Utilising key climate element variability for the prediction of future climate change using a support vector machine model
by Adamu Abubakar; Haruna Chiroma; Akram Zeki; Mueen Uddin
International Journal of Global Warming (IJGW), Vol. 9, No. 2, 2016

Abstract: This paper proposes a support vector machine (SVM) model to advance the prediction accuracy of global land-ocean temperature (GLOT), which is globally significant for understanding the future pattern of climate change. The GLOT dataset was collected from NASA's GLOT index (C) (anomaly with base: 1951-1980) for the period 1880 to 2013. We categorise the dataset by decades to describe the behaviour of the GLOT within those decades. The dataset was used to build an SVM Model to predict future values of the GLOT. The performance of the model was compared with a multilayer perceptron neural network (MLPNN) and validated statistically. The SVM was found to perform significantly better than the MLPNN in terms of mean square error and root mean square error, although computational times for the two models are statistically equal. The SVM model was used to project the GLOT from the pre-existing NASA's GLOT index (C) (anomaly with base: 1951-1980) for the next 20 years (2013-2033). The projection results of our study can be of value to policy makers, such as the intergovernmental organisations related to environmental studies, e.g., the intergovernmental panel on climate change (IPCC).

Online publication date: Sat, 27-Feb-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com