H nonlinear PID controller tuning based on simple constrained particle swarm optimisation
by Rochdi Bachir Bouiadjra; Mohamed Fayçal Khelfi
International Journal of Industrial and Systems Engineering (IJISE), Vol. 21, No. 4, 2015

Abstract: This paper deals with the application of a randomised optimisation method to obtain the optimum weights of a nonlinear PID gains. This method is based on a particle swarm optimisation (PSO) and is described as more speedy and more accurate optimisation methods. First, a general form of the H control law is given by solving the Hamilton-Jacobi-Isaacs partial differential equation. An analytic solution to this equation is described for the Euler-Lagrange Systems. Second, based on this solution and on the nonlinear PID control law resulting, it is shown how to use the optimisation method to adjust optimally the controller's weight ensuring a minimum L2-gain and thus disturbance attenuation. Third, the optimisation algorithm is used in the trajectory tracking and disturbance attenuation problem of a forth degree SCARA robot manipulator. The simulation results show the effectiveness of the nonlinear PID control law optimised by the PSO algorithm.

Online publication date: Wed, 28-Oct-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com