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Abstract: Protein–Protein Interactions (PPIs) information extraction from 
biomedical literature helps unveil the molecular mechanisms of biological 
processes. Machine learning methods have been the most popular ones in PPI 
extraction area. However, these methods are still feature engineering-based, 
which means that their performances are also heavily dependent on the 
appropriate feature selection which is still a skill-dependent task. This paper 
presents a deep neural network-based approach which can learn complex and 
abstract features automatically from unlabelled data by unsupervised 
representation learning methods. This approach first employs the training 
algorithm of auto-encoders to initialise the parameters of a deep multilayer 
neural network. Then the gradient descent method using back propagation is 
applied to train this deep multilayer neural network model. Experimental 
results on five public PPI corpora show that our method can achieve better 
performance than can a multilayer neural network: on two ‘toughest handling’ 
corpora AImed and BioInfer, the former outperforms the latter with the 
improvements of 3.10 and 2.89 percentage units in F-score, respectively. In 
addition, the performance comparison with APG also verifies the effectiveness 
of our method. 
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neural network. 
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1 Introduction 

Protein–Protein Interactions (PPIs) are essential for understanding the molecular 
mechanisms of biological processes. A number of databases such as MINT (Zanzoni  
et al., 2002), BIND (Bader et al., 2001), and DIP (Xenarios et al., 2000) have been 
created to store protein interaction information in structured and standard formats. Many 
databases, such as MINT, manually detect and curate protein interactions from 
biomedical literature. However, with the rapidly expanding biomedical literature 
containing PPIs, it becomes difficult for database curators to manually curate PPI 
information from this literature. Thus, the automatic extraction of such information from 
biomedical literature has become an important research area. 
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Existing PPI works can be roughly divided into two main categories: manual pattern 
engineering-based approaches and machine learning-based approaches. Manual pattern 
engineering approaches define a set of rules for possible textual relationships, called 
patterns, which encode similar structures in expressing relationships. The Hinton et al.  
used regular expressions, with probabilities that reflect the experimental accuracy of each 
pattern to extract interactions into predefined frame structures (Blaschke and Valencia, 
2002). Ono et al. (2001) defined a set of rules based on syntactic features to preprocess 
complex sentences, making further use of negation structures. Corney et al. (2004) 
applied manually engineered templates that combine lexical and semantic information  
to identify protein interactions. Such manual pattern engineering approaches for 
information extraction are very hard to scale up to large document collections since they 
require labour-intensive and skill-dependent pattern engineering. 

Currently, the machine learning approaches have become the popular ones in PPI 
extraction research due to the public availability of large annotated PPI corpora, such as 
AImed (Bunescu et al., 2005), BioInfer (Pyysalo et al., 2007) , and IEPA (Ding et al., 
2002). In these approaches, the PPI extraction is performed by a decision function that 
determines for each unordered candidate pair of protein names occurring together in a 
sentence whether the two proteins interact or not. Xiao et al. (2005) used Maximum 
Entropy models to combine diverse lexical, syntactic and semantic features for PPI 
extraction. Zhou et al. (2006) employed a semantic parser using the Hidden Vector State 
(HVS) model for PPIs which can be trained using only lightly annotated data while 
simultaneously retaining sufficient ability to capture the hierarchical structure. 

Among others, kernel-based methods are an effective alternative to explicit feature 
extraction (Cristianini and Shawe-Taylor, 2000). They retain the original representation 
of objects and use the object only via computing a kernel function between a pair of 
objects. Formally, a kernel function is a mapping K: X  X  [0, ) from input space X 
to a similarity score          , i i iK x y x y x y       , where i(x) is a function that 

maps X to a higher dimensional space with no need to know its explicit representation. 
Such a kernel function makes it possible to compute the similarity between objects 
without enumerating all the features. Several kernels have been proposed to extract PPIs 
from biomedical literature, such as subsequence kernels (Mooney and Bunescu, 2005), 
tree kernels (Moschitti, 2006; Sætre et al., 2007), shortest path kernels (Bunescu and 
Mooney, 2005), and graph kernels (Airola et al., 2008).  

In recent years, researchers have proposed the combination of multiple kernels to 
extract PPIs. Kim et al. (2008) suggested four kernels – predicate kernel, walk kernel, 
dependency kernel and hybrid kernel – to adequately encapsulate information required 
for a relation prediction based on the sentential structures involved in two entities. Miwa 
et al. (2009) proposed a method that combines bag-of-words (BOW) kernel, subset tree 
kernel, and graph kernel, based on several syntactic parsers, in order to retrieve the 
widest possible range of important information from a given sentence. Yang et al. (2011) 
combined the following kernels: feature-based kernel, tree kernel, APG kernel and part-
of-speech path kernel. The combination of multiple kernels can retrieve the widest range 
of important information in a given sentence and achieves better performance. However, 
like other kernel-based methods, these methods are still feature engineering-based and, 
therefore, their performances are heavily dependent on the feature selection. In addition, 
they only make use of the limited labelled data but ignore the huge amount of biomedical 
texts readily available. 
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To solve the problem, we introduce a deep learning-based approach into PPI 
extraction from biomedical literature, which can learn complex and abstract features 
automatically from unlabelled data by unsupervised representation learning methods 
(Bengio, 2009; Bengio et al., 2013; Hinton et al., 2006; Hinton and Salakhutdinov, 2006; 
Bengio, 2013). As described in detail previously (Bengio, 2013), a deep learning 
algorithm is a particular kind of representation learning procedure that discovers multiple 
levels of representation, with higher-level features representing more abstract aspects of 
the data, which has had important successes in many traditional AI applications such as 
computer vision (Hinton et al., 2012b; Wan et al., 2013; Krizhevsky et al., 2012), speech 
recognition (Graves et al., 2013; Hinton et al., 2012a), and natural language processing 
(Collobert and Weston, 2008; Collobert et al., 2011). However, few studies about its 
application in the research field of information extraction (IE) from biomedical literature 
have been reported.  

In this paper, we present a deep learning-based approach to extract PPIs from 
biomedical literature. This approach employs greedy layer-wise unsupervised learning 
procedure relying on the training algorithm of auto-encoders to initialise the parameters 
of a deep multilayer neural network. Then it applies the gradient descent method using 
back propagation to train this deep multilayer neural network model. In standard learning 
strategies of deep multilayer neural networks, weights are randomly initialised, which is 
empirically known to find poor solutions for networks with three or more hidden layers 
(Larochelle et al., 2009). Instead, our approach uses greedy layer-wise unsupervised 
learning to initialise the parameters which not only makes learning deep multilayer 
neural network possible, but also learns much information from large unlabelled data 
automatically. Experimental results on five public PPI corpora show that our approach 
can achieve better performance than multilayer neural network (NN). 

2 Methods 

Our method contains four processing steps, as shown in Figure 1: (1) Named Entity 
Recognition (NER), which aims to identify the protein names in the biomedical text; (2) 
feature extraction, which generates raw features using Enju parser (Miyao and Tsujii, 
2008) and Principal Component Analysis (PCA) (Jolliffe, 2005); (3) auto-encoder, which 
learns complex and abstract features by unsupervised greedy layer-wise training on the 
raw features; and (4) neural network, which trains a supervised neural network using the 
features learned by the auto-encoder. 

2.1 NER 

In our method, an NER module based on the semi-supervised learning strategy, FCG (Li 
et al., 2009), is employed to recognise the protein names in the unlabelled data set. The 
performance of FCG is examined in a named entity classification task, which is designed 
to remove non-gene entries in a large dictionary derived from online resources. The 
results show that new features generated by FCG outperform lexical features by  
5.97 percentage units in F-score. Also in this framework each extension yields significant 
improvements and the sparse lexical features can be transformed into both a lower 
dimensional and more informative representation. A forward maximum match method 
based on the refined dictionary produces an F-score of 86.2% on BioCreative II Gene 
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Mention test set. Then the dictionary is combined with a CRFs-based gene mention 
tagger, achieving an F-score of 89.05%. More details about FCG are presented in Li et al. 
(2009). 

Figure 1 The processing flow of our method (see online version for colours) 

  

2.2 Original raw feature extraction 

To ensure the generalisation of the learned model, the protein names recognised in the 
text are replaced with PROT1, PROT2, or PROT, where PROT1 and PROT2 are the pair 
of interest, and the rest of the proteins are marked as PROT. An example is given as 
follows: 

“Isolation of human PROT1 and its binding specificity with PROT2” 

In our method, the syntactic and word information of the sentence used in the method  
of Airola et al. (2008) are extracted as our original raw features (the structural 
representation of the example sentence is shown in Figure 2). Enju is applied to parse the 
sentences and provide us with phrase structures and predicate-argument structures 
(Miyao and Tsujii, 2008). 

Word features used in our method are all the words of this sentence, such as ‘human’, 
‘its’, ‘binding’, and syntactic features are the parts of speech of the words and the 
semantic relationships of the predicate-argument pairs (e.g. ‘NN’, ‘JJ’, and ‘coord_arg12’). 

The words between the candidate entities or connecting them in a syntactic 
representation are particularly likely to carry information regarding their relationships 
(Bunescu et al., 2005). Therefore, we use the same weight assignment mechanism as the 
one in Airola et al. (2008) to distinguish these features. The features in the shortest paths 
and the features between two entities in the linear order are initialised to 0.9, while the 
rest are initialised to 0.3. Once a repeated feature is found in one sentence, the weight 
will be multiplied by a coefficient (which is set to 1.1 in our method) since, instinctively, 
a feature which occurs two or more times in a sentence is more important than a feature 
that occurs only once. 
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Figure 2 Structural representation of the example sentence. The top sub-graph is the predicate-
argument structure of the example sentence and the bottom sub-graph shows the linear 
order of the sentence. The nodes and edges in the shortest path connecting two proteins 
in predicate-argument structure and the nodes and edges between two proteins in linear 
order graph are shown in bold and the rest are shown in dotted lines. The rectangular 
nodes represent words and corresponding parts of speech. The ellipse vertices represent 
specific relationships between the predicates and their arguments. 

 

Initially, a feature set with a dimension size larger than three million is obtained. 
However, considering either time complexity or space complexity, it’s hard to train a 
deep multilayer neural network with such an input layer size. Therefore, the following 
two steps are taken to reduce the input space size. First, document frequency-based 
feature selection is performed (Liu et al., 2003) and 8582 features are retained. Second, 
PCA is applied, in which 96% of the variance are preserved. Finally, a feature space with 
a size of 965 is obtained. 

2.3 Auto-encoder 

In the next step of our method, auto-encoder, a non-linear unsupervised learning model, 
is applied to learn more rich features by unsupervised greedy layer-wise training on the 
raw features. Auto-encoder is a neural network trained to compute a representation of the 
input from which it can be reconstructed with as much accuracy as possible (Hinton  
and Zemel, 1994). It can also be seen as the parameter initialisation of the Deep  
Neural Networks (DNNs). As described in detail previously (Larochelle et al., 2009), 
though auto-encoder is designed with the goal of dimensionality reduction, the new 
representation’s dimensionality does not necessarily need to be lower than the input’s 
dimensionality in practice. We will consider the auto-encoder network with only one 
hidden layer, in which the hidden representation of x is a code h(x) obtained from the 
encoding function: 

    j jh x f a x  where  j j ji ii
a x b W x   (1) 

The input’s reconstruction is obtained from a decoding function, here a linear 
transformation of the hidden representation with the weight matrix w*, possibly followed 
by a non-linear activation function: 

 *
k kx g a  where  *

k k kj jj
a c W h x   (2) 
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The sigmoid activation function is used for both f( ) and g( ), and bj and ck are the bias 
terms. We set WT = W* in all of our experiments to avoid the network learning a trivial 
identity function. The network with small weights Wji between the input and hidden 
layers and large weights kjW   between the hidden and output layers could encode such an 

unwished identity function (Larochelle et al., 2009). 
Learning an auto-encoder network is almost the same as training a standard artificial 

neural network. When the loss function is given, the back-propagation algorithm is used 
(described in the following section). As the target of the auto-encoder is minimising the 
reconstruction error, the loss function can be defined as Formula 3 where weight decay 
term is used to penalise large weights: 

    * 2
( ) 2,

2
n n

n

L x x x x W
     (3) 

2.4 Back-propagation neural networks 

In our method, back-propagation method is used to train both auto-encoders and the 
whole DNN. Back propagation is a common method of training artificial neural networks 
used in conjunction with an optimisation method such as gradient descent (Rumelhart  
et al., 1988; Werbos, 1994). Learning a back-propagation neural network is implemented 
in two phases (i.e. feed forward propagation and error back propagation, as shown in 
Figure 3), which is the general case of a multilayer neural network in which auto-encoder 
contains one hidden layer and the output unit size is the same as the input unit size. For 
convenience, the bias parameters associated with each hidden and output units are 

absorbed into the set of weight parameters by defining additional variables x0, 
 1
0z  and 

 2
0z  whose values are clamped at 1 (Bishop, 2006). 

2.4.1 Feed forward propagation 

Firstly, each hidden and output unit value is calculated layer by layer with the function 
given by Formula 4. 

 kz kh a  where k kj jj
a W z   (4) 

Where h( ) is an activation function. Logistic sigmoid function, defined as Formula 5, is 
used as the activation function throughout our experiments. 

   
1

1 exp
Sigmoid x

x


 
 (5) 

Then Formulas 4 and 5 are combined to give the overall network function which takes 
the form as follows: 

       2 1y , out
k km mj ji i

m j i

x W W h W h W x
   

        
    (6) 
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where ( ), the activation function of the output unit, is also the sigmoid function in our 
work, while it can be an identity function for standard regression problems. Then loss 
function of this neural network is derived from Formula 6. We choose the cross-entropy, 
defined as Formula 7, as our loss function since we treat PPI extraction as a classification 
task. Similar to Formula 3, the weight decay penalty is also used in Formula 7. 

                2ln , 1 ln 1 ,
2

n n n n

n

L W y y x W y y x W W


      (7) 

Figure 3 Back-propagation algorithm with early stopping criteria. A back-propagation neural 
network with two hidden layers and two output units, where x is the input of the 
network, h1 and h2 are the hidden layers, W(1), W(2), and W(out) are the parameters 

between the corresponding two layers, and y is the output of the network.  1
0Z  and  2

0Z  

are the bias parameters associated with each hidden and output units. 

 

2.4.2 Error back propagation 

After the loss function L(W) is defined in the previous step, we calculate the gradient of 
L(W) with respect to the weight parameters W and propagate it back layer by layer. 

First of all, error information of the output units  out
k  is evaluated by Formula 8 

where yk is the label information, where k = 1, 2. Later, this error signal will be back 

propagated using Formula 9, where  l
i  stands for the error information of the ith hidden 

unit in the lth layer. 

       ,out out
k k k ka y x W y     (8) 

        1 1l l l l
i i ji j

j

h a W     (9) 
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where         1x h x sigmoid x sigmoid x      since ( ) ( ) ( )h sigmoid      . Then 

the required gradient is obtained simply by multiplying the value of  for the unit at the 
output end of the weight by the value of z for the unit at the input end of the weight as 
shown in Formula 10.  

 
 

   1l l
j il

ji

L W
z

W
 




 (10) 

where the superscript l represents the layer in the network. At last, weight parameters are 
updated by Formula 11. 

         
 1l l

ji ji l
ji

L W
W W

W
  


  


 (11) 

where  is the learning rate which can adjust the converge speed. Forward propagation 
and backward propagation will be executed in turn until the early stopping condition is 
satisfied as described in Figure 4. 

Figure 4 Back-propagation algorithm with early stopping criteria 
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2.4.3 Back-propagation algorithm with early stopping criteria 

Back-propagation algorithm is the fundamental algorithm in our approach since it is used 
in the process of greedy layer-wise training of auto-encoders and the fine-turning phase. 
Early stopping is applied to prevent the neural networks from over-fitting. 

2.5 Deep neural network algorithm 

The detailed DNN algorithm is shown in Figure 5 which contains unsupervised pre-
training phase and supervised fine-tuning phase.  

Figure 5 Deep neural network algorithm 
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3 Experimental results and discussion 

3.1 Experimental data sets and settings 

Table 1 The details of five PPI corpora 

Corpus #Positive #Negative #Example I/EP 

AImed 1000 4655 5655 0.18 

BioInfer 2473 6367 8840 0.28 

IEPA 335 476 811 0.41 

HPRD50 163 270 433 0.38 

LLL 164 166 330 0.5 

Our method was evaluated on five publicly available corpora: AImed, BioInfer, IEPA, 
HPRD50 (Fundel et al., 2007), and LLL (Nédellec et al., 2005). The statistics of the five 
PPI corpora is shown in Table 1. The sentences which can’t be correctly parsed by Enju 
are removed from the corpora and thus not considered in evaluation. Here, it is noted that 
the I/EP denotes the average number of interactions per sentence divided by the average 
number of entity pairs per sentence. According to Pyysalo et al. (2008), the I/EP may 
serve as a rough, easily computable baseline for determining the comparative difficulty 
of PPI extraction tasks across corpora (which is inversely related to the I/EP value). 
Therefore, it is more difficult to achieve good performance on AImed (with an I/EP  
of 0.18) and BioInfer (with an I/EP of 0.28) corpora than on the other three corpora. 

For the unlabelled data used in the pre-training process, we combined the five PPI 
corpora and removed the label information to obtain the unlabelled data (16,909 
instances in total). We also downloaded all the Medline abstracts, ranging from 1994 to 
2009, to generate additional unlabelled data. Protein/gene names in these abstracts are 
tagged by our NER system. Then the sentences containing at least two protein names are 
retained, since we are concerned with the interactions between two proteins. Finally, 
original raw features are extracted from the unlabelled data. 

Results are reported in the document-level  tenfold cross-validation scheme, which is 
the de facto standard in PPI extraction. To apply early stopping criteria in our 
experiments, we took onefold from the ninefold train set as the validation set. Therefore, 
the proportion of train, validation and test sets is 8:1:1. 

Training deep architectures requires determining appropriate hyper-parameters. For 
the raw neural network (NN), the hyper-parameters are the number of units per layer, the 
learning rate and the epochs of iteration. The DNN has an additional hyper-parameter, 
the learning rate for training auto-encoder. Larochelle et al. (2009) suggested that the 
same size for all the hidden layers worked generally better or the same as using a 
decreasing size or increasing size. And they also recommended that the number of units 
in first hidden layer should be more than units in input layer. Considering both accuracy 
and efficiency, we chose the topology structure of 965-1000-1000-…-1000-1. The 
number of epochs of supervised phase, NN and fine-tuning in DNN is chosen by early 
stopping which is based on the progression of classification error on the validation set. 
We take 10,000 epochs for the first four layers and 20,000 epochs for the remaining four 
layers when training auto-encoders. The learning rate is determined by the form 

 
0

max ,t t

 



  (Bengio, 2012) which keeps the learning rate constant for the first  steps 
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and then decreases it in O(1/t). We set 0 = 0.001 and  = , constant learning rate, when 
training auto-encoders and set 0 = 0.001 and  = 70 for the supervised phase. All these 
hyper-parameters are determined in the light of the performance on the validation set.  

3.2 Experimental results 

In this section, we provide a comprehensive evaluation of our method, and compare  
our results with those of other methods. Like the majority of PPI extraction system 
evaluations, we use the balanced F-score measure for quantifying the performance of the 
systems. This metric is defined as F = (2PR)/(P + R), where P denotes precision and R recall. 

3.2.1 Performance comparison with NN 

In our experiments, performance comparison between DNN and NN with the same 
architectures is made. The main difference between DNN and NN is the parameter 
initialisation. Instead of assigning random small values to the weights in NN, the DNN 
weights are generated by pre-training with auto-encoder. The network layers are limited 
to five since the performance of NN drops sharply when the depth exceeds four. The 
reason is that training deep architectures involves optimisation problems that are more 
difficult than those involved in training shallow architectures (Bengio, 2009). This is 
proved by the results shown in Table 2. With the increase of the network layers, the 
performance of NN gradually degrades on all the corpora. The ones of NN5 become poor 
compared with those of other layers. By contrast, the performance of DNN increases in 
most cases when the network layer increases from three to four. When the network layer 
further increases to five, the performance remains stable. The reason is that deep 
architectures yield an error surface that is non-convex and hard to optimise, with the 
suspected presence of many local minima. A gradient-based optimisation should thus end 
in the local minimum of whatever basin of attraction we started from. However, pre-
training procedure will put us in a region of parameter space where basins of attraction 
run deeper than when picking starting parameters at random (Erhan et al., 2009). It’s the 
reason that pre-training can help to learn a deep architecture.  

NN-3 denotes the NN with three layers; DNN-3 denotes the DNN with three layers, 
and so on. Δ denotes the average performance improvement of DNN-4 over NN-3 
(percentage unit); the highest F-scores are shown in bold. In addition, the increase of the 
network depth will lead to the increase of the network capacity (Hoekstra and Duin, 
1995), which roughly corresponds to the ability to model any given function. Therefore, 
in most cases, DNN performs better when the network layer increases from three to four. 

By comparing the best performance of NN-3 (with three layers) and DNN-4 (with 
four layers), we found that, on two ‘toughest handling’ (with the least I/EP values) 
corpora AImed and BioInfer, DNN-4 outperforms NN-3 with the improvements of 3.10 
and 2.89 percentage units in F-score, respectively. On the IEPA and HPRD50, DNN-4 
and NN-3 achieve almost equal performance. Only on the ‘easiest handling’ corpus LLL, 
the performance of DNN-4 is inferior to that of NN-3 by 1.23 percentage units in  
F-score. The reason is that the pre-training procedure with auto-encoder can improve the 
performance by learning more rich features automatically when the problems, like the 
PPI extraction on AImed and BioInfer corpora, are complex enough (Larochelle et al., 
2007). However, on the simple problem like the PPI extraction on IEPA, HPRD50 and 
LLL, DNN does not work well since it may over-fit when a complicated model is used to 
learn an easy problem (Wan et al., 2013) as will be discussed in the following section. 
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3.2.2 The effect of the network depth on performance 

A theoretical motivation for deep architectures comes from the complexity theory: when 
a function can be represented compactly with an architecture of depth k, representing it 
with an architecture of depth k-1 might require an exponential size architecture (Håstad 
and Goldmann, 1991). In other words, deep architectures can be much more efficient 
(sometimes exponentially) than shallow architectures, in terms of computational 
elements required to represent some functions. Therefore, we test the DNN depths from 
three to ten to explore the effect of the network depth on our method’s performance. The 
results on five different corpora are shown in Figure 6. The F-score curves on all corpora 
except LLL will ascend in the beginning and then decline after they reach the peaks, 
while, for LLL, the curve fluctuates all the time. To explain the reason, we introduce the 
concept of discrimination capacity (DC) (Hoekstra and Duin, 1995), the maximum 
number of regions a network can discriminate. DC roughly corresponds to the ability to 
model any given function. It is related to the amount of information that can be stored in 
the network and, therefore, will increase along with the number of the hidden units or the 
depths. Analysing Figure 5 from the view of DC, we can find that the performance of 
DNN improves along with the increase of network depth, since the network with larger 
DC can learn more complicated problems. However, it will over-fit easily when a 
complicated model is used to learn an easy problem (Wan et al., 2013). The reason that 
the performance of the DNN model begins to decrease when the network depth exceeds a 
certain threshold is that it may over-fit after that threshold. For LLL, the ‘easiest 
handling’ corpus, according to I/EP theory, it might over-fit from the very beginning.  

Table 2 Performance comparison with NN 

Corpus  NN-3 NN-4 NN-5 DNN-3 DNN-4 DNN-5  

AImed 

P 48.21 43.37 20.26 50.27 51.51 50.2  

R 64.12 66.91 89.79 62.05 63.38 65.83  

F 54.43 51.81 32.59 54.77 56.12 56.08 3.10 

σF 5.31 5.66 3.82 5.23 4.9 5.3  

BioInfer 

P 52.09 48.78 28.46 55.6 55.66 53.89  

R 70.22 69.14 99.86 65.56 68.71 72.9  

F 59.54 56.54 44.06 59.5 61.26 61.63 2.89 

σF 3.06 5.36 6.31 3.61 3.26 3.53  

IEPA 

P 66.95 43.37 45.01 71.84 68.7 68.74  

R 83.98 97.04 95.27 79.37 83.48 83.86  

F 74.23 59.81 60.03 74.22 74.19 74.14 –0.05 

σF 6.0 3.73 5.07 5.93 5.61 5.67  

HPRD50 

P 61.44 68.25 40.75 66.27 58.72 58.93  

R 88.53 79.03 93.75 81.1 92.37 92.02  

F 71.11 70.15 55.73 70.16 71.28 70.99 0.24 

σF 9.45 10.91 11.98 9.38 9.19 8.75  

LLL 

P 75.84 72.08 55.47 80.57 80.65 75.96  

R 91.81 95.32 100 83.48 84.36 90.97  

F 82 80.72 70.15 81.34 80.99 81.36 –1.23 

σF 13.51 13.87 13.19 11.7 12.62 12.51  



   

 

   

   
 

   

   

 

   

   158 Z. Zhao et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.2.3 The effect of the unlabelled data size on performance 

Since the pre-training of DNN plays an important role and works in an unsupervised 
fashion, it is necessary to explore the effects of reinforcing pre-training with the 
introduction of more unlabelled data. The pre-training can be viewed as an unsupervised 
feature learning approach. When the neural network becomes deeper, the feature level 
becomes higher (Cai et al., 2013). So a large amount of unlabelled data is expected to 
contribute to the feature detector. To explore the effect of the unlabelled data set size on 
our method’s performance, the corresponding experiments are conducted. As discussed 
in the previous section, the initial size of the unlabelled data we used is 16,909 instances 
(achieved by removing the label information of the five PPI corpora), and we added 
additional unlabelled data of 16,000, 32,000, and 320,000 instances (obtained from 
downloaded Medline abstracts), respectively. The experiments are performed on all five 
PPI corpora with various network depths and the results are shown in Table 3. In most 
cases, the introduction of additional unlabelled data can improve the performance: when 
320,000 new instances are added, an average F-score improvement of about one 
percentage unit over all corpora can be achieved from network depth three to five. 
However, the performance improvements on these corpora are different. For example, 
the performance on HPRD50 keeps improving with the introduction of more unlabelled 
data, while those on other corpora may reach the peak before all the unlabelled data 
(320,000 instances) are added. This may be due to the different similarity between the 
unlabelled data and the PPI corpora. In fact, the properties among the five PPI corpora 
are quite different not only from the statistics but also from the entity types, interaction 
types, etc. (Pyysalo et al., 2008). For example, approximately 5% of interactions in the 
AImed corpus are self-interactions (a single protein interacting with itself), and 
essentially no self-interactions occur in the other corpora. 

Figure 6 Performance with different network depths. The horizontal axe represents the network 
depth and vertical axe for F-score (see online version for colours) 
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Table 3 Performance with different unlabelled data set sizes 
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In addition, HPRD50 annotates direct physical interactions, regulatory relations and 
physical modifications, while AImed has no specific types. According to Pyysalo et al. 
(2008), there is over 10% average PPI extraction performance difference between 
corpora. 

Instinctively, more similarly, the properties of the unlabelled data set are to those of a 
corpus, and more likely it will help improve the DNN’s performance on the corpus. The 
reason is that when the amount of the training data is increased, the training error 
converges to the generalisation error. In the extreme case, the training error is just the 
generalisation error when we trained on the complete data set in the world. Therefore, 
adding additional unlabelled data improves the generalisation capability of auto-encoder 
and this leads to better performance of DNN (Cai et al., 2013). From this point of view, it 
can be concluded that the additional unlabelled data may have the highest similarity with 
HPRD50, since its performance improves all the way with the introduction of more 
unlabelled data and its F-score value is boosted most among the five corpora. By 
contrast, in some cases, the introduction of more unlabelled data will no longer help 
improve the PPI extraction performance on the other corpora. 

3.2.4 Performance comparison with all-paths graph (APG) kernel approach 

In our method, we use the features similar to those used in APG (Airola et al., 2008). 
Therefore, the performance comparison with APG is made. The similarities and 
differences between these two methods are listed as follows:  

1 Both methods use the parsed graph information as features and assign larger weight 
(0.9) to the features in the shortest paths connecting two proteins. 

2 Both methods extract the linear order graph information and assign larger weight 
(0.9) to the features between the two proteins. 

3 The method of Airola et al. (2008) considers all the paths connecting two proteins 
but our method only uses the shortest path. 

4 Our method applies dimension compressing with PCA and by filtering low-
frequency features, while that of Airola et al. (2008) does not. 

5 The method of Airola et al. (2008) constructs the graph kernel, while our method 
uses the flat features only. 

Compared to APG, our features contain smaller chunks of information, as we consider 
only the shortest path connecting two proteins but APG uses all the paths. Our method 
also loses some information in dimension-reduction processes. In addition, APG is the 
kernel method, which can efficiently compute the similarity between structure data, such 
as a dependency graph or a syntactic parse tree, while ours uses the flat features only. It 
stands to reason that the performance of our method will be inferior to that of APG 
instinctively. However, as shown in Table 4, our DNN-4 model outperforms AGP on two 
‘toughest handling’ corpora, i.e., AImed and BioInfer. This verifies the effectiveness of 
our method on tough handling problems once again. 
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Table 4 Performance comparison with APG 

Corpus 
DNN-4 APG 

P R F σF P R F σF 

AImed 51.51 63.38 56.12 4.9 49.15 64.6 55.33 4.9 

BioInfer 55.66 68.71 61.26 3.3 53.33 70.14 59.96 2.4 

IEPA 68.7 83.48 74.19 5.6 70.57 82.21 74.99 5.1 

HPRD50 58.72 92.37 71.28 9.2 73.98 80.85 76.5 5.8 

LLL 80.65 84.39 80.99 12.6 79.88 88.23 82.66 11.1 

4 Conclusions 

In this paper, we present a deep learning-based approach to extract PPIs from biomedical 
literature. The approach can learn complex and abstract features at higher layers 
representation by greedy layer-wise training auto-encoders with large amount of 
unlabelled data. The unlabelled data, in real-world applications, is often much more 
abundant and cheaper compared to the labelled data.  

The experimental results show that our approach can achieve better performance than 
NN. In addition, performance comparison with APG also verifies the effectiveness of our 
approach. We also found that the appropriate increase of the network depth can improve 
the performance of DNN, since the network with larger DC can learn more complicated 
problems. Besides, in most cases, introducing more unlabelled data into the unsupervised 
training phase case can improve the performance. 

However, as the first attempt to introduce deep learning into the biomedical literature 
information extraction field, compared with the performance of deep learning in other 
areas, such as computer vision and speech recognition, there is still much room for 
improvement. For example, our original raw features are derived from the output of the 
NER system and Enju parser, which may lead to the error propagation of existing NLP 
systems and hinder the performance (Bach and Badaskar, 2007). Therefore, in the future, 
we will explore a word embedding-based deep learning method (Collobert et al., 2011; 
Bengio et al., 2003; Mikolov et al., 2013), since the word embeddings are learned 
automatically from large amounts of unlabelled data without using any NLP tools. In 
addition, our work focuses on the binary PPIs extraction from biomedical literature and 
biomedical event extraction (Ananiadou et al., 2010) can link pathways to literature 
evidence and aid pathway construction and enrichment (Dai et al., 2010). Therefore, we 
will introduce our DNN method into the biomedical event extraction task. 
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