seven spatial scales from the stratigraphic units to the urban areas. 

According to the conceptual model presented in Figure 25, we define the geometry 
chosen for each spatial class. For example, the archaeological entities are considered as 
areas while the geometric type representation of artefacts and documentations is a point. 

To represent the dating corresponding to possible periods or centuries, temporal 
entities which have a sustainable existence, like the archaeological entities or the artefacts 
are represented by a pictogram indicating a time interval whereas the documentation class 
which has an instantaneous existence is represented by a pictogram indicating its creation 
date. 

Time is an integrate component of excavation objects and it is generally represented 
by a period of time. In addition to their spatial and temporal characteristics, the 
archaeological entities and the artefacts have descriptive characteristics such as the 
dimension (height, width, thickness, length, etc.). The archaeological entity is linked to 
the material class that provides a description of all the materials of which it is composed. 
The artefacts also have their own description in terms of materials. Figure 24 presents an 
extract of the GISSAR class diagram describing the structure of the excavation GIS. The 
whole class diagram of GISSAR is detailed in Zoghlami et al. (2012b). 

A previous version of this system is currently used for storing excavation data in 
Reims but it does not allow for the taking into consideration the data imprecision. 
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Figure 25 An extract of the GISSAR class diagram 
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5.1.2 Identification of imprecise information in GISSAR 

We find the imperfection in all of the process handling archaeological data – starting 
from the data acquisition, continuing with data representation and management and 
ending by data visualisation. This is due to the particularity of the archaeological data 
which is an instance of a triple relation between time, space and function. 

Indeed, the time interval between the excavation and the activity period of an object 
implies some imprecision/uncertainty: partial destruction, soil movement, estimation of 
activity period, estimation of descriptive attributes, etc. 

Quantitative information is often defined using qualifiers. For instance, the type of 
stone shape in a wall tends to use qualifiers as long, thick, thin and large or even 
moderately thick, very thin and a little bit large. It is meaningful in the case of artefact 
storage. 

The semantic imperfection concerns the archaeological instance composition. For 
example, sometimes one wonders whether an instance contains iron or whether it is a 
marble or not. It also concerns the archaeological instance function which can sometimes 
be uncertain. 

The temporal information is related to the activity period of the object. We often have 
imprecise information concerning the existence of an historical event or an object 
because its description takes the form of sentences like ‘it happened at the beginning of 
the second century’, ‘it was at the middle of a period’, or ‘it happened during the third 
century’. Sometimes it also takes the form of expressions such as ‘it was at the very 
beginning of a century’, or ‘it was right in the middle of a period’ and so one. 

Spatial data includes information regarding the geometry and the location of an 
instance on Earth. In classic approaches, spatial archaeological instances are usually 
represented as objects with well-defined boundaries (points, lines, regions) even if they 
are vague by nature like the boundaries of a stratigraphic unit or an archaeological site. 
The location of an instance can be made by using reference points, benchmarks, the 
expert positioning and through old repositioned maps. Thus, georeferencing an instance 
is usually related to a lack of precision. 

In the GISSAR data model, we distinguish different levels of imprecision. The first 
level concerns the imprecision on the descriptive characteristics (dimension, composition, 
etc.). In fact, we describe the dimension by fuzzy predicates such as thick, high, long, etc. 

The second level of imprecision is related to time. Temporal features of 
archaeological entities correspond to time periods where the considered objects were 
active. This dating presents a lack of precision, since we cannot precisely identify the two 
terminals of the time interval. 

The last level is related to space, namely the geometry shape of spatial objects that 
may have fuzzy boundaries and also the imprecision of their georeferencing. 
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Figure 26 Extract from the F-GISSAR model (see online version for colours) 
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5.1.3 F-GISSAR data model 

To handle the first level of imprecision the keyword FUZZY is introduced and placed in 
the dimension class in front of the fuzzy attributes such as length, width, height and 
thickness. Imprecise spatial and temporal information are modelled using the  
F-perceptory pictograms. The temporal imprecision is modelled through the fuzzy period 
while the fuzzy boundaries of archaeological entities and sites are considered as fuzzy 
polygons. The artefacts and documentations are considered as fuzzy points. Figure 26 
presents an extract from the F-GISSAR data model highlighting the three levels of 
imprecision in the GISSAR model. 

5.1.4 F-GISSAR database structure 

As the main goal is to store fuzzy spatiotemporal data, we choose to build a system that 
organises the information into two layers. A first layer containing the geometric data is 
implemented. This layer is called the data layer; it contains the geometric data like shapes 
and locations of the archaeological instances, the descriptive data referring to all the 
object descriptive attributes and the temporal data related to all the temporal classes that 
we have previously mentioned. A second layer (multi-valued layer) associated to the data 
layer is implemented. It handles the various quantitative, spatial and temporal forms of 
imprecision. 

To handle the quantitative qualifier imprecision which is due to the use of natural 
language terms, all the fuzzy attributes are connected to a special table that stores the 
imprecise information as a multivalent set of values through an intermediate table that 
references their fuzzy set identifier. 

For the spatial data, we create a spatial imprecision table which includes all the fuzzy 
geometric shapes corresponding to archaeological sites, archaeological entities, artefacts 
and documentations. All the spatial queries will refer to this table. 

For the temporal data, all the temporal entities are connected to a temporal 
imprecision table that stores all the semantic expressions referring to the date as a  
multi-valued set of values. The connection with this table is possible through an 
intermediate table that includes the fuzzy set identifier for each dating reference. 

Using the previous database tables, we are now able to build operational GIS devoted 
to archaeological information. 

5.2 Operating example of F-GISSAR: querying imprecise spatiotemporal data 

We consider the request aiming to find the entities that satisfy the following conditions: 

• their activity period is the 2nd century (with at least a degree of 0.4) 

• their shape belongs to the site ‘PC 87’ 

• the final degree must be at least equal to 0.8. 

This request corresponds to an α-cut with α equal to 0.8 and could be expressed as 
follows: 

( )ActivityPeriod( ) 2nd Century AND Shape( ) PC 87 > .8.x x =∼ ∼  

Using the Zadeh t-norm, this implies that: 
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( )Min AvtivityPeriod( ) 2nd Century, Shape( ) PC 87 > 0.8.x x =∼ ∼  

The: 

ActivityPeriod( ) 2nd Century > 0.8AND Shape( ) PC 87 > 0.8.x x= =∼ ∼  

Figure 27 Database extraction of entities with temporal imperfection 

 

Figure 28 Query with spatial imprecision 

 

Figure 27 illustrates an example of the query returning the entities having an activity 
period in the 2nd century. Figure 28 shows the result of the query returning the entities 
that belong to the site PC 87. According to this example the entity having the identifier 
356 is the only one that satisfies the two conditions. 

The visualisation of the query combining the spatial and the temporal imperfection is 
illustrated in Figure 29. 

Figure 29 Visualisation of entities that have an activity ‘middle of the 2nd century’ and belong to 
site PC 87 (see online version for colours) 
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6 Discussion 

6.1 About modelling imprecise spatial information 

Since Burrough and Frank (1996), the literature supplies many approaches dealing with 
imprecise spatial data modelling (Clementini, 2005; Erwig and Schneider, 1997). They 
are defined according to mathematical theories of uncertainty: conjunction of crisp sets, 
rough set theory, fuzzy set theory, etc. 

The models based on crisp sets take several crisp sets in order to represent a region 
according to different hypotheses. The ‘egg-yolk model’ (Cohn and Gotts, 1996) 
introduces the concept of regions with broad boundaries for representing an 
indeterminate boundary. A spatial object with broad boundaries is composed of two crisp 
regions: the ‘yolk’ region represents the certain part (the minimal extension) of the spatial 
object; the ‘egg’ is the crisp region that represents the possible part (the maximal 
extension). Clementini and di Felice (1996, 1997, 2001) propose another view of the 
‘egg-yolk’ model based on the point-set topology. The ‘qualitative min-max’ model 
(Bejaoui et al., 2009) allows the representation of a partially vague region. 

The rough set theory was introduced in Pawlak (1982). A rough set is a formal 
approximation of a crisp set in terms of a pair of crisp sets which give the lower and the 
upper approximation. This theory is well adapted to the issues in databases in which we 
cannot evaluate the membership of a data to a class: if a data respects a minimum of the 
studied class properties, it will be affected to the lower approximation and if it respects 
all the class properties, it will be considered as a member of the upper approximation. 
Rough sets are structured on the notion of the possibility and the necessity of the 
membership of an element to a set. 

Worboys (1998) uses this theory for modelling a vague spatial object. The difference 
between the lower and the upper approximation defines the vague boundary of an object. 
If this difference is null, the region is then crisp. 

Those models using multiple crisp sets or rough sets allow us to easily conceptualise 
imprecise regions but do not provide a quantitative assessment of the membership of an 
element to a set. This need of graduation was highlighted with the sorites paradox. 

In order to deal with this, the use of the fuzzy set theory is a classic and it is the main 
reason we exploit it in our approach. Nevertheless, the storage of continuous membership 
functions is complex and expensive. As a solution, some approaches exploit a valued 
discretisation of fuzzy sets. 

Our approach for the storage is directly inspired by Morris and Petry (2006). They 
model fuzzy objects as a collection of ‘α-cut level regions’. Each ‘α-cut region’ is 
therefore a crisp region with a membership degree α. As our approach is based, for fuzzy 
spatial objects, on their storage as multiple valued sets according to α-cut, a wrapper 
between the F-perceptory database and UGML may easily be built. 

In Schneider (1999), the author proposes a fuzzy region model for fuzzy spatial data 
types. Using this model, the notion of fuzzy point, fuzzy line and fuzzy region may be 
defined in R2. A similar modelling has been proposed in Tøssebro and Nygård (2002) and 
in Worboys and Clementini (2001). This process facilitates the exploitation of fuzzy 
objects in a GIS and maintains the interest of the valued confidence contribution. This is, 
combined to the perceptory principle, one of the main reasons we have mainly defined 
for spatial data the three pictograms for fuzzy polygons, fuzzy lines and fuzzy points. 
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Finally, as our approach is based on the modelling of fuzzy data through multiple  
α-cuts, it could also be compatible with the Worboys and egg-yolk models by reducing 
the number of the stored α-cuts to 2 (α = 0 and α = 1). Thus, F-perceptory may be 
viewed as a possible approach for dealing with many forms of imprecise data modelling. 

6.2 About fuzzy extension for modelling databases 

In the literature, several studies have focused on introducing fuzzy extensions on 
relational database models and on object-oriented database models in order to store 
imprecision. We can classify these studies into two different groups. 

The first group includes works that are interested in establishing fuzzy queries taking 
into consideration the imprecision in the database. In this case, we mainly mention the 
work of Bosc and Pivert (1995, 2000). 

The second group includes works that are interested in proposing new data models to 
store imprecise information in traditional relational and object-oriented databases. We 
can mainly mention the recent works of Gupta et al. (2011) and Škrbić et al. (2011). 

In Table 3, we propose a comparative study between our model and the main fuzzy 
conceptual database models. The first model is the fuzzy ER model in which Zvieli and 
Chen (1986), Vandenberghe (1991), Ruspini (1986) and Vert et al. (2002) have proposed 
an extension of the ER model to represent fuzzy entities, fuzzy relations, etc. The second 
model is the fuzzy EER model which extends the EER models in order to represent fuzzy 
attributes, fuzzy classes, etc. as presented in Galindo et al. (2004), Chen and Kerre (1998) 
and Ma et al. (2001). The third model is the fuzzy UML data model. According to this 
table, the fuzzy ER model is adapted to applications in fuzzy relational database  
models. The fuzzy EER model and the fuzzy UML model are applied to model  
fuzzy object-oriented databases. However, even though the modelling of imprecise 
spatiotemporal objects can be done through classic modelling (Schneider, 1996) or 
through meta-modelling (Frank, 1998), these fuzzy data models are not adequate to 
represent and store fuzzy spatiotemporal data. By contrast, our model is adapted to 
handle imprecise spatiotemporal data in both relational databases and object-oriented 
databases. 
Table 3 Design of fuzzy databases through fuzzy conceptual models: a comparative study 

 Application in fuzzy database models  Fuzzy spatiotemporal databases 

 Fuzzy relational 
database 

Fuzzy object 
oriented database  

Fuzzy 
relational 
database 

Fuzzy object 
oriented 
database 

Fuzzy ER model Yes No  No No 
Fuzzy EER model No Yes  No No 
Fuzzy UML model No Yes  No No 
F-perceptory Yes Yes  Yes Yes 

We propose, in Table 4, a comparison between the main spatiotemporal modelling 
methods (MADS and perceptory) and our approach F-perceptory. 

The fuzzy and uncertain extension of the MADS method introduced by Shu et al. 
(2003) has clearly defined the spatial/temporal randomness and the spatial/temporal 
fuzziness. The first one is manifested in geographical or temporal entities that occur 
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randomly, so they are transferred from the geographical/temporal space to a unit of a 
probability interval (0.1). The spatial randomness is introduced through the concepts of 
random points, lines and polygons while the temporal randomness is introduced  
through the random dates and random periods. The second one is manifested in 
geographical/temporal entities that occur in a vague way, so they are transferred from the 
geographical/temporal space to a unit of a possibility interval. The spatial fuzziness is 
introduced through the concepts of fuzzy points, lines and polygons, while the temporal 
fuzziness is introduced through the fuzzy date and the fuzzy period. Despite the detailed 
study on imperfect data modelling, the imperfect extension of MADS is somewhat 
lacking. In fact, the reflection generated on the spatial and temporal imperfection does 
not exceed the theoretical framework. In fact, there is currently no physical response 
implementing the concepts of random point, random line, random polygon, fuzzy point, 
fuzzy line, fuzzy polygon, random date, random period, fuzzy date and fuzzy period. 
Moreover, the possibilistic data modelling is not included in the fuzzy extension of 
MADS. 

The concepts of fuzzy spatiality and fuzzy temporality were also added to the GIS 
meta-model by Miralles (2006). These concepts have enriched the potential of the 
imprecision representation in the geographic information systems, notably the perceptory 
data model. However, in this approach, the author has not considered the implications on 
the database and on its exploitation through queries that consider the data imprecision. He 
did not also consider the case of the possibilistic data modelling. 

In F-perceptory, we have implemented a set of imprecise spatial and temporal 
constraints and we have presented a possible application of the approach using imprecise 
archaeological data. 
Table 4 A comparison between the main spatiotemporal modelling methods and our 

approcach – F-perceptory 

 Perceptory Mads F-perceptory 

Temporal data types Yes Yes Yes 
Spatial data types Yes Yes Yes 

Randomness (random 
point, line, polygon) 

No Yes No 

Fuzziness (fuzzy 
point, line, polygon) 

Yes Yes Yes + implementation of 
fuzzy spatial constraints 

Imperfect 
spatial data 

Possibility (valued 
point, valued line, 
valued polygon) 

No No Yes + implementation of 
possibilistic spatial 

constraints 
Randomness (random 
date, random period) 

No Yes No 

Fuzziness (fuzzy date, 
fuzzy period) 

Yes Yes Yes + implementation of 
fuzzy temporal 

constraints 

Imperfect 
temporal 
data 

Possibility (valued 
date, valued period) 

No No Yes + implementation of 
possibilistic spatial 

constraints 
UML compatibility Yes No Yes 
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We also notice through Table 4, the lack of a UML compatible approach to model and 
build an information system considering the geographic information in its spatial, 
temporal and imperfect (particularly imprecise) complexity. 

This aspect is considered as the main contribution of F-perceptory. 

7 Conclusions and future work 

In this article, we tackle the issue of modelling geographic information systems that 
consider information imprecision using an original approach adapted to handle fuzzy and 
possibilistic spatiotemporal data in class diagrams and, also, in relational/object-oriented 
databases. The approach enables us to consider two forms of imprecison by assigning 
them a multivalent representation using the α-cuts. Then, we presented an application 
example of the approach aiming to model and store imprecise spatiotemporal data in a 
geographic information system. Therefore, we introduced the F-perceptory conceptual 
data model in which we have defined new pictograms modelling the imprecise space and 
time. We have also implemented a set of constraints to ensure the data consistency during 
the transformation process of the fuzzy conceptual model to the spatial database. 

In the last section, we proposed a comparative study that highlights our contribution 
compared to the other fuzzy conceptual models and to the other main spatiotemporal 
modelling methods. Our approach is distinguished by considering the particularity  
of spatiotemporal data in fuzzy conceptual data models and by introducing and 
implementing a set of spatial and temporal constraints required to ensure the data 
consistency in fuzzy relational and object-oriented databases. 

A case tool managing the imprecision and enabling the automation of a 
spatiotemporal database generation, from the F-perceptory model is currently being 
implemented. We currently work on the use of our approach for dealing with 
agronomical data (Zoghlami et al., 2012a). In perspective, we will work on the definition 
of rules highlighting possible spatiotemporal inconsistencies. These rules aim to avoid 
spatiotemporal conflicts between geographical objects. We also aim to develop queries 
that exploit the fuzzy temporal relations (Dubois et al., 2003) and the fuzzy spatial 
topological relations discussed by Salamat and Zahzah (2012). 
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