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Abstract: This work describes the design of an impulsive manoeuvres’ planner 
meant for onboard autonomous optimum formation flying reconfigurations in 
near-circular orbit. The whole variation of the relative orbit is stepwise 
achieved through intermediate configurations, so that passive safety and delta-v 
consumption minimisation are pursued. The description of the relative motion 
is accomplished in terms of relative orbital elements and the reconfiguration 
plan takes into account mean effects due to the Earth oblateness coefficient and 
differential drag. Manoeuvres consist of sets of triple tangential impulses and a 
single out-of-plane burn to establish each intermediate configuration. They are 
scheduled in time intervals compliant with the user-defined permissible time 
control windows. 
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1 Introduction 

Spacecraft formation-flying and on-orbit servicing missions require the capability to 
establish and reconfigure the relative motion of co-orbiting vehicles in a safe, accurate 
and fuel-efficient manner. Typical operational scenarios of such distributed space 
systems prescribe manoeuvring time constraints dictated by the satellite bus and payload 
needs, by available ground support and ground contact issues. This work addresses the 
design and development of a flexible manoeuvre planning framework for autonomous 
optimum formation reconfiguration over a given time interval including user-defined 
permissible control windows. 

Various control methods for spacecraft rendezvous have been presented in literature – 
continuous and discrete, numerical and analytical, for circular and eccentric orbits, using 
relative Cartesian coordinates and orbital elements. Continuous control strategies are 
usually employed during the final phases of a rendezvous since a forced motion profile is 
required, and/or when the spacecraft is equipped with a low-thrust actuation system. 
Impulsive control is generally preferred at far to mid inter-satellite separation ranges to 
simplify mission operations and planning and/or to avoid interfering with the payload 
instruments functioning. Among the proposed discrete strategies, Tillerson et al. (2002), 
and Tillerson and How (2002) propose fuel-optimal guidance and control strategies based 
on convex optimisation techniques: a linear programming problem is setup to minimise 
the weighted sum of the norm-1 of the control inputs. Nevertheless, the time 
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discretisation of the fast varying dynamics described in the local Cartesian frame, can 
lead to prohibitive computational loads for spaceborne microprocessors. In order to allow 
larger time steps, Larsson et al. (2006) apply this methodology making use of the 
Yamanaka-Ankersen state transition matrix (Yamanaka and Ankersen, 2002), though 
neglecting the modelling of J2. General limitations of this approach are represented by the 
limited predictability of the timing of control correction manoeuvres and the difficulty to 
introduce manoeuvres’ exclusion windows. 

Analytical impulsive control techniques are often based on the exploitation of the 
Gauss variational equations (GVE). Examples are provided by Schaub and Alfriend 
(2001), and Vaddi et al. (2005). Ichimura and Ichikawa (2008) introduce a 
parametrisation defined from the analytical solution of the Hill-Clohessy-Wiltshire 
(HCW) equations to develop an analytical open-time minimum fuel reconfiguration 
strategy. This prescribes three in-plane impulses to achieve optimal reconfigurations in 
the case that the aimed change in the size of the formation is greater than the change in 
the drift and enough transfer time is available. Starting from this open-loop profile, they 
designed a suboptimal feedback controller. 

The most recent flight demonstrations of autonomous formation control are 
represented by the experiments on the PRISMA mission (Bodin et al., 2012), among 
them the Spaceborne Autonomous Formation Flying Experiment (SAFE) (D’Amico  
et al., 2012) and by the TanDEM-X Autonomous Formation Flying (TAFF) system 
(Ardaens et al., 2011). These systems rely on practical and simple closed-form solutions 
of the GVE equations which can be expressed analytically and be efficiently embedded 
into spaceborne microprocessors. 

TAFF makes use of pairs of (anti-)along-track manoeuvres separated by half an 
orbital revolution for in-plane formation keeping only, whereas SAFE is able to exploit 
radial and cross-track pulses for enhanced in-plane and out-of-plane control respectively. 
The logic which triggers the execution of manoeuvres is based either on a fixed 
manoeuvre cycle (TAFF) or on the violation of predefined control windows defined 
about nominal relative orbital elements (ROEs) (SAFE). Although the necessary 
manoeuvres are autonomously planned and executed onboard based on the most recent 
estimates of the ROEs, the nominal or desired formation configurations (i.e., guidance) 
are still prescribed from ground through telecommands and thus with man-in-the-loop. 

This work builds on the state-of-the-art in an attempt to generalise the SAFE and 
TAFF algorithms in order to improve the autonomy (including guidance) and flexibility 
(including constraints) of flight-proven methodologies without sacrificing simplicity and 
determinism to the largest possible extent. The proposed methodology focuses on 
formations with an active chief satellite in near-circular orbit about an oblate Earth and 
perturbed by aerodynamic drag. Nevertheless, the approach is kept as general as possible 
to allow for future improvements in the perturbation modelling and/or extension to 
eccentric orbits. 

In contrast to previous flight systems which rely on GPS relative navigation, here 
observability issues related to angles-only navigation are taken into account to support 
far-range non-cooperative rendezvous scenarios as well. The main goal is to compute the 
guidance profile onboard as a sequence of intermediate desired formation configurations 
pursuing certain optimality criteria. This translates into an optimisation problem where an 
aimed final formation has to be acquired in a defined time period while maximising the 
satisfaction of the prescribed criteria. Operationally, the minimisation of the total delta-v 
consumption and the maximisation of the navigation system observability are sought. 
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This work presents the core algorithm embedded in the autonomous manoeuvre 
planner module for the autonomous vision approach navigation and target identification 
(AVANTI) experiment (Gaias et al., 2014a), schedule for execution within the DLR 
FireBird mission (Reile et al., 2013). AVANTI is intended to demonstrate vision-based 
non-cooperative autonomous approach and recede manoeuvring making use of  
angles-only measurements. Therefore, the active servicer satellite performs some 
proximity operations with respect to a picosatellite, previously released in-orbit through a 
deployment device. 

This paper is organised as follows. First of all, the overall concept of the planner is 
introduced. The central part of the paper deals with the mathematical description of the 
employed algorithms for the guidance and control problems. The objective of the 
guidance, addressed in Section 3, is to provide a set of intermediate relative orbits to be 
acquired at certain intermediate times (related to the schedule of the allowed manoeuvre 
windows) in order to achieve the final aimed relative state. The local control task 
discussed in Section 4, instead, deals with the problem of establishing any intermediate 
relative geometry in a limited and fixed time period. Before concluding, Section 6 
provides an overview of the whole planner implementation, whereas an example showing 
the functioning of the planner is provided and discussed in Section 7. 

2 Overall concept 

The objective of the generalised multi-impulsive manoeuvres controller is to provide the 
sequence of manoeuvres needed starting from an initial time to achieve a prescribed 
relative orbit at a given final time. Thus, the controller prototyped in this research 
delivers an open-loop manoeuvre profile that covers the whole reconfiguration’s horizon. 

In agreement and continuation of previous work conducted by the authors, ROEs are 
used to parametrise the relative dynamics. They consist of a set of six elements with an 
immediate geometrical meaning of the characteristics of the relative orbit that they 
represent. They are defined as: 
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α  (1) 

where a, e, i, ω, Ω, and M denote the classical Keplerian elements, and u = M + ω is the 
mean argument of latitude. The subscript ‘d’ labels the deputy spacecraft of the 
formation, which, in this work, plays the role of the manoeuvrable servicer satellite. In 
the sequel all absolute quantities refer to the servicer satellite, thus the subscript is 
dropped. The quantities δe = (δecosφ δesinφ)T and δi = (δicosθ δisinθ)T define the relative 
eccentricity and inclination vectors. Under the assumptions of the HCW equations 
(Clohessy and Wiltshire, 1960), their magnitudes δe and δi express the in-plane and  
out-of-plane amplitudes of the oscillations of the relative motion respectively. The phase 
angles φ and θ identify the relative perigee and relative ascending node of the relative 
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orbit. Therefore, δe and δi fully describe the orientation and the shape of the relative 
motion. The remaining ROEs, the relative semi-major axis δa and the relative mean 
longitude δλ provide the mean offsets in local radial and local along-track directions of 
the orbital frame respectively. When both the satellites belong to Keplerian orbits, only 
the element δλ varies with time according to: 

( )0 0 0( ) 1.5δλ t n t t δa δλ= − − +  (2) 

thus δa embodies the drift coefficient of the relative motion, n is the servicer mean 
angular motion, and ‘0’ labels the quantities at the initial time. The detailed description of 
the ROEs, together with the development and discussion of the model of the relative 
dynamics and its extension to include differential drag and secular effects due to the J2 
perturbation is given in D’Amico (2010). This topic is further addressed in Section 3. 

By letting P identifying the dimensional point in the ROE space (i.e., P(t) = aδα(t)), a 
reconfiguration from a certain initial relative orbit to an aimed final one can be defined as 
the transition P0 → PF over the finite time interval [t0, tF]. The main concept of the 
controller consists in splitting the reconfiguration problem into two layers: 

1 guidance, that is the computation of some (optimal with respect to a given criterion) 
intermediate configurations Pi to be reached at the given times ti, in order to achieve 
the final aimed PF. 

2 control, that is the local resolution of the ith problem of establishing any intermediate 
Pi in a limited (and specified) time horizon that ends at ti. 

The idea that motivates such a layered approach is to simplify the resolution of the 
problem by decoupling the geometry of the relative orbits from the computation of the 
manoeuvres to establish such motions. Thus, as seen by the guidance layer, the ROEs 
evolve according to the model of the dynamics until some discontinuities occur. These 
represent the global effect of the bunch of manoeuvres that would be needed to 
accomplish such jumps of ROEs. Therefore, if each manoeuvres set allows exactly 
achieving the corresponding intermediate state Pi, then the guidance-control decoupling 
introduces no error on the final orbit PF. At the same time, at the control level, the 
manoeuvres have to be computed pursuing the same optimality criterion employed by the 
guidance layer, in order to avoid worsening the quality of the solution. It is emphasised 
that, this approach allows immediately recognising un-safe or un-feasible configurations, 
since they correspond to Pi points in forbidden regions of the state space. Whenever the 
merit criterion of the planning problem can be written as function of the variations of 
ROEs, then the guidance output comes from the solution of an optimum problem where 
the variations of ROEs that have to occur over each allowed manoeuvre window are 
taken as control variables. 

On the other hand, the local problem focuses on the computation of the locations and 
the magnitudes of the manoeuvres that allow achieving an aimed variation of ROEs. At 
this step of the process, the dynamics can be assumed as Keplerian, thus the out-of-plane 
and in-plane motions are decoupled. The out-of-plane reconfiguration reduces to the 
deterministic problem of computing the cross-track thrust and its burn time to realise a 
given change in the relative inclination vector. The in-plane reconfiguration problem, 
instead, requires at least two burns in order to realise any given change in the four  
in-plane ROEs. This translates into an underdetermined system with six unknowns (i.e., 
time, radial and tangential delta-v magnitudes for each manoeuvre) in four equations. 
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Gaias and D’Amico (2014) show that two impulses reconfiguration schemes require a 
numerical solution method in order to realise any given set of in-plane ROEs variation. 
Fully analytical solution schemes exist when three impulses are used instead. Specifically 
these employ pure tangential manoeuvres that occur at half orbital period multiples of the 
mean argument of latitude equal to the phase angle of the total aimed variation of the 
relative eccentricity vector. This topic is further tackled in Section 4. 

Figure 1 provides a schematic description of the layered structure of the planner: the 
main tasks of each layer are specified. Concerning the interfaces to the controller, inputs 
consist of the absolute state of the servicer y0 (i.e., position and velocity in the inertial 
J2000 reference frame), the so far estimated set of ROEs P0 (both at the initial time t0), 
the aimed final orbit PF, and the final time tF. Time constraints of an operative scenario 
are represented by: time intervals in which it is not allowed manoeuvring, the minimum 
time from the generation of the manoeuvres profile to the first command to the thrusters, 
and the minimum time spacing between different manoeuvres to let the spacecraft being 
prepared with proper attitude and thrusters’ state. Other typical operational constraints are 
the minimum delta-v impulse, the maximum allowed magnitude of a delta-v, the 
minimum inter-satellite separations respectively perpendicular and aligned to the flight 
direction (related to passive safety), and, in case of vision-based rendezvous, target 
visibility constraints (D’Amico et al., 2013). Depending on the desired operative mode 
(see Section 2.1), the manoeuvre planner foresees a reconfiguration in only one step 
(minimum delta-v mode) or plans intermediate configurations delimited by the forbidden 
time intervals defined by the user (maximum observability mode). 

Figure 1 Structure of the manoeuvre planner (see online version for colours) 

 

2.1 Operative modes 

The lower bound of the delta-v expenditure to accomplish an in-plane formation 
reconfiguration is known (Eckstein, 1992; Ichimura and Ichikawa, 2008; Gaias and 
D’Amico, 2014): it requires to exploit only tangential burns. By using three impulses, an 
analytical solution exists for any set of aimed correction of in-plane ROEs. As  
explained in Gaias and D’Amico (2014), in the typical scenario of a rendezvous, this 
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triple-tangential manoeuvre solution is able to achieve the absolute minimum of the  
delta-v cost. With rendezvous scenario, in fact, it is meant to shrink the relative motion 
while approaching the target, aiming to a bounded final motion. This is the case in which 
the change in the shape of the formation (||Δδe||) is dominant with respect to the change 
in the generalised drift (Δδa*) since large relative mean longitude transfers occur over 
long time horizons. The actual computation of the manoeuvres is presented later in 
Section 4. Regarding the guidance layer, instead, if the planning criterion is to seek for 
the minimum delta-v, then no intermediate Pi should be introduced and manoeuvres 
should be placed in agreement with the scheme of Section 4. This objective is referred as 
minimum delta-v operative mode. 

Although this mode guarantees to spend the minimum delta-v consumption, from an 
operative point of view this approach presents some not practical aspects. First of all, 
when a servicer satellite approaches a non-cooperative target the errors in the estimated 
initial relative state P0 are large (D’Amico et al., 2013). Thus, it is typically necessary to 
update the manoeuvres’ profile as soon as the knowledge of the relative state is refined. 
Consequently, it is not convenient to perform large (due to the limited number of 
impulses) manoeuvres at the beginning of the rendezvous. Secondly, taking into account 
the effects of the manoeuvre execution errors, it is not efficient to accomplish a 
reconfiguration thorough few large manoeuvres. On the other hand, if the relative 
navigation is performed via angles-only measurements the most fruitful way to improve 
the observability properties of the system is to perform some manoeuvres; the more 
intense the manoeuvre activity the more observable the relative navigation problem 
(Gaias et al., 2014b). To this end, it is not convenient to spread the few available 
impulses over wide time horizons. In an attempt to overcome these practical issues while 
still pursuing to minimise the fuel consumption during the rendezvous, a maximum 
observability operative mode is designed. 

According to it, the rendezvous is accomplished in a step-wise manner through a 
user-defined number of intermediate configurations to be reached at certain times ti that 
are the end time of the windows in which it is allowed manoeuvring (see [t0,i, ti] in  
Figure 1). The ROE sets at such intermediate times are computed so that the total delta-v 
is minimised (see Section 3). Clearly, having introduced intermediate Pi the maximum 
observability mode consumes more delta-v than the minimum delta-v one. Nevertheless, 
the user can now intensify the occurrence of manoeuvres when convenient due to 
practical motivations. Therefore, the input that lists the forbidden time intervals can also 
be used to allow a sort of control action of the user over the manoeuvres’ profile. 
Moreover, the introduction of intermediate configurations has the positive benefit to 
strengthen the supervision over safety during the approach. To this aim, it is simply 
needed to verify, and eventually to correct, that the Pi output by the planner have an 
adequate relative eccentricity and inclination vectors separation (D’Amico and 
Montenbruck, 2006). 

According to the structure of the manoeuvre planner depicted in Figure 1, both the 
operative modes make use of the same local control functionality. In other words, if the 
forbidden time intervals input is left empty, the observability mode coincides with the 
minimum delta-v one. Nevertheless, at implementation level, within observability mode 
no a-posteriori check on the feasibility of the manoeuvres’ location has to be performed,  
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as all the reconfiguration time horizon is free from forbidden regions (see Section 6.3). A 
further synergy between the two operative modes is provided by the typology of 
manoeuvres employed. In Gaias et al. (2014b), in fact, it was shown that once fixed the 
magnitude of a manoeuvre, tangential burns are to be preferred with respect to the radial 
ones in terms of effects on the observability of the relative navigation problem. This is 
due to the fact that the drift translates into a more distinguishable pattern of one of the 
two measured angles with respect to the trend before the manoeuvre. 

3 The planning problem 

This section deals with the solution of the problem of finding m intermediate relative 
orbits Pi to be reached at the times ti in order to perform the reconfiguration P0 → PF 
while using the minimum possible delta-v. According to the employed solution method, 
all the intermediate times will be exploited. 

The delta-v cost of the plan can be expressed by the following convex form: 

( ) ( )2 22 2
plan 1 1 1 1

|| || ( ) ( ) || ||
m m m m

i ii ii i i i
J δ δa δλ δ

= = = =
= Δ + Δ + Δ + Δ∑ ∑ ∑ ∑i e  (3) 

where the ith variations of ROEs (Δδα)i that occur at ti are assumed as control variables. 
Within the hypothesis of linearised relative motion, the closed form solution of the mean 
relative motion in the presence of J2 Earth oblateness effects is presented in D’Amico 
(2010, p.34). The interaction between the satellites and the upper layers of the 
atmosphere is modelled through a differential drag, which produces an off-set in the 
along-track direction proportional to the square of the elapsed time, when assuming the 
atmospheric density constant within few kilometres. Taking into account the property of 
the relative dynamics expressed by equation (2), the effect of the differential drag is 
introduced in the linear model of the relative dynamics as a linear variation of the relative 
semi-major axis with respect to the elapsed time D’Amico (2010, p.37): 

21δa Bρv
n

= − Δ  (4) 

where ΔB is the difference of the ballistic coefficients of the satellites and ρ and v are 
respectively the atmospheric density and the deputy velocity with respect to the 
atmosphere. The correspondent complete state transition matrix can be written 
augmenting the ROE state of equation (1) with :δa  

,0
F 0
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δ δ
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⎝ ⎠ ⎝ ⎠α α
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where the subscripts indicate the transition from the initial to the final time, according to: 
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where γ is the following function of the J2 coefficient, the orbit altitude, the Earth radius 
R⊕, and an eccentricity factor 21 :η e= −  
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2

2 42
RJγ

a η
⊕=  (7) 

At the guidance level the evolution P0 → PF is given by: 

F ,0 0 ,1 1 ,( ) ( )F F F m ma δ a δ= + Δ + + ΔP P α αΦ Φ Φ  (8) 

Taking into account the structures of equation (3) and equation (6), the optimum problem 
of minimising Jplan while satisfying the end conditions equation (8), consists in two 
disjointed subproblems in the subsets ( , , , , )x yδa δa δλ δi δiΔ Δ Δ Δ Δ  and ( , ).x yδe δeΔ Δ  

They can be solved in the same way by rearranging equation (8) as follows: 
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where the vectors (x1, ···, xp) on turn assume the meaning of ( ,  ,  ,a δa a δa a δλΔ Δ Δ  aΔδix, 
aΔδiy) and (aΔδex, aΔδey). As long as equation (4) is constant over a reconfiguration, the 
equations in δaΔ  do not bring any information. Thus, the effect of the differential drag is 
condensed in b0, that is in the total change of the δa and δλ components, in agreement 
with D’Amico (2010). 

The remaining equations constitute the two subproblems with p = 4 and p = 2 
respectively. As a first step, equation (8) is used to express the mth ROE variations (i.e., 
xj,m) as function of the first m – 1 referred as .jx  By substituting them back in equation 
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(3), also the merit function depends only on these m – 1 jumps. The necessary conditions 
for optimality are: 

plan T
1 10 1, ,m

j

J
j p× −

∂
= =

∂x
 (10) 

Due to the forms of the merit function and of the variables’ domain, these are also the 
sufficient conditions to identify the unique minimum of Jplan. Moreover, the optimal 
solution reduces to solve a linear system in the problem’s variables. This means that the 
particular choice of the parametrisation allows solving the optimum problem for the 
dynamical system as a geometrical problem, whose solution is the most convenient 
succession of reachable points Pi in the ROE space. 

The transition matrix of the δa/δλ/δi subproblem satisfies the following property: 

( ) ( ) ( ), , ,j i i k j kt t t t t t⋅ =Φ Φ Φ  (11) 

thus, the solution of equation (10) is given by: 
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The matrix quantities are T T T,  ,  ,= = =A aa C cc D ca  and the so far unmentioned 
notation is defined as: 

1
1 1

1 1 1
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1
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m

m m m
m

F m

t t
b

b
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− ×
− × ×
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⎝ ⎠⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

b
a b c b a  (13) 

where •  labels vectors of dimension m – 1. 
The time composition of state transition matrix of the relative eccentricity vector 

subproblem is instead: 

( ) ( ) ( ) ( )( )
( )

2
2 2, , ,

,

δ δ δ
j i i k j k j i i k

δ
j k

t t t t t t φ t t t t

t t
×⋅ = − − − ⋅e e e

e

IΦ Φ Φ

Φ
 (14) 

In order to lead back δe0 → δeF to the form of equation (9), the following approximation 
is introduced: 



   

 

   

   
 

   

   

 

   

   78 G. Gaias et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

( ) ( ) ( ), , ,δ δ δ
h j j k h kt t t t t t⋅ ≈e e eΦ Φ Φ  (15) 

coherently all the matrices that compare in equation (9), with exception of F, ,δ
m
eΦ  become 

of the type defined in equation (14). This approximation starts introducing some errors 
from the third manoeuvre window on. Terms of 2 2φ tΔ  are neglected with respect to the 
unit diagonal, and terms 3 3φ tΔ  are neglected in the extra-diagonal components, since 

310φ t −Δ ≈  for a Sun-synchronous, 500 km high orbit and Δt of few orbital periods. 
By keeping ,a  modifying ,φ=b b  and introducing these further vectors: 
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the solution of the optimum problem becomes: 
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where T T,  ,= =F ff G gg  and T=H fg  with: 

( ) ( )2 2

1 1
1 1m m

m m
b b

b b
= − + = −

+ +
f r b g b r  (18) 

To conclude this section, the intermediate relative configurations output by the planning 
problem are computed from equation (8), once obtained the optimal variations of ROEs 
from equations (12) and (17). 

It is emphasised that, due to the structure of the state transition matrix, one could 
solve this planning problem via a geometrical method which stepwise covers the aimed 
total variation of ROEs through corrections proportional to the covered time portion. The 
result obtained would be the same as long as Jplan describes the delta-v in terms of the size 
of the ROE total jump. Nevertheless, the proposed method offers a rigorous approach that 
shows that such solution guarantees the minimum delta-v, being as well suitable for an 
automated implementation. Moreover, this approach provides a working frame ready to 
support possible improvements, as for example, introducing constraints directly at the 
planning level, as penalties function of the variations of ROE (Δδα)i. 

Finally, thanks to the exploitation of the state transition matrix of equation (6), this 
approach generalises the results of Eckstein (1992), and Ichimura and Ichikawa (2008), 
including the effects of J2 and differential drag perturbations. 
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4 The local control problem 

This section addresses the problem to compute magnitude and location of the manoeuvres 
required to achieve a certain ROE variation over a finite time frame. 

The local control problem solves a fixed-time, fixed-end-condition problem. Type 
and number of impulses are respectively fixed by minimum delta-v considerations and by 
the existence of an analytical solution, accordingly to the design directions provided in 
Gaias and D’Amico (2014). 

At each local problem, the manoeuvres shall accomplish the following variation of 
ROEs over the time span [t0i, ti]: 

,0 0,i i i ia δ aδ aδΔ = −α α αΦ  (19) 

where the variation takes into account the whole effect of the orbit perturbations 
throughout the [t0i, ti] interval of time. 

To compute the manoeuvres, instead, the hypothesis of Keplerian motion is fully 
acceptable, thus neglecting the differential perturbations effect related to the changes in 
the relative orbits operated by the manoeuvres. These in fact determine negligible 
variations in the mean arguments of latitude of the manoeuvres. 

Within the Keplerian motion, the out-of-plane correction is decoupled from the in-
plane one. It is obtained by a single manoeuvre placed either at uoop or at uoop + π 
according to: 

oop arctan withy
n

x

δi
u δv na δ

δi
⎛ ⎞Δ

= = Δ⎜ ⎟Δ⎝ ⎠
i  (20) 

where the sign of δvn is chosen so that the last two end-conditions of equation (19) are 
satisfied. 

The relations between an instantaneous velocity increment in the Hill’s orbital frame 
and the consequent change of ROEs are obtained from the inversion of the adopted linear 
model. As explained in Gaias and D’Amico (2014), a minimum of two manoeuvres are 
required to meet a whatever in-plane end-conditions’ set. Thus, by assuming as problem 
variables the magnitudes and locations of such manoeuvres, the local control in-plane 
subproblem to satisfy equation (19) is underdetermined. As long as we are interested in 
solutions that minimise the delta-v consumption, the size of the solution space can be 
reduced by employing only tangential burns, since they allow consuming less delta-v 
while affecting all the in-plane ROE terms, either instantaneously or within a certain 
timespan. On the one hand, if only two tangential burns were used, it would not be 
always possible to satisfy all the possible end-conditions’ sets. On the other hand, by 
employing three tangential impulses an analytical solution of equation (19) always exists, 
upon the condition of performing such manoeuvres at integer half orbital period multiples 
of a fixed mean argument of latitude. In particular the satisfaction of equation (19) 
implies that such required location is exactly the phase angle of the aimed variation of the 
relative eccentricity vector: 

ip 1 2 3arctan , 1...3y
j j

x

δe
u u u k π j k k k

δe
Δ⎛ ⎞= = + = < <⎜ ⎟Δ⎝ ⎠

 (21) 



   

 

   

   
 

   

   

 

   

   80 G. Gaias et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

In the limited time horizon of each control window, if lasting more than one and a half 
orbital periods, there exist a finite number of possible solutions, depending on the values 
assumed by kj. The correspondent delta-v quantities are computed according to  
Tables 1 and 2. There the following notation is adopted: 

T
ip

ip1 ip2 ip3

( , , , )

i i i

a δ A L E F
q u u p u u l u u
Δ =

= − = − = −

α
 (22) 

where ui represents the end-time limit ti of the control window. The implementation logic 
to select one solution among all these possible ones is explained in Section 6.3. 
Table 1 Feasible solution families depending on the aimed end-conditions 

Aimed end-conditions 
 

Choice of kj 
 

4
bA gBδv

b
+

=  

 B b Signs + – –, – – +, – + – + – +, + + –, – + + 

[0, / 2)u π∈  E cosu   sign(cos uipj)  g = 1 g = –1 

/ 2u π=  F sinu   sign(sin uipj)    

[ / 2, )u π π∈  E | cos |u   sign(cos uipj)  g = –1 g = 1 

Table 2 All possible delta-v values for the triple-tangential fixed u  solution scheme, once 
derived Signs and g from Table 1 

Signs δv  D Remaining delta-v expressions 

+ – – δv1 12b(p – l) δv2 = – (4bL + 3g(q – l)B + 3b(q + l)A) / D 
– + +   δv3 = + (4bL + 3g(q – p)B + 3b(q + p)A) / D 
– – +  δv3 12b(q – p) δv1 = – (4bL − 3g(p – l)B + 3b(p + l)A) / D 
+ + –   δv2 = + (4bL − 3g(q – l)B + 3b(q + l)A) / D 
– + – δv2 12b(q – l) δv1 = – (4bL + 3g(p – l)B + 3b(p + l)A) / D 
+ – +   δv3 = + (4bL – 3g(q – p)B + 3b(q + p)A) / D 

5 Safety concept 

This section focuses on the safety (i.e., collision avoidance) of the relative orbit 
prescribed by the manoeuvre planner. Since the presented algorithm is meant for onboard 
autonomous applications, the passive safety concept, achieved by keeping a certain 
minimum intersatellite separation in the radial-cross-track plane, is adopted. Regarding 
the ROE framework, for almost no drifting relative orbits, passive safety is related to the 
δe and δi magnitudes and to the angular phasing φ = φ – θ of the relative eccentricity and 
inclination vectors (D’Amico and Montenbruck, 2006). Whereas, a not null relative  
semi-major axis maps into a shift in the radial local direction. 

By recalling the geometrical representation of the ROEs in the δe and δi planes, let us 
focus on the behaviour of the relative eccentricity and inclination vectors determined by 
the functioning of the local control and planning units. 
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At the local level, the single out-of-plane manoeuvre moves the relative inclination 
vector directly from its starting (i.e., δi0,i) to the final place (i.e., δiF,i) prescribed for the ith 
reconfiguration. This is depicted in the left view of Figure 2. In the meantime, the relative 
eccentricity vector covers the aimed jump in three steps, displaced along the direction of 
Δδei vector (see the right part of Figure 2). If an optimal solution is available, all the 
locations are contained in the Δδei = δeF,i – δe0,i segment. On the contrary, if the change 
in the shape of the orbit is not the dominant effect of the ith reconfiguration or if the 
control window is not lasting enough to support an optimal scheme, at least an 
intermediate relative eccentricity vector location resides outside the segment Δδei. 
However, by selecting the minimum delta-v option the length of the realised total relative 
eccentricity vector variation is the minimum possible obtainable, thus points would be 
not spread too far from each other (Gaias and D’Amico, 2014). 

At the planning level, equation (3) entails selecting intermediate Pi so that the total 
length to reach PF is minimised. Thus, the obtained configurations lay as most as possible 
aligned to the PF – P0 line. Therefore, their projections on the unit-circle in the δe/δi plane 
condense in a limited portion of the space. 

Taking into account all these considerations, whenever a safe PF (i.e., φF ≈ kπ and 
)k ∈  is reached from a P0 with similar characteristics (i.e., φ0 ≈ φF) than the 

reconfiguration is passively safe during the whole duration of the reconfiguration, 
provided that the drifts are small enough (i.e., the reconfiguration takes place over a long 
enough time horizon). On the other hand, in the specific scenario of a far-range 
rendezvous to a non-cooperative target starting from an unsafe φ0, a double stage strategy 
can be exploited being PF a design parameter of the reconfiguration. First, φ0 can be 
corrected when the along-track separation is considerable, by commanding a safe 
temporary final configuration. Subsequently, the approach can safely start towards an 
aimed PF closer to the target. 

Figure 2 Geometrical representation of variations of relative inclination and eccentricity vectors, 
respectively in the δi and δe planes 
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6 Overview of the planner’s implementation 

This section summarises how the algorithms described so far are implemented into the 
manoeuvre planner, and provides a broad introduction of the remaining tasks appearing 
in the architecture of Figure 1. 

6.1 Scheduling: Time Constraints Handling 

According to the planner interfaces shown in Figure 1, among the initial inputs, the user 
provides a list of times limiting periods in which it is not possible to schedule 
manoeuvres due to possible requirements of the space segment (see Section 2). 
Moreover, when in maximum observability mode, the user can define time barriers before 
which some manoeuvres shall occur (see Section 2.1). These pieces of information are 
handled by a scheduling functionality to determine the initial and final times of each 
interval in which it is allowed performing manoeuvres. 

The basic reason of accomplishing the scheduling task at first is related to the fact 
that this planner is meant for autonomous onboard use. Therefore, from a computational 
point of view, it is simpler and more deterministic to directly search for a solution of the 
constrained problem instead of verifying and restoring the feasibility a posteriori. In the 
meantime, the complexity of the constrained problem is mitigated by the fact that, in 
realistic operational scenarios, the occurrence of manoeuvre exclusion windows affects a 
minimal part of the available time frame. Moreover, the planner under discussion exploits 
analytically derived manoeuvring schemes. 

Concerning the implementation logic, in the case that any free time interval among 
two forbidden regions is shorter than two orbital periods, such portion of the schedule is 
merged to the bordering forbidden part. That is motivated from how the local control 
function operates: the fastest in-plane reconfiguration exploits a train of three  
half-orbital-period spaced impulses; the out-of-plane manoeuvre has to be distant enough 
from each of them to fulfil the manoeuvres’ spacing time constraints. Finally, a forbidden 
time region is also automatically placed after each re-plan time t0 to prevent scheduling 
early manoeuvres that would violate the time to first manoeuvre constraint. 

6.2 Plan generation 

By recalling Section 2.1, when in minimum delta-v mode the planning problem can be 
skip, since starting and aimed ROE sets are directly forwarded to the local control 
module. If in maximum observability mode, instead, the list of end-times of the control 
windows outputted by the scheduler is used by the planning unit. It computes the 
correspondent intermediate configurations Pi that have to be established in order to 
achieve the final ROE state at the final reconfiguration time in a delta-v minimum way, 
according to the algorithm described in Section 3. 

6.3 Local control and manoeuvres’ placement 

The effective placement of the manoeuvres within the available time frame embodies the 
concluding action of the planner. This is repeated for each intermediate reconfiguration, 
since it finalises the local control problem activity. Regarding the implementation, at first 
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the in-plane manoeuvres’ sequence is allocated. Consequently, the remaining out-of-
plane burn is placed in accordance with the manoeuvres’ spacing time constraints. 

The placement of the in-plane manoeuvres is performed by selecting one manoeuvre 
scheme among the multiple available possibilities. As explained in Section 4, in fact, 
when an in-plane reconfiguration is performed through three tangential impulses multiple 
solutions are feasible, depending on the effective spacing between the burns (see  
Tables 1 and 2). The logic to perform such choice is presented in Figure 3. According to 
it, all schemes of the limited set of feasible solutions are sequentially processed: it is 
selected the option that successfully terminates that logical tree. In minimum delta-v 
mode a feasibility check (gray dashed box) has to be performed prior to the remaining 
evaluations. Only solutions whose manoeuvres are located in constraints-free regions can 
proceed. Further, minimum delta-v options are preferred. In case of multiple equal  
delta-v options it is preferred the solution that is characterised by a wider spacing 
between two of the three burns. This is motivated by the preference to leave more 
freedom to the remaining actions of the planner. Thus, by-product of the process is the 
end-time of the time interval dedicated to the out-of-plane burn ti,oop. It is emphasised 
that, a solution is always found due to the fact that the scheduler does not allow having 
manoeuvring windows shorter than two orbital periods. 

Figure 3 Logic of the in-plane manoeuvres’ scheme selection (see online version for colours) 

 

In conclusion, for each intermediate reconfiguration the out-of-plane manoeuvre is 
scheduled during the orbital period time that ends at ti,oop, according to equation (20). 
Nevertheless, when the whole intermediate reconfiguration horizon is particularly short, 
it can happen that the required uoop lays very close to ,u  thus violating the manoeuvres’ 
spacing time constraint. In this case, the planner merges the out-of-plane burn to a close 
in-plane manoeuvre and, at that argument of latitude, equation (20) is not respected 
anymore. The inconsistency is corrected by applying a second minor out-of-plane 
correction to another in-plane manoeuvre of the scheme to satisfy: 

( ) ( )
( ) ( )

oop,1 ip,i oop,2 ip,j

oop,1 ip,i oop,2 ip,j

cos cos

sin sin
x

y

na δi δv u δv u

na δi δv u δv u

⎧ Δ = +⎪
⎨

Δ = +⎪⎩
 (23) 
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being i and j the indexes of two selected in-plane manoeuvres of the scheme. Therefore, 
the resulting control sequence consists of three burns: two of them present components 
both in tangential and normal directions. 

7 Example of a rendezvous 

This section is intended to show the functioning of the manoeuvre planner. To this end, a 
representative test case of a rendezvous is defined and discussed. 

The considered scenario involves a servicer satellite that has to approach a target by 
moving from an initial separation of circa 10 km to a final one of 3 km. The details of the 
initial and final conditions in ROEs are presented in Table 3: PF is a bounded relative 
orbit with anti/parallel δe and δi. The initial relative orbit P0 is characterised by a bigger 
size (δe and δi magnitudes) than the aimed final one. Moreover, it presents a not exact 
anti/parallel configuration due to not null x components of both relative eccentricity and 
inclination vectors. 

The generation of the plan occurs at a time t0 in which the mean argument of latitude 
of the servicer is 0 degrees. At that time, the servicer satellite is on a circular orbit  
500 km high with 98 degrees of inclination. The approach has to be covered in 18 orbital 
periods that is approximately in 28 hours. At the height of the servicer spacecraft, the 
atmospheric density is equal to 1 g/km3 for mean solar flux conditions [Harris Priester 
model (Montenbruck and Gill, 2001)] and the relative velocity is circa 7.6 km/s. In the 
example treated, it is assumed that the target has a ballistic coefficient B of 0.01 m2/kg 
and the differential ballistic coefficient ΔB/B is 2%. 

Let us consider that for any reason the user commands to the spacecraft to avoid 
manoeuvring respectively from 5 to 7 and from 12 to 14 orbits after the plan generation 
time that occurs at orbit 1. Moreover, in view of the eventual utilisation of the maximum 
observability mode, he commands that a reconfiguration shall occur within the first four 
orbital periods starting from t0. The scheduling function merges this last requirement with 
the first manoeuvre exclusion window, since the time comprised between these two 
events is shorter than two orbital periods. As a result, the rendezvous horizon presents 
two time slots in which no manoeuvres can be scheduled, corresponding to the regions 
shadowed in gray in Figure 4. 

In the example treated both time to first manoeuvre and time spacing between 
manoeuvres are set equal to 10 minutes. 

When the planner is set to minimum delta-v mode, the manoeuvres’ profile reported 
in the left view of Figure 4 is generated. In particular, the reconfiguration happens in one 
step over the complete time horizon thus requiring four manoeuvres. Since the most 
relevant orbit change is in ||Δδe||, the optimality criterion based on the lower bound of the 
delta-v is applicable. The schemes of Tables 1 and 2 generate 216 feasible optima 
solutions that have to be pruned through the logic of Figure 3. It is emphasised that this 
approach constitutes a generalisation of the solution proposed in Eckstein (1992) to cope 
with the presence of time constraints. Instead of moving the mean argument of latitude of 
a manoeuvre scheduled in a forbidden time region, though achieving a sub-optimal result, 
here alternative optimal and feasible manoeuvring schemes are systematically searched. 
In conclusion, the total commanded delta-v amounts to circa 0.20 m/s, and corresponds to 
the absolute minimum cost for this rendezvous scenario. 
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The right view of Figure 4 shows the manoeuvres’ plan generated by the planner 
when operating in the maximum observability mode. There the intermediate 
configurations P1 and P2 of Table 3 are to be achieved respectively within 4 and 12 
orbital periods after t0. According to the required variations of ROEs, for each of these 
three reconfigurations ||Δδe|| is not the dominant change to be achieved. Hence, the local 
control can accomplish only suboptimal solutions. Among the multiple available 
solutions, the best ones (more convenient in terms of delta-v) have been selected 
according to the logic depicted in Figure 3. As a result, tangential (green) and normal 
(blue) manoeuvres are automatically scheduled, in agreement with manoeuvring spacing 
constraints. The total realised delta-v amounts to circa 0.217 m/s; as expected it is slightly 
higher than in the previous case. 
Table 3 Example’s scenario and intermediate configurations 

Input Intermediate aδα [m] 
P0  5 10,000 –50 –250 –30 200 
 P1 54.6 9,814.2 –34.1 –199.3 –22.1 166.7 
 P2 48.1 5,714.2 –19.0 –149.0 –11.9 132.9 
PF  0 3,000 0 –100 0 100 

Both the top views of Figure 4 focus on the δe and δi vectors configurations during the 
rendezvous. In particular, the relative eccentricity (marked with squares) and the relative 
inclination (marked with circles) unit vectors achieved after each manoeuvre are shown. 
The later the manoeuvre the lighter the colour of the marker. In agreement with the 
employed algorithm, the safe anti/parallel configuration is kept during the approach. 
Moreover the values of δe and δi together with the drift magnitudes aδa, shown in  
Figure 5 for the maximum observability solution, allow the relative trajectory being 
passive safe throughout the approach. 

Figure 4 manoeuvres’ plan in both the operative modes for the rendezvous of Table 3 (see online 
version for colours) 

 

Finally, Figure 5 focuses on the behaviour over time of the ROEs during the rendezvous 
obtained in the maximum observability mode. Since we are focusing on a qualitative 
analysis and not on an accurate estimate of the control performance, the ROEs are simply 
propagated making use of the analytical model discussed in Section 3. Manoeuvres are 
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introduced as instantaneous ROE discontinuities at the proper mean arguments of 
latitude. 

The left view of Figure 5 reports the intermediate δe and δi locations which, as 
expected, distribute around the directions of their respective total aimed variations. The 
right view, instead, shows how the inter-satellite separation reduction is obtained by 
establishing a certain relative semi-major axis at the beginning of the plan. Such drift is 
cancelled in proximity of the time at which the aimed final mean along-track separation 
aδλF is reached. This behaviour is determined by the attempt to employ the minimum 
possible delta-v; hence, exploiting at maximum the available time horizon. In realistic 
applications this aspect shall be mitigated with a proper strategy of setting PF, as the 
chain of navigation and control errors can lead to an overshooting in the along-track 
direction. 

The rendezvous just discussed provides an example of the manoeuvres’ plan 
generated by the planner, depending on the operative mode. In order to assess the overall 
control accuracy, instead, the complete chain of relative navigation filter, manoeuvre 
planner, and thrusters’ system has to be considered. Regarding the implementation 
envisioned for AVANTI, the manoeuvres’ plan is updated as soon as the first  
sub-reconfiguration is achieved (i.e., at latest after having performed the first four 
manoeuvres of a plan). In this way, in fact, the remaining portion of the manoeuvres’ plan 
is refined taking into account a more recent estimation of the relative state and the effect 
of the execution errors of the manoeuvres already performed. 

Figure 5 Rendezvous propagation in the ROE space (see online version for colours) 

 

8 Conclusions 

This work addresses the design of a manoeuvres’ planner for large reconfigurations of 
satellites formation flying in near-circular orbit. The presented algorithms constitute the 
core part of the manoeuvre planner module developed for the AVANTI experiment, to be 
conducted in the frame of the DLR FireBird mission. 

Simplicity and determinism constituted driver features in the algorithm development. 
This turned out into the exploitation of the geometrical meaning of the ROEs and of the 
existence of analytical solutions for accomplishing stepwise reconfigurations in a delta-v 
minimum manner. Despite this, the planner is able to meet important operational 
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requirements like passive safety during a rendezvous. Moreover, it offers the capability to 
introduce time constraints that prevent executing manoeuvres in certain portions of the 
schedule. 
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