Probabilistic re-analysis of nonlinear systems when energy of excitation changes
by Mahdi Norouzi; Efstratios Nikolaidis
International Journal of Reliability and Safety (IJRS), Vol. 9, No. 1, 2015

Abstract: A reliability study of nonlinear mechanical systems under random dynamic loads often requires Monte Carlo simulation in the time domain with hundreds of thousands of replications. The uncertainties involved in design make such analyses necessary for various admissible loads, which can be impractical. The authors have already developed a methodology that reduces the computational cost of Monte Carlo simulation when the load is represented by a Power Spectral Density (PSD) function. This method is based on a probabilistic re-analysis, which uses results from a simulation for a single PSD to estimate the reliability for other admissible PSDs. However, the methodology was limited to PSDs with the same energy content. This paper proposes an approach to extend the applicability of the above method to cases in which the energy content of the PSD functions changes.

Online publication date: Tue, 01-Sep-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com