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Abstract: The importance of having mature software development 
methodologies and tools for the increasingly popular pervasive systems cannot 
be understated. Focusing on system architectures, we previously conducted a 
thorough review of over 50 state of the art architectures related to pervasive 
systems. From the review, we elicited a set of major features that should be 
supported in pervasive systems, along with best practice architectures for 
designing such features. We then detailed a methodology, through which 
designers of new pervasive systems can select a set of desired features and 
generate a baseline architecture for their system. In this article, we evaluate our 
methodology with an empirical study that compares generated architectures 
with ones designed by subject matter experts with sufficient experience in the 
domain. We used different evaluation suites and measurement techniques in 
our comparisons. Results show that our automatically generated architectures 
are very comparable with, and in many cases of higher quality than, the 
architectures designed by subject matter experts. 
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1 Introduction 

New breeds of pervasive systems are highly characterised by their extreme innovation 
and ability to sense and react to the surrounding environments in a way that relieves users 
from interacting with software using unnecessary jargon. According to Mark Weiser, 
“The most profound technologies are those that disappear. They weave themselves into 
the fabric of everyday life until they are indistinguishable from it” (Weiser, 1991). Such 
systems are characterised by their significant heterogeneity and the presence of highly 
mobile devices with limited resources (Yared and Défago, 2003). Examples of resources 
could be battery lifetime, processing power and storage allocation. They are also 
characterised by context awareness, intelligent interaction and invisibility as indicated in 
Ferscha (2003). 

Such complex systems continuously challenge software developers with 
complications of design and implementation. Unfortunately, such challenge is not met 
with a proportional advancement in the software engineering methodologies that are used 
to develop these kinds of applications. In fact, much of the utilised development activities 
for this purpose are based on the reuse of methodologies that have been used in remotely 
similar types of systems. Eventually, and due to this lack of maturity in development 
methodologies, emerging applications are not scalable, very expensive, difficult to 
maintain and of questionable quality. Software development methodologies for this 
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domain have yet to reach a maturity level that facilitates the development of such 
systems. Software product line engineering (SPLE) is an example of such methodologies. 

Utilising software product line (SPL) concepts in the domain of pervasive systems 
can ultimately increase the productivity of pervasive systems development and may 
imminently result in a shorter time-to-market. SPL is divided into domain engineering, 
application engineering and variability and commonality management as described in 
Pohl et al. (2005), Hunt (2006) and Bragança and Machado (2005). Domain engineering 
is used for building the core assets to be used in the product line, while application 
engineering is used for building the final applications utilising the previously developed 
assets. Variability and commonality management, on the other hand, are used for 
configuring the SPL and adding or enhancing the core assets. Frank and others described 
in more details the SPL life cycle in Van der Liden et al. (2007). Many software 
engineering approaches have been coupled with SPL approaches to design a reference 
architecture. Examples of such approaches are aspect oriented programming (Young, 
2005), feature-oriented model driven development (Gonzalez, 2007), model driven 
architectures (Machado et al., 2005), component-based architectures (Heineman and 
Councill, 2001) and others. 

Investigation of related work in this domain led us to the conclusion that a rather 
modest effort was put into the development of product lines for pervasive systems. In an 
effort to contribute to this area, we attempted at first to specify a reference architecture to 
be used in developing pervasive systems (Hamza and Aly, 2010). However, initial efforts 
made in this area demonstrated that a reference architecture of this kind is significantly 
large and complex. As an alternative, the researchers herein adopted a bottom up 
approach in which architects can select from a set of desired features for a given 
pervasive system, and ultimately, generate a system architecture comparable in quality to 
those created by subject matter experts (Hamza et al., 2011). 

In this article, we present an empirical evaluation of our methodology of generating 
architectures for pervasive systems. The objective of the evaluation is to assess whether 
or not our methodology generates architectures comparable to those created by subject 
matter experts. Two architecture evaluation frameworks were used; namely Narasimhan 
and Hendradjaya’s (2007) evaluation suite, and Zayaraz and Thambidurai’s (2008) 
measurement techniques. The evaluation was carried in an experiment that involved 
designing architectures for three different pervasive systems. Results show that our 
generated architectures are comparable to, and in a lot of cases of higher quality than 
manually defined ones. 

The remainder of this article is structured as follows: in Section 2, we discuss the 
pervasive systems categorisation and feature models created. In Section 3, we highlight 
the related work in this area; an overview of our architecture generation methodology is 
given in Section 4; Section 5 details the case studies used for generating the architectures 
of the pervasive systems. Section 7 shows the design of our architecture evaluation 
experiment; the results of the experiment are discussed in Section 8; Section 9 outlines 
future works; finally, the conclusion is given in Section 10. 

2 Pervasive systems categorisation and feature model 

Pervasive systems are featured by ubiquitous access, context awareness, intelligent 
interaction and natural interaction. Ubiquitous access refers to sensors and actuators in 
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the pervasive environment. Context awareness answers the questions of where objects are 
located, with whom they are interacting and what are the intentions of the surroundings. 
Intelligent and natural interactions are the ability for the pervasive environment to adapt 
to the surrounding people’s actions and vice versa. A categorisation for extracting the key 
features and components from pervasive architectures is surveyed in Hamza (2011). The 
architectures collected are used to build a well-structured categorised reference 
architecture to be used for designing pervasive systems. The division of the categories is 
based on the pervasive systems’ usage, operating environment and the domain they best 
fit in. The categorisation is divided into general, bridging, privacy and security, fault 
tolerance, context-awareness and domain specific architectures as shown in Figure 1. 

Figure 1 Pervasive categorisation (see online version for colours) 

 

 

Source: Hamza et al. (2011) 

Utilising SPLs’ reference architecture in building pervasive systems will help in 
benefiting from commonalities and variability management of components. In Hamza 
(2011), the most essential features with their commonalities and variabilities are captured 
from the pervasive architectures mentioned earlier. Natural interaction and sensor and 
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actuator networks are the commonalities that must exist in every pervasive system as 
shown in Figure 1. The rest could be variabilities that can be chosen or not in a pervasive 
system. For example, Figure 2 shows retail systems’ features in pervasive systems. 
Retails systems can include a shopping cart that is equipped with either a screen to 
display different messages and notifications to the user, or internet-access to provide the 
user a quick way to check online reviews for a certain product. Also, a retail system can 
include bar code or RFID readers. In some retail pervasive systems, there could be 
dependency on transcoders as a way of communication with a store’s back-end system. 
Finally, a home appliance server located at a buyer’s home that is responsible for 
checking the availability of the items that the home ran out of, can order them according 
to the user’s preferences and pre-defined settings. A detailed study about the features 
categorisation is presented in Hamza and Aly (2010). 

Figure 2 Retail features (see online version for colours) 

 

 

Source:   Hamza and Aly (2010) 

Figure 3 Sensor network component diagram (see online version for colours) 

 

Source: Hamza et al. (2011) 
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Each feature is then represented by a component or a set of components that provide the 
functionality of this feature. All those components are collected together in a reference 
architecture. An example of components for sensors networks from the feature model is 
shown in Figure 3. 

In the next section, we will discuss some the techniques and measurements that we 
came across and can be applied in our study. 

3 Related works 

We conducted research to find the best suitable evaluation methodologies for the 
generated architectures. For evaluating software architectures in general, a set of metrics 
(coupling, cohesion, complexity, size, reusability and others) has been defined by both 
research and industry. We came across different equations for these metrics in 
http://grahamberrisford.com/, Allen et al. (2007), Barnard (1998), Briand et al. (1996), 
Hitz and Montazeri (1995), Liu and Wang (2005), and Pressman (2001). In Briand et al. 
(1996), for example, coupling which measures the relationship of dependency between 
two interacting modules is calculated as: 

( ),
1

nC S S i
n

′ = +
+

 

where i is a number corresponding to the worst coupling type, and n the number of 
interconnections between S and ,S ′  global variables and formal parameters, respectively. 

Cohesion evaluates the tightness between the linked features composing a system or 
module. Interconnected relations are considered cohesive. Three cohesive measurements, 
NRCI, PRCI and ORCI, are introduced in Briand et al. (1996). They represent Neutral, 
Pessimistic and Optimistic Ratio of Cohesive Interaction respectively. Using these three 
measurements help to estimate the non-visible interactions of a module or a software part 
at the design phase. The following equations are used to measure cohesion: 

( )( )
# ( ) # ( )

knownInteractions spNRCI sp
MaxInteractions sp UnknownInteractions sp

=
−

 

( )( )
# ( )
knownInteractions spPRCI sp

MaxInteractions sp
=  

( ) # ( )( )
# ( )

knownInteractions sp UnknownInteractions spORCI sp
MaxInteractions sp

+
=  

where #MaxInteractions(sp) is the maximum number of possible intra-module 
interactions between the features exported by each module of the software part (sp). 

System complexity is affected by the dependency relationships between different 
elements as defined in Briand et al. (1996). It is measured by converting the components 
and their elements into a graph then using the following formula: 

( ) | | | | 2v G R E p= − +  
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where G represents the graph, E is the number of edges, R is the binary relation between 
two elements (E × E) and p is the number of connected components of G. 

Another approach for measuring complexity is configuration complexity 
(http://grahamberrisford.com/15%20Scale%20and%20Change/Can%20we%20measure%
20architecture.htm). Configuration complexity can be applied to any component 
dependency diagram, entity-relationship model, box-line diagram, or node-arc structure. 
It is defined by the following formula: 

RConfiguration Complexity C=  

where R is the number of relationships and C is the number of components. 
The size metric is defined in Allen et al. (2007) as the sum for all the sizes of all the 

disjoint components or nodes in a system using the following equation: 

( )( )
n

e
e E

Size S Size m
∈

=∑  

where n is the number of elements, e is the element that belongs to the component E, and 
m is the module inside the component. 

However, two evaluation methods that were most suitable to our work were 
Narasimhan and Hendradjaya’s (2007) evaluation suite, and Zayaraz and Thambidurai’s 
(2008) measurement techniques. Those two evaluation methods were comprehensive and 
the equation parameters can be readily extracted from the component-based diagrams. 
Narasimhan and Hendradjaya (2007) presented a suite for measuring the integration of 
software components. The metrics involved are complexity, criticality, triangular and 
dynamic metrics. In our evaluation, we discarded dynamic metrics because they are 
designed to test applications during runtime. Zayaraz and Thambidurai (2008) presented 
a technique for quantifying and measuring software quality. The technique is built on top 
of COSMIC Full Function Points (CFFP) and ISO 9126 quality standards. They have 
incorporated both CFFP and ISO 9126 quality standards at the architectural level. The 
notation they used is presented in Table 1 and will be used in equations throughout the 
paper. Details about the metrics we used will be discussed in more details in the coming 
section. 
Table 1 Zayaraz and Thambidurai’s notation 

Parameter Notation 

Entry E 

Exit X 

Read R 

Write W 

Number of components N 

Layer L 

In the next section, we discuss previous research that we have done for generating 
pervasive system architectures including the different milestones the research has passed 
through. 
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4 Overview of architecture generation 

In our previous work (Hamza, 2011), we incrementally tackled the problem of defining 
an architecture for pervasive systems in three phases: first, we collected various 
architectures of pervasive systems from the literature. Second, we extracted their main 
features and categorised them. Third, we devised a methodology, by which we can 
generate pervasive systems’ architectures from a set of features selected by designers. 
(The work we report on herein is considered a fourth phase where we evaluate the 
generated architectures against similar ones developed by subject matter experts.) 

The considered feature-set was gathered from a survey of over 50 state of the art 
architectures specified in the literature for various kinds of pervasive systems. Examples 
of such features included but were not limited to: context awareness, privacy, mobility 
and fault tolerance. For each of the indicated features, we gathered, and sometimes 
developed, relevant components that could be aggregated together, based on designer’s 
choice, to produce a new system architecture. 

The process of generating architectures is shown in Figure 4. The required features of 
a given system are first selected by a system architect. Each selected feature is then 
mapped to a best practice micro architecture (consisting of a set of interdependent 
components). The resulting group of micro architectures is then merged into a large 
reference architecture. The components in the selected micro architectures are all 
included in that reference architecture. However, they are not initially glued together. In 
order to glue them to form a larger architecture representing the entire system, we  
pre-define a map of dependencies amongst the feature-related micro architectures in a 
way that supports gluing them together. A dependency is identified if a component reads, 
writes or uses another component. 

Figure 4 The architecture generation flow (see online version for colours) 

 

Source: Hamza (2011) 
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Implementation wise, the Feature Modeling Plug-in (FMP) in http://gsd.uwaterloo.ca/ 
fmp, developed for Eclipse, was used to visualise and select the features. Visual 
Paradigm for UML (http://www.visual-paradigm.com/product/vpuml) was used to 
represent the feature related architectures, which were exported in XML format. The 
generation process was driven by a C# program that is called RA Generator (Hamza, 
2011). It works by extracting the components that map to the selected features from the 
reference architecture. Then, it enhances the final architecture by removing the unneeded 
connections and adding other ones between the different components that need to be 
connected together. The removal algorithm works by deleting the unneeded connections 
if two components are connected together and only one of them is included in the new 
system. This is achieved by checking if a component has a loose connection from its end. 
A manually pre-defined lookup table that contained the components needed to be 
connected together is used for adding new connections between the components coming 
from different architectural designs. More details on the feature set and the methodology 
for generating architectures can be found in Hamza and Aly (2010), Hamza et al. (2011) 
and Hamza (2011). 

Next, we will explain briefly the case studies that were performed to evaluate the 
generated architectures. 

5 Case studies 

In order to evaluate our approach for generating a pervasive architecture, we compare 
generated architectures and ones designed by subject matter experts in three case studies. 
The experts are from industry and academia with experience ranging from three-five 
years in designing software systems. In this section, we discuss the software systems that 
are involved in the three case studies. The first system, which will be referred as case 1 
from now on, implements context awareness in retails systems. During a shopping 
experience, a shopper is notified of surrounding shoppers with common interests. Such 
system could be smart enough to detect if a shopper is alone or not, and accordingly, 
notifies the shopper with possible common interests with surrounding shoppers. It 
provides the shopper with different promotions and reviews once he/she places a product 
in a shopping cart. The user is expected to have network access to check those reviews if 
needed. 

The second system, or case 2, is one for elders and people with health conditions that 
require monitoring. According to their conditions, patients could be notified of the 
nearest pharmacy, clinic or hospital according to the criticality of the situation. The 
physicians monitoring the cases get notified with their health status. 

The third system, or case 3, is for transportation. Users are notified with the 
alternative routes while driving in case of traffic congestions. They register their 
destination once they get in the vehicle. All such data is collected from surrounding 
drivers given street capacity in mind; drivers are re-routed with the most efficient path. 
Users can use their devices for registering their position and their destination. The system 
integrates with the legacy transportation systems (such as cameras, radars … etc.) for 
collecting regular updates about traffic status in the streets. Full details of the 
requirements of those three systems can be found in Hamza (2011, pp.183–188). 
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In the coming section, we discuss the selected features that were used to generate a 
reference architecture for case 1 and discuss their main components. We do not discuss 
cases 2 and 3 with similar details for brevity. 

6 Feature model 

In this section, we discuss the feature model that was designed for Case 1 and how it was 
translated into components in a generated architecture. The features in the model were 
chosen based on the system requirements discussed earlier (Section 5). Some of the 
features are mandatory to be in the system to bring in pervasiveness, which are: Natural 
Interaction and Sensor Networks (shown in Figure 5 with solid dots). The rest of the 
features are optional and selected based on requirements. For example, we chose 
shopping cart, readers (barcode and RFID), transcoder, context management and 
adaptation management. The selection of those features is based on the subjective 
assessment of the designer who interprets the requirements. Notice that when we 
categorised the features, we focused on keeping each one self-contained enough such that 
it does not overlap with other features in order to minimise subjectivity during its 
selection as much as possible. 

Figure 5 Selected features for case 1 (see online version for colours) 

 

Source: Hamza et al. (2011) 
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Those selected features are then mapped to components (of their respective micro 
architectures) that build up the system. The main components are: actor, application tier 
subsystem, device interaction subsystem, shopping cart and backend subsystem. The 
actor component is responsible for keeping the identity of a user along with his/her 
profile, which maps to the natural interaction feature in the feature model. It is connected 
with the application tier subsystem, which is a link between the actor, the devices 
interaction subsystem and the shopping cart components. It is responsible for managing 
the shopping cart and handling the notifications delivered to the actor. Furthermore, the 
devices interaction subsystem component provides the location services, the tracking 
subsystems, the communication infrastructure and the context management, which are 
also used to bring pervasiveness to the system as discussed in the requirements. The 
shopping cart is a key component in the retail scenario. It could be equipped with internet 
connection, screen and/or transcoder to enhance the shopping experience. The shopping 
cart tracks the products put inside it and communicate that with the backend subsystem 
through the goods tracking subsystem. The selection of components from the reference 
architecture and how they are connected together is discussed in details in Hamza (2011). 

The selected components participating in the system are loosely coupled and can be 
replaced easily in case they are obsolete or better components become available. The 
replacement may be made in the reference architecture directly in case it is needed only 
for one system. 

The subsequent section will discuss the setup used for running the experiments and 
the techniques selected to evaluate the architectures. 

7 Experiment design 

In this section, we describe the design of an experiment we carried to evaluate the quality 
of our generated architectures for pervasive systems in comparison to ones that were 
manually created by subject matter experts. In order to evaluate the architectures, we 
conducted an extensive search in order to find quantifying metrics for evaluating 
architectures. We were also looking for acceptable ranges for each of these metrics. 
Unfortunately, no universally acceptable ranges were found due to the heterogeneity of 
the different architectures. We then resorted to evaluating our generated architectures and 
the ones designed manually by the subject matter experts and comparing them to each 
other for each metric. We used two architecture evaluation frameworks in our evaluation; 
namely Narasimhan and Hendradjaya’s (2007) evaluation suite, and Zayaraz and 
Thambidurai’s (2008) measurement techniques (Section 2). The former is a suite devised 
for measuring the integration of software components from the following perspectives: 
complexity, criticality, triangular metrics and dynamic metrics. The latter is a technique 
developed for quantifying and measuring software quality at the architectural level by 
measuring complexity, coupling, cohesion and other metrics. Moreover, since the 
architectures were defined using UML component diagrams, we used the SDMetrics tool 
(http://www.sdmetrics.com) to extract some basic metrics like the number of 
components, interfaces, associations and other relevant elements from these component 
diagrams. Table 2 shows all the metrics we used. Table 3 defines the terminology we 
used in displaying the results with the SDMetrics tool. 
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Table 2 All metrics we used in evaluating the generated architectures 

Metric Definition 

Component packing 
density (CPD) 

It measures the packing density of the components in architecture. It is 
calculated by the ratio between the number of subcomponents related to a 
component with respect to the number of components 

Component average 
interaction density 
(CAID) 

It is used for evaluating the entire components’ assembly complexity. It 
is calculated by the ratio between the component interaction densities to 
the number of components. 

CRITlink It measures if the criticality of a component in terms of the links 
connected to it. The initial indicator presented in this research is 8 links 
as a threshold value. 

CRITBridge Bridge component links are used to connect two or more components or 
applications. Importance weight should be added to each bridge link by 
the developer. This weight should reflect the probability for failure. 

CRITSize It measures the size for a component. In order to specify the threshold, 
you choose the maximum size of a component in the system. 

CRITAll Criticality metrics is a summation for metrics CRITlink, CRITBridge and 
CRITSize. 

Coupling It measures the relationship of dependency between two interacting 
modules. 

Cohesion It evaluates the tightness between the linked features composing a system 
or module. 

Complexity It is used as a metric to evaluate how the system or module is complex. 
Modifiability It evaluates to what extent the components could withstand changes 

without affecting the whole system. 
Modularity It evaluates if the system is built on modular basis or not. 
Reusability It evaluates if the components in the system can be used in another 

system without major changes. 

Table 3 Terminologies used by SDMetric 

Terminology Definition 

Elements It is the number of components and sub-components in a diagram 
Interfaces It is the number of interfaces that the components utilise while communication 

with each other 
Associations It is the number of associations that describe the relationship between two 

components 
Deps It is the number of dependencies in the architecture 

In order to evaluate the quality of the architectures, we executed the following process: 

1 We specified a set of requirements for three cases of pervasive systems that address 
different domains. The requirements of the three cases were of comparable 
complexity. Detailed description of the cases, along with their requirements, is 
discussed in Section 5. 

2 For each one of those three cases, we used our methodology to automatically 
generate an architecture through selecting features of interest. 
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3 We also provided the requirements of the three cases to five subject matter experts 
(S1-S5). Each of the experts was asked to design an architecture that satisfies each of 
the three sets of requirements, for a total of 15 manually designed architectures. The 
subject matter experts were selected with varying years of experience ranging from 
three to five years in the field of software and systems architecture and with 
sufficient knowledge in pervasive system development. 

4 Using the selected metrics, we then compared the architectures that were 
automatically generated with those that were manually designed by the subject 
matter experts. 

The next section will show the results of running the experiments highlighting a 
comparison between the results of the generated architecture and the architectures 
designed by the subject matter experts. 

8 Experiment results 

In this section, we present the results of carrying the case studies described in Section 5. 
Recall that the objective of the case studies is to compare the quality of the automatically 
generated architectures with that of the ones defined manually by subject matter experts 
involved in the study. We first used the SDMetrics tool to collect basic architecture 
metrics. The tool took as input a given architecture described in UML and extracted as 
output the number of elements, interfaces, associations, and dependencies (defined in 
Table 3). Tables 3, 4, 5, show the output of the SDMetrics tool for the automatically 
generated architectures and for those created by the experts (S1-S5) for each of the three 
cases (1) to (3). 
Table 4 SDMetrics diagram output for case 1 

Case 1 Generated S1 S2 S3 S4 S5 
Elements 61 23 43 43 21 33 
Interfaces 4 0 0 0 0 0 
Associations 11 8 20 12 4 6 
Deps 7 1 0 7 7 2 

Table 5 SDMetrics diagram output for case 2 

Case 2 Generated S1 S2 S3 S4 S5 
Elements 47 23 47 39 26 48 
Interfaces 3 0 0 0 0 0 
Associations 10 9 22 9 6 8 
Deps 4 0 0 5 8 3 

Table 6 SDMetrics diagram output for case 3 

Case 3 Generated S1 S2 S3 S4 S5 
Elements 44 19 37 34 24 44 
Interfaces 2 0 5 0 0 0 
Associations 8 5 5 9 4 10 
Deps 4 3 5 4 9 1 
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The metric values from the SDMetrics tool indicate that the generated architectures 
contain relatively more elements (components and subcomponents) than those of the 
experts. The reason behind this relates to the fact that the reference architecture was 
designed with loosely coupled components such that removing a component would have 
the least impact on the whole system. However, when the experts were provided with the 
requirements, they were given general directions to design an efficient system that best 
addresses the requirements. The number of interfaces reflects how many different 
components are communicating together. In the generated architectures, we are 
integrating components from different categories. So, the presence of interfaces was a 
must to make sure that components can communicate with each other. On the other hand, 
interfaces were barely used by the experts which justifies that the experts were not 
concerned much about the reusability aspect of the components as us. We predict that the 
differences in the number of elements and interfaces will affect the coupling and 
cohesion metrics. Also, associations and dependencies are close to each other except for 
S2 in cases 1 and 2, in which we predict that modularity, complexity and criticality 
metrics will be affected as well. 

Next, we used the output of the SDMetrics tool (i.e., the number of elements, 
interfaces, associations, and dependencies) for each of the three cases as input to the 
Narasimhan and Hendradjaya’s evaluation suite to produce values for six different 
metrics (CPD, CAID, CRITlink, CRITBridge, CRITSize, CRITAll), as shown in Table 7 for 
case 1. The output of the SDMetrics tool was also fed into the Zayaraz and Thambidurai 
measurement techniques to produce values for another set of six metrics (coupling, 
cohesion, complexity, modifiability, modularity, reusability), as shown in Table 8 for 
case 1 as well. For more information about the equations of the used metrics, the 
interested reader is referred to Narasimhan and Hendradjaya (2007) and Zayaraz and 
Thambidurai (2008). 
Table 7 Narasimha, Hendradjaya’s evaluation suite for case 1 

Metric Generated S1 S2 S3 S4 S5 

CPD 0.63 0.75 0.91 0.79 1.10 0.32 
CAID 0.10 0.17 0.13 0.32 0.20 0.19 
CRITlink 0 0 0 0 0 0 
CRITBridge 4 1 6 4 2 2 
CRITSize 0 0 1 0 0 0 
CRITAll 4 1 7 4 2 2 

Table 8 Zayarazand Thambidurai’s measurement techniques for case 1 

Metric Generated S1 S2 S3 S4 S5 

Coupling 0.31 0.25 0.07 0.5 0.8 0.26 
Cohesion 0.97 0.83 0.24 0.8 0.94 0.47 
Complexity 42 × 10–5 10 × 10–5 5 × 10–6 35 × 10–5 8 × 10–6 16 × 10–5 
Modifiability 2 × 104 10 × 103 2 × 106 402.6 125.5 6 × 103 
Modularity 12.88 1.93 3.9 4.7 2.9 4.91 
Reusability 16.08 5.93 18.5 6.9 4.3 8.78 
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In the remainder of this section, we analyse the results obtained for each metric, making a 
comparison between our automatically generated architecture and the ones created by the 
subject matter experts. 

8.1 Component packing density 

Component packing density (CPD) measures the packing density of the components in 
the architecture. Therefore, the higher the CPD, the more complex the system is. CPD is 
directly proportional to the number of interfaces, associations and dependencies between 
the components and inversely proportional to the number of components. The equation 
is: 

#
#typeconstituent

constituentCPD
components

=  

where #constituent could be: LOC, object/classes, operations, classes and/or modules in 
the related components, and #components is the number of the components. 

Figure 6 shows the CPD for cases 1, 2 and 3. The dotted lines display the average for 
each case between the experts. For case 1, the CPD value for the generated architecture is 
0.63 while the average for the experts is 0.77. According to Table 4, although the 
generated architecture has the highest number of interfaces, associations and 
dependencies as well as the highest number of components, it still gets lower ratio. The 
CPD is calculated by the ratio between the number of interfaces, dependencies and 
associations in the architecture to the number of components. In case 2, the CPD for the 
generated architecture is 0.68 while the average CPD for the experts is 0.75. Interfaces, 
associations and dependencies are high but not the highest according to Table 5. This 
makes the generated architecture more complex than S3 and S5. Finally in case 3, the 
CPD for the generated architecture is 0.52 while the average for the experts is 0.80. From 
the above mentioned numbers, we conclude that the three generated architectures have 
less CPD than the average of the experts. 

Figure 6 CPD for cases 1, 2 and 3 
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8.2 Component average interaction density 

Component average interaction density (CAID) is calculated by the summation of 
component interaction density (CID) over the number of components. CID is calculated 
by defining the ratio between the actual numbers of interactions (associations) to the 
available number of interactions in a component. The actual number of interactions refers 
to the interfaces provided by a component and used by another one. However, the 
available number of interactions refers to the total number of interfaces provided by a 
component, regardless of being utilised or not. Hence, the lower the value of CAID, the 
fewer the interactions are in the architecture, which means simpler communications in the 
system. The equation used is: 

#
nn

CID
CAID

components
=
∑  

where nn
CID∑  is the summation for all the interaction densities for components 1 to n 

and #components is the number of the existing component in the real system. 
Figure 7 shows the CAID calculated for the cases 1, 2 and 3. In case 1, the CAID for 

the generated architecture has the value of 0.1 while the average is 0.2 for the experts. In 
case 2, the CAID value is 0.12 for the generated architecture, while the average among 
the experts is 0.17. For case 3, the CAID is 0.13 for the generated architecture and the 
average is 0.22 for the experts. From the above results, we conclude that the generated 
architectures have fewer interactions than the ones designed by the experts due to the 
small number of interactions between the subcomponents in a component when 
compared to the architectures defined by the experts. This is because the packaged 
components defined for the features are well-designed and efficient. 

Figure 7 CAID for cases 1, 2 and 3 

 

8.3 Criticality all (CRITAll) 

The criticality metric is used to measure the number of critical components in a system. A 
critical component is one, without which, other components in a system are not able to 
interact. The more critical components exist in a system, the higher the tendency for its 
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failure. We present the overall criticality CRITAll metric, which is the sum of the link 
criticality, bridge criticality, inheritance criticality and size criticality metrics. The 
equation used for criticality is: 

all link bridge inheritance sizeCRIT CRIT CRIT CRIT CRIT= + + +  

Link criticality refers to a component that has many connections, exceeding a pre-defined 
threshold. The failure of this component may cause the failure of a major functionality or 
the whole system. Bridge criticality reflects the existence of components that act as 
bridges for other components. If a bridge component fails, it can lead to the failure of the 
whole system or a core functionality. Inheritance criticality counts the number of base 
components or elements inherited by others. The higher the count, the higher the risk of 
failure is. Size criticality measures the size of a component including subcomponents, 
classes, functions...etc. A threshold is set as a maximum value of the size. If the size 
exceeds that threshold, then there is high risk of component failure. In Figure 8, case 1 
scored 4 for CRITAll for the generated system which is higher than the average for the 
experts which is 3.2. The generated architecture is worse than the average of the experts. 
This is because bridge criticality for the generated architecture is high, as shown in  
Table 9. For case 2, the CRITAll is 2 for the generated system while the average is 4. For 
case 3, the CRITAll is 3, while the average is 3.2. Bridge criticalities in the generated 
architecture, for case 2 and case 3, are minimum; that’s why the overall criticality is low. 
These cases do not suffer from the same issue of case 1 because the latter has many 
bridge components in the generated system coming from the reference architecture. 
Bridge components in this case are needed between the shopping cart and the device 
interaction subsystem due to the required communication between them. 
Table 9 Narasimhan and Hendradjaya’s evaluation suite for case 1 

Metric Generated S1 S2 S3 S4 S5 

CRITlink 0 0 0 0 0 0 
CRITBridge 4 1 6 4 2 2 
CRITSize 0 0 1 0 0 0 
CRITAll 4 1 7 4 2 2 

Figure 8 CRITAll for cases 1, 2 and 3 
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8.4 Coupling 

Coupling measures the interdependencies between components. The lower the coupling, 
the better the architecture is and vice versa. The equation for coupling is: 

1
( , 1) ( , 1) ( , 1) ( , 1)

11 2

L
i i i i i i i i

p
i ii

E X R W
SC

N N

−
+ + + +

+=

+ + +
=

× +∑  

Figure 9 shows a comparison of coupling scores between the generated architecture and 
the human designed architectures. The dotted line shows the average of the experts. In 
case 1, the coupling is 0.31 while the average for the experts is 0.36. In case 2, the 
coupling is 0.21 and the average is 0.30. In case 3, coupling is 0.40 and the average is 
0.27. In this last case, our design is deviating from the average by 27.5%. According to 
our analysis, case 3 has the worst coupling because it has the highest number of layers 
(more on this below), hence the highest number of interdependencies. Figure 10 shows 
the number of layers, number of components in each layer and the number of layer 
interdependencies (e.g., entries, exists, reads and writes) for cases 1, 2 and 3. 

Figure 9 Coupling for cases 1, 2 and 3 

 

Figure 10 Coupling/cohesion computational parameters for cases 1, 2 and 3 
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The research attempted to investigate why coupling of the generated architectures was 
better in some cases, and worse in others. Coupling is linked to the number of layers 
(e.g., data access, sensors, actuators and communication components) in the system and 
the number of components in each layer. The number of layers involved in the 
architecture is directly proportional to the coupling, while the number of components 
inside each layer is inversely proportional to the coupling. It is also affected by the 
number of interactions (entries, exits, reads and writes) between the components. The 
more the interactions, the higher the coupling in the architecture is. In cases 1 and 2, the 
coupling is lower than the average for the generated architecture; however, in case 3 the 
coupling is higher than the average. The reason behind that is that the number of layers in 
case 3 is the highest causing the coupling to be the worst. This is due to expert 2 
designing the system to interact with many levels of legacy systems in the transportation 
architecture without utilising interfaces and wrappers. 

8.5 Cohesion 

Cohesion measures the level of strength and unity between different components within a 
module. The higher the cohesion, the better the architecture is and vice versa. The 
equation used for cohesion is: 

2
1

L
i i i i

o
ii

E X R W
SC

N=

+ + +
=∑  

Like coupling, cohesion is affected by the number of entries, exits, reads and writes 
between the components within a layer and the number of components in a layer 
according to Zayaraz and Thambidurai’s (2008) measurement techniques. For cases 1, 2 
and 3, Figure 11 shows the cohesion of the generated architectures. For case 1 the 
cohesion is 0.97, which is the highest cohesion among all the other architectures, while 
the average for the experts has a value of 0.66. This is due to the generated architectures 
have a high number of layers with many entries, exists, reads and writes, as shown in 
Figure 10. For case 2, the cohesion for the generated architecture is 0.58, which is below 
the average which is 0.60. S3 has the highest cohesion because of the high number of 
layers with many entries, exists, reads and writes. For case 3, the generated architecture is 
0.88. It is higher than the average, which is 0.71. 

Figure 11 Cohesion for cases 1, 2 and 3 
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8.6 Modularity 

Modularity is used to evaluate if the system is built on modular basis or not. A module is 
a component or set of components that are self-contained in a system. Changes to a 
module should not affect the functionality of the rest of the system. It is directly 
proportional to cohesion and inversely proportional to coupling. The equation used for 
modularity is: 

1
1

1

2
i i

L

ii

Co Co

Modularity
Cp

+
−

=

+⎛ ⎞
⎜ ⎟
⎝ ⎠=∑  

The generated architecture showed the highest modularity of 12.9 for case 1 and 11.7 for 
case 3, as shown in Figure 12. This is because the generated architecture in each of those 
two cases has high cohesion and low coupling. However, in case 2, the modularity of the 
generated architecture, while still higher than the experts’ average, is low because 
cohesion is not high. The average scores for the human-designed architectures for case 1, 
case 2 and case 3 are much lower: 3.67, 5.83 and 5.04, respectively. 

Figure 12 Modularity for cases 1, 2 and 3 

 

8.7 Reusability 

Reusability is used to measure how the components in the system can be used in another 
one without major changes. It is directly proportional to modularity and inversely 
proportional to coupling. The equation used is: 
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Figure 13 shows the reusability for cases 1, 2 and 3. For case 1, the generated 
architecture’s reusability is 16.08, while the average for the experts’ architectures is 8.87. 
In case 2, reusability is 11.80 for the generated architecture and the average is 10.45. In 
case 3, the generated architecture scores a reusability of 13.69, while the average is 
10.81. We observe that in the three cases, the reusability was high and above average for 
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the generated architectures. One noticeable anomaly is that S2 scored the highest 
reusability in all the cases because it achieved almost consistently the lowest coupling. 

Figure 13 Reusability for cases 1, 2 and 3 

 

8.8 Complexity 

Complexity is affected by the number of entries, exits, reads and writes among the 
components in a layer and among the layers themselves. It is calculated as the summation 
of intra-complexity and inter-complexity. The equations used are: 
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The equations are discussed in more details in Hamza (2011). Intra-complexity measures 
the complexity among the components within a layer. Intra-complexity is proportional to 
the number of entries and exists between the components inside the layer. While  
inter-complexity measures the complexity among the layers and is directly proportional 
to the number of entries, exits, reads and writes between the components in a layer with 
the other external components to that layer. We found the complexity of the architectures 
low in all three cases, as shown in Figure 14. For case 1, case 2 and case 3, the generated 
architecture has a complexity of 0.00042, 0.00047 and 0.00145, respectively. On the 
other hand, the averages for cases 1, 2 and 3 are much higher: 0.00238, 0.00367 and 
0.00704, respectively. This is due to the very low inter-complexity for the generated 
architectures resulting from a small number of entries, exits, reads and writes between the 
components in a layer and external layers. 
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Figure 14 Complexity for cases 1, 2 and 3 

 

8.9 Modifiability 

Modifiability measures how much modifications can be done to the modules and 
components of a system without affecting the others. Modifiability is inversely 
proportional to coupling and inter-complexity as given by the equation: 
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Figure 15 shows the modifiability for the cases 1, 2 and 3. The majority of the experts’ 
architectures and the generated architectures show high modifiability for the 
architectures. For case 1, the generated architecture scored 20,739, for case 2, 10,373, and 
20,739 for case 3. In all three cases, S2 scored the highest modifiability due to its lowest 
coupling and inter-complexity for the architectures. The next highest modifiability is for 
the generated architecture due to its low inter-complexity. For modifiability, we removed 
S2 from the graphs because it is biased and considered an outlier due to the big difference 
between the number ranges. 

Figure 15 Modifiability for cases 1, 2 and 3 
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8.10 General analysis 

We calculated the average and the standard deviation (as a percentage) of the results 
obtained in the three cases, for the generated architectures as well as for all the experts, in 
order to generalise the analysis. We divided the metrics into two categories, positively 
monotonic and negatively monotonic metrics. The positively monotonic metrics are those 
that indicate better results with higher values, while the negatively monotonic metrics 
indicate better results with lower values. In Figure 16, we show a comparison of the 
positively monotonic metrics-cohesion, modularity and reusability – between the 
generated architectures and those designed by the experts. We found that the generated 
architectures consistently showed better performance. For example, the generated 
architecture scored 18.8% higher than the experts’ for cohesion: 53.2% higher for the 
modularity and 27.5% higher for reusability. Similarly, Figure 17 shows a comparison of 
the negatively monotonic metrics-complexity, cohesion, CPD, CAID and CRITAll. Again, 
we see that the generated architectures consistently showed better performance (lower 
values). For example, the generated architectures scored 0.5% less than the experts’ for 
coupling, 82.18% less for complexity, 21.5% less for CPD, 39.9% less for CAID and 
13.5% less for CRITAll. We also calculated the standard deviation for the generated 
architectures and for the experts’ architectures, as shown in Table 10. The standard 
deviations for the generated architectures is much lower than the experts’ which implies 
that the quality of the generated architectures is higher. 

We find that the evaluation metrics we chose can predict the quality of the generated 
architectures by measuring the level of maturity of the reference architecture generated 
from a feature model. In case the evaluation showed some deficiencies in one or more 
evaluation aspects, then, this can be an early indication of the kind of problems that could 
be in the components or the features that brought them in. 

The following section will highlight the future work that can be carried out as a 
further step to enrich this study towards having a complete reference architecture for 
pervasive systems. 

Figure 16 Positively monotonic metrics 

 
 

 



   

 

   

   
 

   

   

 

   

    Automated generation of pervasive systems architectures 87    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 17 Negatively monotonic metrics 

 

Table 10 Relative standard deviation % for the generated and the experts 

Negatively monotonic Positively monotonic 
Metric 

CPD CAID CRIT all Coupling Complexity 
 

Cohesion Modularity Reusability 

Generated 13.5% 15.2% 33.3% 30.7% 74.7%  25.1% 29.2% 15.5% 

Experts 38.6% 31.4% 52.1% 59.1% 145.0%  32.9% 51.1% 44.6% 

9 Future work 

The evaluation of generated architectures for pervasive systems presented in this paper 
has room for improvement. The following are some suggestions that will enhance the 
evaluation: 

• Steps of the evaluation process used in this research were integrated manually. 
Automating the evaluation process by having a tool accept an architecture as input, 
getting the metrics results and their averages and standard deviation as output will 
allow a more efficient way of carrying the evaluation. 

• Repeating the analysis on more case studies of other pervasive systems will help in 
having more mature evaluation model and more statistically relevant results. 

• Finding more metrics that can help measure more aspects of the architecture will also 
help strengthening the evaluation results 

10 Conclusions 

In this paper, we gave a detailed description of a methodology to automatically generate 
pervasive systems’ architectures. By utilising SPL concepts, best-practice micro 
architectures can be extracted from previously developed pervasive systems and mapped 
to categorised features. By selecting a subset of these features, a reference architecture 
for a new pervasive system can be generated by merging the micro architectures of the 
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selected features. The core of this paper is targeting the evaluation methodology for such 
generated architectures. We conducted an extensive literature search to find quantifying 
metrics for evaluating high level architectures. We used Narasimhan and Hendradjaya’s 
evaluation suite and Zayaraz and Thambidurai’s measurement techniques to empirically 
evaluate our generated architectures. The generated architectures were compared to 
similar ones generated by subject matter experts in the domain. The metrics used for 
evaluation are coupling, cohesion, complexity, reusability, adaptability, modularity, 
modifiability, packing density, and average interaction density. Our results demonstrate 
that our generated architectures were comparable in quality and for the most part better 
than those generated by subject matter experts. 
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