An efficient mutual distance bounding protocol over a binary symmetric noisy communication channel
by Hoda Jannati; Abolfazl Falahati
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Vol. 20, No. 1, 2015

Abstract: Distance bounding protocols have been suggested to protect an RFID communication system against relay attack. In such protocols, a verifier establishes an upper bound for the physical distance between a user and itself as well as authenticating the user. Recently, mutual distance bounding protocols in which both communication parties play not only as a user but also as a verifier have been proposed to be deployed for secure positioning protocols. In this paper, the performance of the existing mutual distance bounding protocols is analysed over a noisy communication channel. The analytic results show that these protocols provide a much higher rejection probability of a valid user due to channel errors than distance bounding protocols. Furthermore, a novel method is proposed to convert every distance bounding protocol into a mutual distance bounding protocol. Within this method, for each one of the two communication parties, the produced mutual distance bounding protocol provides the performance and security level exactly equal to those of its own associated distance bounding protocol at the same noisy environment, without transmitting any extra messages at the end of the protocol.

Online publication date: Mon, 14-Sep-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com