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Abstract: This paper studies analytical and numerical methods of the analysis 
of spatial motion concerning centre of mass of small space vehicles at 
deployment of space tether system. Deployment of space tether system is 
executed from the base space vehicle. The set angular orientation of the base 
space vehicle concerning a local vertical is provided by means of own system 
of stabilisation. The small space vehicle (or freight) represents a descent 
capsule returned to the Earth or the space vehicle transferred into higher orbit. 
It is supposed that the weight of the base space vehicle is much more than 
weight of freight. The angular position of freight is described by classical 
Euler’s angles determined concerning a direction of a tether. Analytical 
methods of the analysis of angular motion are based on an averaging method 
(for small angles of nutation) and on a method integral of manifolds which 
allows to investigate the nonlinear equations of angular motion of freight. The 
major factors influencing stability of angular motion of freight concerning a 
direction of a tether are considered. Results of numerical modelling of angular 
motion of the small space vehicle are presented. 
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1 Introduction 

Many authors dedicate great attention to the deployment of space tether systems (STSs). 
The given problem includes: 

1 construction of nominal or ideal programmes of the deployment of STS in the set 
position 

2 synthesis of algorithms of the stabilisation providing demanded quality of transients 
at deployment of STS 

3 safety control at jettisoning of a payload from the base space vehicle (an exception of 
their collision) on an initial site of deployment of STS 

4 damp of transversal and longitudinal oscillations in the course of deployment of STS 

5 exception of resonant modes of the motion leading to instability of process of 
deployment of STS. 

This list of tasks is not complete, since each experiment had its special task. Separate 
consideration is demanded also by electrodynamic tether systems, naturally, having 
features of deployment and operation owing to interaction with a magnetic field of the 
Earth (Zhong and Zhu, 2013). 

Deploying the STS is a complex transient and dynamic process, the success of all 
space flight depends on the quality of design. It is important to know what movement is 
small spacecraft around the center of mass at deployment of the STS. In some tether 
experiments control of an angular position of tip bodies was executed, for example, it 
concerns missions OEDIPUS-A and C (Vigneron et al., 2000), conducted in 1989 and 
1995. And the post-flight analysis has shown (Tyc and Han, 2001) that at implementation 
of mission OEDIPUSA the uncontrollable increase in angle of a deviation of a tip body 
from a tether direction was observed. In the given article the main disturbances and the 
factors influencing motion concerning centre of mass of the small space vehicle at 
deployment of STS are analysed. Here the development of system for big enough length 
of a tether (about 30 kilometres) is considered. 

Technology return to Earth a small capsule with a nearly circular orbit with the use of 
STS has been implemented in the experiment YES2. The process of deployment in YES2 
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experiment consisted of two phases. The first stage is a stage of rather slow extension of 
a tether with tether reduction in a vertical position. The second stage – a stage of fast 
deployment of STS in a final condition with the position of a tether rejected from a 
vertical for the message to a descent capsule of an additional braking impulse. At this 
stage, the law consisting of sites of fast boost and braking of a tether is used. Deployment 
programmes are realised by means of the gear of control by extension of the tether 
working with use of a principle of feedback (Kruijff, 2011). 

Non-observance of limitations on angular motion of the small space vehicle can result 
in the course of deployment of STS in tether sagging (controllability loss), to formation 
of loops, to tether torsion, to tether winding on a tip body etc. All this can significantly 
complicate the fulfilment of the objectives of the mission. 

Below, we consider a fairly complete analysis of the factors influencing the 
parameters of the angular motion of a spacecraft on a tether. Influence of the following 
factors is analysed: 

1 the nominal programme of deployment of STS 

2 parameters of a control system, the gear of control and tether characteristics 

3 static and dynamic asymmetry of the small space vehicle. 

For the analysis of influence of the nominal programme of deployment and asymmetry 
on motion of the small space vehicle asymptotic methods are used: an averaging method 
(Bogolyubov and Mitropolsky, 1963; Nayfeh, 1973) and a method of integral manifolds 
(Mitropolsky and Lykova, 1973; Hirsh et al., 1977). The analytical solutions describing 
angular motion of a tip body at small and considerable angles of nutation at slow change 
of force of a tension of a tether are received. The nutation angle in this case is an angle 
between a direction of a tether and a space vehicle centreline. The method of integral 
manifolds to determine the possibility of nonlinear resonances that leads to large 
perturbations in the rotational motion of the capsule. 

In this article, the review and generalisation of results of the researches conducted by 
authors in the given direction from 2007 for 2013 is presented. 

2 Statement of the problem 

The motion of a spacecraft on a tether has its counterpart classical mechanical problem of 
the motion of a heavy rigid body about a fixed point with the replacement of the tether on 
the direction of the vertical direction. And in this case, it is assumed that the moment of 
the tether tension force is much larger than the other side (gravity, drag, and so on.), 
which can be attributed to perturbations. Consequently, there is a case close to the 
classical problem of the motion of the Lagrange top under the action of small 
perturbations. Therefore, at a constant tether tension for symmetric rigid body holds the 
unperturbed case, which is characterised by well-known first integrals of motion. All 
these are the basis for the application of asymptotic methods of analysis of perturbed 
oscillatory systems. 
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Figure 1 Space tether system 

 

The position of a rigid body with respect to the direction of the tether is determined by 
the three Euler angles: precession ψ, nutation α and proper rotation φ (Figure 1). It is 
assumed that the tether does not touch the surface of the cargo, which leads to a definite 
limitation on the size of the angle of nutation, depending on the geometry of the 
spacecraft. For example, the nutation angle cannot exceed π / 2 for a body close to a 
sphere (or spherical toe). 

Euler angles are defined relative to the cargo’s so-called tether system of coordinates 
cxtytzt, where c – centre of mass of the cargo, axis cxt is parallel to the direction of the 
tether, axis cyt lies in the plane, ‘the tether – local vertical’ (local vertical drawn through 
the centre of mass of the base of the spacecraft), axis czt completes the coordinate system 
to the right. Figure 2 shows the order and direction of the elementary rotations 
corresponding to the Euler angles (ψ, α, φ) and defines the transition between bound cxyz 
and tethered coordinate systems. Figure 2 also shows the positions of the intermediate 
coordinate systems that are used below to write the equations of motion of cargo. 

Figure 2 Euler angles 
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Movement of cargo to the direction of the tether described by classical dynamic and 
kinematic equations of Euler 

c
c c

dK ω K M
dt

+ × =
G� G G G

�  (1) 

cos sin Δz y
d ω φ ω φ
dt

= + + �α α  (2) 

( )sin cos sin Δz y
dψ ω φ ω φ ψ
dt

= − + �α  (3) 

( )cos sin Δx y z
dφ ω ω φ ω φ ctg φ
dt

= + − + �α  (4) 

where cK
G

 – moment of momentum vector of cargo, cdK
dt

G�
 – local derivative, ω

G
�  – 

angular velocity of rotation of the coordinate system on which the projected vector 
equation (1); cM

G
 – principal moment of the external forces acting on the cargo; ωx, ωy, 

ωz – components of the vector ωG  rotational cargo in the coupled system of coordinates 
cxyz; Δ , Δ , Δφ ψ� � �α  – amendments to derivatives of the Euler angles, arising due to the 
rotation of the coordinate system of tether cxtytzt. 

Equation (1) is projected on different coordinate systems depending on the purposes 
of analysis. 

Principal moment of the external forces cM
G

 is the sum of 

Δc ct cM M M= +
G G G

 (5) 

where ΔctM r T= ×
G GG  – moment on the force of the tether tension, ΔrG  – vector defining 

the position of the point of attachment of a tether from the centre of mass of the cargo;  
T
G

 – tether tension force; Δ cM
G

 – vector sum of the small moments of forces 
(perturbations), acting on the cargo. 

The strength of the tether is 

ΔnT T T= +
G G G

 (6) 

where nT
G

 – nominal of the tether tension force, ΔT
G

 – component of the tether tension 
force that depends on the operation of control, from the elongation of a tether, etc. 

In a related system of coordinates of the vector ΔrG  has the components (Δx, Δy, Δz), 
where values Δy, Δz determine the static cargo asymmetry. Dynamic asymmetry of a 
rigid body is characterised by the off-diagonal components of the inertia tensor, recorded 
in the associated coordinate system, as well as the difference between the axial moments 
of inertia Jz – Jy. For statically and dynamically symmetric body have Δy = Δz = 0, Jy = Jz 
= J ≠ Jx, Jxy = Jxz = Jyz = 0, where Jxy, Jxz, Jyz – the centrifugal moments of inertia. 

The equations describing the motion of the mass centres of the end-bodies are written 
in one form or another, depending on the objectives of the study (Zabolotnov, 2013), 
taking into account the geometrical relationships between different parts of STS. 
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In accordance with the mathematical model (1 to 4) analyses the impact of the slow 
change of the nominal tensile force nT

G
 and other small perturbations dependent variables 

Δ ,T
G

 Δy, Δz, Jz – Jy, Jxy, Jxz, Jyz, Δ ,cM
G

 to the rotational motion of a small spacecraft to 
deploy STS. 

3 Analysis of the rotational motion of the small spacecraft at small angles 
nutation 

Using the assumption of smallness of the nutation angle allows for the most 
comprehensive asymptotic analysis of stability of the angular motion of a small 
spacecraft with respect to the direction of the tether, although it has limited use. 

To obtain the equations of motion that are convenient for the asymptotic analysis, the 
vector equation (1) is projected on the axis cx, cyt, czt. 

x
z y y z x

dK K ω K ω M
dt

+ − =  (7) 

yt
xt zt zt xt yt

dK
K ω K ω M

dt
+ − =� �  (8) 

zt
yt xt xt yt zt

dK K ω K ω M
dt

+ − =� �  (9) 

where , ,xt yt ztω ω ω� � �  – components of the angular velocity of rotation of the tether system 
of coordinates (Zabolotnov and Naumov, 2012). 

Equations (8)–(9) through the introduction of complex values Kyt + iKzt, Myt + iMzt are 
reduced to a single equation for the complex angle of nutation ξ = iαei·ψ. 

( )
2

2
02

( ) , , , Φx x x
d ξ dξiJ ω ω r ξ εF r ξ ω
dt dt

− + =  (10) 

where functions F(r, ξ, ωx, Φ) determine the effect of small perturbations in the system, 
/ ,x xJ J J=  ε – it is small parameter of the problem, Φ = φ + ψ, 2

0 ( ) Δ ( ) / ,nω r xT r J=   
r – it is vector slowly changing variables that affect the nominal deployment programme 
STS. 

Equation (10) need to attach the equations for the variables ωx and Φ 

( ), , , Φx
x

dω εf r ξ ω
dt

=  (11) 

Φ
x

d ω
dt

=  (12) 

This form of the equations (10)–(12) presented in the paper (Zabolotnov and Naumov, 
2012). 

A similar form of the equations of rotational motion (10)–(12) has been used 
previously in the works belonging to the adjacent areas of solid mechanics. Thus, the 
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complex form of the equations of motion used in the task, dedicated input dynamics of 
the spacecraft into the atmosphere (Nayfeh, 1973; Zabolotnov, 1994). 

It is using the method of averaging to obtain the asymptotic solutions of the system 
(10)–(12). System (10)–(12) is the unperturbed solution in the absence of asymmetry for 
a constant tensile force T = const 

1 21 2 ,
Φ Φ(0),

(0)

iγ iγ

x

x x

ξ a e a e
ω t

ω ω const

= +
= +
= =

 (13) 

where a1,2 – real oscillation amplitude, γ1,2 = ω1,2t + γ1,2(0) – phase, γ1,2(0), Φ(0),  
ωx(0) – initial values of the variables, 1,2 / 2x x aω J ω ω= ±  – oscillation frequency,  

2 2 2
0/ 4 .a x xω J ω ω= +  

Variables are considered a1,2, γ1,2, as new variables, and using the method of variation 
of arbitrary constants, we obtain 

( ) ( )1,21,2
1,2 1,2 2,1 2,1 2 1cos Im 2iγ

a
da

a ω a ω γ γ ε Fe ω
dt

−⎡ ⎤= + − −⎣ ⎦� �  (14) 

( ) 1,2
1,2 1,2 1,2, , , , Φ ,x

x
dγdω εf r a γ ω ω ε

dt dt
= = + …  (15) 

where 1,2 1,2 1,2
1,2 .x

x

dω ω ωdω dωω
dt ω dt ω dt

∂ ∂
= = +

∂ ∂
�  

Corresponding averaged system (after averaging over phases γ1, γ2, Φ) for the slow 
variables a1,2, ωx has the form 

( )1
1 1 2 2 2 1 100cos Im 2 a

da a ω a ω γ γ ε c ω
dt

⎡ ⎤= − + − −⎣ ⎦� �  (16) 

( ) ( )2
2 2 1 1 2 1 010cos Im 2 a

da a ω a ω γ γ ε c ω
dt

⎡ ⎤= + − −⎣ ⎦� �  (17) 

xdω ε f
dt

=  (18) 

where 〈·〉 – standard averaging operator in phases γ1,2, Φ; c100 and c010 – the coefficients 
of the Fourier series F(r, a1,2, γ1,2, ωx, Φ), recorded in complex form; Im(·) – designation 
of the imaginary part of the complex quantity. 

The system (16)–(18) for simplicity kept the same notation that is not an averaged 
system. 

For symmetrical descent capsule at nominal strength tether tension averaged 
equations (16)–(17) can be integrated in terms of elementary functions. In this case, we 
have 

1,2 1,2
1,22 a

da ω a
dt ω

= ±
�

 (19) 
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where 0
1,2 0.

a

ωω ω
ω

= ±� �  

Hence, 
0.252 2

2
0

1,2 1,2 2 2
2
0

(0)
4(0)

( )
4

x x

x x

J ω ω
a a

J ω ω r

⎛ ⎞
+⎜ ⎟

= ⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (20) 

where 2
0 (0)ω  – the initial value of the function 2

0 ( ).ω r  
If the angular velocity ωx slowly changes with time, for example due to dissipation in 

the system, it is included in the vector r. 
To evaluate the main characteristics of the rotational movement of cargo by the 

formulas (20), the following relation 

max 1 2 min 1 2,a a a a= + = −α α  (21) 

max 1 1 2 2 min 1 1 2 2,ω a ω a ω ω a ω a ω= + = −  (22) 

where αmax, αmin and ωmax, ωmin – evaluation envelope curves for the nutation angle α = | 
ξ | and angular velocity cargo 2 2 .n y zω ω ω= +  

The obtained analytical solution corresponds to the spatial movement of small 
spacecraft with a given programme change tether tension force T0(r) slowly changing 
with time. 

Figure 3 Time history of nominal tether tension (see online version for colours) 

 

As an example of the use of analytical solutions (21)–(22), we consider the deployment 
of the programme, which is close to the programme used in the experiment YES2 
(Kruijff, 2011). The changing of the nominal tensile force in this case is shown in  
Figure 3. This figure shows two plots. The solid line corresponds to the relay switching 
power tension between the individual characteristic areas of deployment. The dashed line 
shows the dependence, which is smoothed, which ensures the continuity of the first 
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derivative of the above function. As shown in the monograph (Zabolotnov, 2013),  
it is desirable to use the smoothed dependencies for tensile force. Firstly,  
because the implementation of relay dependencies when the control system is working  
is difficult due to the inertia of any system; secondly, it allows avoiding abrupt 
discontinuities of the nutation angle that could cause the angular movement of the cargo 
to be unstable. Figures 4(a) and 4(b) compare the dependencies α(t), ωn(t), calculated 
from the original equations of motion (1)–(4), with estimates for the envelope curves 
(21)–(22). The comparison was made with the following initial conditions of the 
rotational movement of the cargo: α(0) = 8°, (0) 0,=�α  (0) 0,ψ =�  ωx(0) = 0.05 s–1. 
Numerical results show that the analytical solution well describe the angular movement 
of the cargo at a slow change in the nominal tether tension force and at small angles of 
nutation (approximately 30–40°). 

Figure 4 (a) Time history of nutation angle for nominal tether tension 
(b) Time history of angular velocity 2 2

n y zω ω w= +  for nominal tether tension  
(see online version for colours) 

 
(a) 

 
(b) 
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Averaging equations (14)–(15) held the non-resonant case. Resonance case requires 
separate consideration. It should be noted that the averaged equation resonance case is 
not depend on static and dynamic asymmetries. This indicates that the effect on 
asymmetry cargo non-resonant portions slightly. The asymmetry is characterised by the 
dimensionless parameters Δ Δ / Δ , Δ Δ / Δ , Δ ( – ) / , / ,z y xy xyy y x z z x J J J J J J J= = = =  

/ , / ,xz xz yz yzJ J J J J J= =  where J = (Jz + Jy) / 2. Even with relatively high values of 
these parameters (about 10%), the effect of asymmetry in the non-resonant sections can 
be seen in small ‘beats’ in the amplitude of oscillation of the nutation angle, which is 
shown by numerical simulation on the original equations of motion (Zabolotnov and 
Naumov, 2012; Zabolotnov, 2013). 

The influence of asymmetry increases when it hit trajectory in the resonant region. 
Resonance regions are characterised by the conditions ωx ≈ ω1,2. From these conditions, 
we can easily obtain the resonance values of the angular velocity of rotation of the cargo 
on its own axis. Thus, the resonant angular velocity (resonance curves) are functions that 
vary slowly over time in accordance with a change in the nominal tension force of the 
tether Tn(r), which determines the frequency ω0(r). Therefore, the conditions for passage 
of the trajectory in the resonance region can be written in another: ( ) .r

x xω r ω≈  After 
passage of the trajectory of the system in the resonance region nutation angle usually 
begins to increase rapidly and the use of equations written for small angles of nutation 
becomes not valid. 

In order to apply the asymptotic analysis of the motion of the small spacecraft on a 
tether at high angles of nutation need a different approach. This approach is based on the 
method of integral manifolds. 

4 Analysis of the rotational motion of small spacecraft on a tether method 
of integral manifolds 

At constant tether tension force and the symmetric small spacecraft (if you do not take 
into account other disturbances) of the projection of the angular momentum Kx, Kxt is 
constant, that is, are the integrals of motion. Therefore, to apply the method of integral 
manifolds of vector dynamic equation (1) can be written in the variables Kx, Kxt, ωzn, 
where the angular velocity ωzn determines the oscillatory movement of the cargo in the 
plane of the nutation angle (plane cxyn, Figure 2). In these variables, dynamic and 
kinematic Euler equations take the form (Zabolotnov, 2013) 

Δ Δx s d
x x

dK M M
dt

= +
�

 (23) 

Δxt
xt

dK M
dt

=
� �  (24) 

( )( )
2 3

cos cos Δ Δ
sin

t d s
zn zn x xt x xt zn zndω M K K K K M M

dt J J J
− − +

= + +
α α

α
 (25) 

Δzn
d ω
dt

= + �α α  (26) 
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2

cos cos Δ Δ
sin

x x xt
d

x

dφ K K K φ φ
dt J J

−
= + + +� �α α

α
 (27) 

2

cos Δ Δ
sin

xt x
d

dψ K K ψ ψ
dt J

−
= + +� �α

α
 (28) 

where Δ , Δd dφ ψ� �  – amendments to derivatives of the Euler angles arising from the 
presence of a rigid body dynamic asymmetry; –Δ sin (Δ 0)t

znM xT x= >α  – righting 
moment on the strength of the tether tension; Δ , Δs s

x znM M  – components of the principal 
vector of torque, depending on the static asymmetry; Δ , Δd d

x znM M  – components of  

the principal vector of torque, depending on the dynamic asymmetry; Δ xtM�  – term 
dependent on the angular velocity of rotation of the tether system of coordinates. 

A feature of the system (23)–(28) is that the angle of the precession ψ does not 
depend on the right-hand side of equations (23)–(27). Therefore, for further analysis, 
equation (28) cannot be seen, and the change in the precession angle to find after the 
definition of the corresponding asymptotic solutions for other variables in the system. 

For unperturbed decisions are solutions of system (23)–(28), which can be obtained in 
the absence of asymmetry and tether rotation of the coordinate system for constant tether 
tension force T = const. Based on this system (23)–(28) introduced a small parameter ε by 
scaling the corresponding terms, then 

2

2
( , ) ( , , )d F x εf φ x

dt
+ =

α α α  (29) 

( , ) Φ( , , )φ
dφ ω x ε φ x
dt

= +α α  (30) 

( , , )dx εX φ x
dt

= α  (31) 

where x – vector of slow variables of the system, 

( )( )
2 3

cos cos( , ) ,
sin

t
zn x xt xt xM K K K KF x

J J
− −

= − +
α αα

α
 

2

cos( , ) cos .
sin

x x xt
φ

x

K K Kω x
J J

−
= +

αα α
α

 

In the vector of slow variables are variables that characterise the movement around the 
centre of mass of the cargo (Kx, Kxt), and components, a change which does not depend 
on the orientation and the angular velocity. The latter values are, for example, the 
programme changes the tether length and the angle of its deviation from the vertical, and 
other such variables that determine the angular velocity of rotation of the tether system of 
coordinates. Therefore, x =(Kx, Kxt, r), where r – vector of slow variables characterising 
the programme deployment STS. 
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The introduction of a small parameter in the system of equations (29)–(31) is in the 
nature of the hypothesis, the validity of which is already checked when dealing with 
specific examples where known deployment programme, the range of asymmetries, etc. 
Deployment programme STS is characterised by dependence T(r). In this case, the 
dependence of the tether tension on the vector r is similar to the dependence on the slow 
time. Construction of asymptotic solutions of the system (29)–(31) is made taking into 
account the principal resonance ωφ(α, x) = 0 (resonance of the lowest order). In this case, 
the approximate equations are described as non-resonant motion of the cargo, and in the 
vicinity of the principal resonance. To do this, the system (29)–(31) entered the slow  
time τ = μt, where μ = ε0.5, and the normalised distance to the resonant surface ρ(α, x) =  
μ–1ωφ(α, x). In this case, the system (29)–(31) is to the form 

2( , ) ( , , )dωμ F x μ f φ x
dτ

+ =
α α α  (32) 

dμ ω
dτ

=
α α  (33) 

( , ) Φ( , , )dφ ρ x μ φ x
dτ

= +α α  (34) 

( , , )dx μX φ x
dτ

= α  (35) 

The technique for constructing asymptotic solutions for systems of the form (32)–(35), 
the method of integral manifolds is given in Zabolotnov and Lyubimov (2003). 

Singularly perturbed equations (33)–(36) corresponds to the degenerate system  
(μ = 0) 

( ) ( )0 0
0 0 0 0 0, 0, 0, , , 0dφ dxF x ω ρ x

dτ dτ
= = = =αα α  (36) 

It is assumed that the equation F(α0, x0) = 0 is isolated root α0(x0), and for this root 

0F∂
>

∂α
 (37) 

Within the variables 00 0 0,  ,  ,  ,ω φ xαα  the relations (36) define the integral manifold 
whose vicinity is used to construct asymptotic solutions. 

Adjoint system method of integral manifolds in this case has the form 

( )
2

02
, 0d F x

dt
+ =
� �α α  (38) 

and determines the fluctuations of the nutation angle in the vicinity of the integral 
manifold. 

If we determine the derivative F
α
∂
∂

 and find the nutation angle of from the equation 

F(α0, x) = 0, it is easy to get 
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( ) ( )( ) ( )
2 2

0 2
0 02 4

0

2
3cos 1

sin
x xt x xtK K K K δF

J
+ −∂

= +
∂

α
α α

α α
 (39) 

where 
2

0
0 02

0

cos 3( ) cos
3cos 1

δ +
=

+
αα α
α

 and | δ(α0) | < 1. Therefore, the condition (37) holds 

for α0 ∈ (0, π). 
Asymptotic solutions of the system (32)–(35) in the vicinity of the integral manifold 

sought in the form 
( ) ( ),n ny y y z z z= + = +  (40) 

where y = (x, φ), z = (α, ωα), 2
0 1( ) ( )y y τ μy τ μ= + + …  and 2

0 1( ) ( )z z τ μz τ μ= + + …  – 

series are defining the slow motion of the system; ( ) ( )( ) 2
0 1( ) ( )n nny y t μy t μ= + + …  and 

( ) ( )( ) 2
0 1( ) ( )n nnz z t μz t μ= + + …  – series defining the slow motion of the system. 

Then, in accordance with the method used (Zabolotnov and Lyubimov, 2003), slow 
motion in the vicinity of the integral manifold is determined by the system 

( , ) Φ( , , )dφ ρ x μ φ x
dτ

= +α α  (41) 

( , , )dx μX φ x
dτ

= α  (42) 

where 2
0 1( ) ( )τ μ τ μ= + + …α α α  

From the point of view of the problem of the slow component of the solution ,y z  is 
characterised by the precessional motion of the cargo, and the fast component of the 
solution y(n), z(n) describe its fluctuations in the plane of the nutation angle. Quick 
solutions correspond to boundary components of the members in the theory of singularly 
perturbed systems. 

If we consider the case of small amplitude of nutation oscillations cargo, the 
behaviour of the members of the border for an angle α are described by the equation of 
the second order 

2 ( )
2 ( )

22

n
n

b
d ω F

dt
+ =

α α  (43) 

Here 2 / ,bω F= ∂ ∂α  where the derivative ∂F / ∂α is defined by α = α0(x0), F2 – 
perturbing function. 

For statically and dynamically symmetric cargo the original equations become 
simpler due to the fact that the angle of proper rotation is independent of other variables. 
Then the asymptotic solution of (29)–(31) are constructed directly in the small parameter 
ε, singularly perturbed system takes the form 

2
2

2
( , ) ( , )dε F x εf x

dτ
+ =

α α α  (44) 
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( , )dx X x
dτ

= α  (45) 

Asymptotic separation of motions in the system (44)–(45) is made similarly, by the 
method described above, for a more general system. As an example, consider the simplest 
case when the programme deployment STS is given as a function of the slow variables 
T(r). 

The movement on the integral manifold in this case is described by a nonlinear 
equation 

( )( )
2 3

cos cos( , ) 0
sin

t
zn x xt xt xM K K K KF x

J J
− −

= + =
α αα

α
 (46) 

Not to solve the nonlinear equation (46) at each time point, we can differentiate the 
implicit function (46) and obtain a differential equation for the slow component of the 
solution for the nutation angle 

Δ sinF d x dT
dt J dt

∂
= −

∂
α α

α
 (47) 

where the derivative dT / dt is determined by virtue of the selected programme 
deployment STS. Then, it is necessary to solve equation (46) only at the initial time. 

Quick small vibrations in the plane of the nutation angle are described by the  
equation of the second order (43), where F2 = 0 for this case. Then equation (43) has  
the classic look of an oscillator with a slowly varying frequency. In order to solve it,  
Wentzel-Kramers-Brillouin (WKB) method can be used. Zero approximation WKB 
method for the equation (43) has the form 

( ) ( ) sin ( )n
nt A t=α ϑ  (48) 

where An is the amplitude of the fast nutation oscillations depending on the slowly 
changing variables; ϑ(t) is phase of the oscillations. 

The amplitude and phase of rapid nutation oscillations are determined by the 
approximate formulas 

1 2
0

, ( )
( )

t

n
b n

C dtA t C C
ω A t

= = + ∫ϑ  (49) 

where arbitrary constants C and C1 are determined from the initial conditions. 

[ ]
2( ) ( )2( )

1 ( )
1 (0)(0) (0) , (0) .

(0)

n n
bn

b n
b

d ωC ω C arctg
dω dt

dt

⎡ ⎤ ⎛ ⎞
= + = = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟

⎝ ⎠
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Figure 5 (a) Time history of nutation angle (the case of direct precession) (b) Time history of 
precession angle derivative dψ / dt (the case of direct precession) 

 
(a) 

 
(b) 

Depending on the initial conditions at the time of detaching of the cargo, which are 
random variables, various cases of its spatial movement can be implemented. This may 
be a ‘direct’ precession, when the signs of dψ / dt and ωx are the same, and ‘reverse’ 
precession, when the signs of dψ / dt and ωx are opposite. Figure 5, as an example, shows 
the dependence of the nutation angle and derivative dψ / dt of time for the case of ‘direct’ 
precession with the initial conditions ωx(0) = 0.02 s–1, Kxt / J = 0.15 s–1. The initial 
nutation angle for precession equation (47) is then determined from the solution of the 
nonlinear equation (46), the initial nutation angle for the original equations was different 
from the precession angle by 0.3 rad. Solutions corresponding to the initial equations are 
a rapid oscillation of relatively slow components of the solution (thick lines). Figure 5 
also shows the envelope for the nutation angle (dotted line), calculated using the 
analytical solution (48). In this example, the cargo is a sphere of radius 0.2 m and mass 
20 kg with several prolate ellipsoid of inertia Jx / J = 0.8. These approximate solutions 
have shown a fairly good agreement between the results from the original model to 
evaluate the envelope of the nutation angle in a wide range of parameters Jx / J and 
nutation angle (nutation angle for the slow component of the solution can reach π / 2). 
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There was only a slight increase in the error in the evaluation of the oscillation 
amplitudes of the nutation angle to the body with a highly prolate ellipsoid of inertia. For 
example, when Jx / J = 0.1, the error is 1–3°. It should be also noted that if the 
deployment programme for STS tether tension force is given as an explicit function of 
time, the method under consideration for small fast nutation oscillations reduces the 
problem of estimating the values of the nutation angle to the use of only nonlinear 
equation (46) and the analytical solution (48)–(49). 

These results show that when the cargo on the tether symmetrical about the centre of 
mass, there are at least two characteristic time scale. The first time scale corresponds to 
the slow motion of the system and is determined by the time-dependent tether tension 
force, the second time scale corresponds to the rapid nutation oscillations with respect to 
the slow component of the solution. Considered time scales are characterised by the 
corresponding rates of change of variables in the system. The velocity of change  

in the slow variables is characterised by the parameter 1 .s
dT

T dt
=ν  For quick movement 

characteristic parameter can take the frequency νf = ωb. The ratio of these variables is a 
quantity proportional to the small parameter of the problem. Of course, this value is 
variable in the process of deploying a tether system, but still it can serve as a measure of 
the assumptions that have been taken at the beginning and which yielded in terms of 
numerical modelling is an acceptable result for the asymptotic separation of motions of a 
rigid body. For the example shown in Figure 5, the parameter νf / νs is less than 0.1, and 
the maximum for this parameter are observed in the transition from the first stage to the 
second deployment (weakening of the tension force) and under heavy braking the tether 
on the second portion of the deployment. 

5 Analysis of the resonant modes of motion of the small spacecraft on a 
tether 

Resonance phenomena in the motion of the asymmetric cargo on the tether arise at the 
intersection of the trajectory of the resonance regions, which in this case is determined 
from the condition ( ) ,r

x xω r ω≈  where the resonance angular velocity is determined for 
the linear case. The method of integral manifolds is allowed to specify the values of the 
resonance angular velocities for considerable angles of nutation. For this, it is necessary 
to express the angular velocity ωx = Kx / Jx of the conditions ωφ(α, x) ≈ 0, the variable Kxt 
determine on the integral manifold (46). Then 

Δ ( ) cos( , )r
x

x

xT rω r
J J

= ±
−

αα  (50) 

where it is used for the slow component of the nutation angle. 
Thus, if the cargo has a prolate ellipsoid of inertia Jx < J, the resonant modes of 

motion can exist at 0 < α < π/2, for the opposite case, when Jx > J – when π/2 < α < π. If 
the body is close to the field Jx ≈ J and especially not twisted, then the condition 

( , )r
x xω ω r≈ α  can be satisfied, or if the nutation angles close to π/2, or at small values of 

tether tension force T(r). In general, the expression (50) defines a space of variable (x, α) 
two symmetric resonance curves crossing which may cause resonance effects. It is also 
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necessary to note the presence of asymmetry in the angular velocity ωx is not constant, 
and there is a theoretical possibility of attraction to the resonance curve, even for cargo 
ellipsoid of inertia of the form Jx > J (Zabolotnov and Lyubimov, 1998). 

Figure 6 (a) Time history of angular rate ωx and r
xω  (resonant angular rate) (b) Time history of 

nutation angle (disturbance at pass through a resonance) 

 
(a) 

 
(b) 

When crossing the resonance curves there are two possible scenarios of behaviour of 
trajectories of the system: the passage through resonance and implementation of a long 
enough near-resonance mode of motion, when for some finite period of time dφ / dt ≈ 0. 
It is clear that in the latter case, the effect of the asymmetry of a rigid body in its motion 
increases. Figure 6 shows plots illustrating the effect of the asymmetry of a rather simple 
form (static asymmetry) Δy / Δx = 0.1 on the movement of cargo, which are symmetrical 
about the x-axis curves, correspond to the resonant angular velocities (50) and are defined 
on the integral manifold. In this example, there are implemented three passes through 
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resonance, which leads to sharp changes in the angular velocity ωx and the amplitudes of 
oscillation of the nutation angle α. The bold line in Figure 6(b) shows a slow component 
of the solution for the angle α, at which the resonance curves were determined. In this 
example, the programme is used to deploy STS, shown in Figure 3, and the following 
parameter Jx / J = 0.8, ωx(0) = 0.5 s–1, Kxt / J = 0.15 s–1. 

Despite the fact that the nutation angle varies within a wide range (passes through 
resonance lead to violation of limit α < 90°), the time of passing through resonance is 
correctly predicted by resonance curves determined in the integral manifold, although 
dependencies ωx(t) and α(t) are calculated by the original model of the motion of a small 
spacecraft [(23) to (28)]. The possible implementation of long resonant modes of cargo 
movement on the tether at no small angles of nutation and the presence of mass-inertial 
asymmetry is probabilistic in nature and requires a separate study. 

6 Effect of the release tether management system on the stability of the 
angular movement of the cargo 

Tether tension force in the implementation of programmes to deploy STS differs from 
nominal power due to operation of the control system of a tether release. Functioning of 
the control system is characterised by a transient, the quality of which depends on many 
factors (choice of feedback coefficients, inertia control mechanism, etc.). Furthermore, 
when constructing the nominal deployment programmes generally do not include tether 
elongation and other characteristics. Therefore, the tensile force of the tether can  
be formally represented as a sum (6) T = Tn + ΔT. The resulting perturbation acting  
on the angular movement of cargo is like a parametric action since it leads to a change in 
the oscillation frequency in the plane of the nutation angle. It can be seen, for example,  
if in equation (10) instead of a specific oscillation frequency ω0(r), for the unperturbed 
motion treat rate to account for this disturbance: Δ ( Δ ) / .nω x T T J= +  It is understood 
that the frequency spectrum of the perturbation depends on the above mentioned  
factors (coefficients of feedback characteristics of a tether, etc.). It is known that  
a periodic perturbation parameter acting on an oscillating system, can lead to loss of its 
stability properties (Mathieu equation). These considerations are confirmed by numerical 
examples of modelling the angular motion of a small spacecraft at deployment of STS, 
which are presented below. 

In this case, the equations of motion STS conveniently written in the geocentric 
Cartesian coordinate system associated with the plane of the orbital motion of the centre 
of mass STS. In the simplest case, a model of two material points connected by a 
weightless tensile bond. This model, despite its simplicity, has been used for many tasks 
(Beletski and Levin, 1990), then the equations of motion can be written in the form of 
STS 

,k k
k k k k

dr dVV m G T
dt dt

= = +
GG GG G

 (51) 

where k = 1, 2 – indices corresponding to the cargo and the basic spacecraft; ,k kr V
GG  – the 

radius vector and velocity in the geocentric coordinate system; mk – mass of  
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bodies; 
3

k k
k

k

m rG K
r

= −
GG

 – gravitational forces in the central field of the Earth; 

1 2
2 1 2

1 2
( )

| |
r rT T T T
r r
−

= = −
−

G GG G G
G G  – force acting on the cargo and the spacecraft respectively;  

T – module of elasticity force. 
Since the tether is not in compression, the elastic force unit is computed according to 

the law of Hooke expression 

1 2
1 2

1 2

, if 0

0, if 0

r r Lc r r LT L
r r L

⎧ − −
− − ≥⎪= ⎨

⎪ − − <⎩

G G G G

G G
 (52) 

where L – unstretched length released from the mechanism of the tether, c = EA – 
modulus of elasticity, E – Young’s modulus, A = πD2 / 4 – cross sectional area of the 
tether, D – tether diameter. 

These equations must be an attached equation operation of the brake mechanism. In 
the simplest case, when a change in inertia is neglected management (mi = const), these 
equations have the form (Zabolotnov and Naumov, 2012) 

,L
i c L

dV dLm T F V
dt dt

= − =  (53) 

where L and VL – unstretched length of tether and its velocity of release, Fc – control 
force, mi – mass characterising the inertia control mechanism. In accordance with the 
principle of force Fc feedback given in the form 

Δ Δc cn L L V LF F p p V= + +  (54) 

where pL, pV – feedback coefficients, Fcn – nominal driving force, ΔL = L – Ln,  
ΔV = V – Vn – control error. If inertia is neglected mi → 0, it is believed T = Fcn and 
elongation tether neglected. 

Modelling of controlled motion STS using the above equations corresponds to the  
so-called ideal controller, since it does not take into account many of the features of the 
control system (discrete, delay, etc.). However, a rough estimate of such models is quite 
suitable. If the system is unstable with perfect control, then the simulation of controlled 
motion in more complex models of sustainability cannot speak. 

In this model, we can estimate the influence of parameters of the control system, the 
inertia of the brake and the extensibility of the tether on the deployment of tether system. 
Without considering the problem as a whole, we gave examples of the instability of the 
angular motion of the small spacecraft with an unhappy choice of the feedback 
coefficients pL, pV. Particularly sensitive to this point of view the initial portion of the 
deployment (immediately after the removal of the goods), and (for software deployment, 
corresponding to Figure 3) plot intensive acceleration and deceleration of cargo (the 
second stage of the deployment in the mission YES2). 
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Figure 7 shows an example of the loss ustochivosti angular movement of cargo 
during unfortunate choice of the feedback coefficients (they are too large: pL = 1.5,  
pV = 1.4). Figure 7(b) shows the dependence tension force from time to time, which 
shows the areas of tether slack. At these sites the rotation cargo is inertial and after a few 
such sites buckling of its angular motion, and nutation angle reaches about 180 degrees 
Figure 7(a). However, if the value of feedback coefficients is small enough (pL = 0.005, 
pV = 0.4) that the angular movement of the capsule with the same input data is stable and 
the angle of nutation of the initial section is not more than 10 degrees (no tether slack 
portions). The graphs shown in Figure 7, constructed with the following initial data:  
ES = 7,069 N, mu = 0.6 Kg, α(0) = 8°, ωn(0) = 0, ωx(0) = 0.05 s–1. 

A similar effect is characterised by the instability of the motion for the second stage 
deployment STS (Figure 3, t > 6,000 s). Such example in article (Ishkov and 
Zabolotnova, 2010) is considered. 

Figure 7 (a) Time history of nutation angle (instability in the initial portion of a tether 
deployment) (b) Time history of tension force with patches tether slack (see online 
version for colours) 

 

(a) 

 

(b) 
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7 Conclusions 

In this article, we systematised and analysed the main factors leading to instability of 
motion of a small spacecraft with respect to the centre of mass at STS deployment. These 
factors include: 

1 abrupt changes in the nominal tether tension force 

2 static and dynamic asymmetry cargo recurrent rise to resonant modes of motion 

3 the initial error cargo compartment 

4 a bad choice of the feedback coefficients in the regulation of the release of the tether 
in the initial part deployment system (after the removal of the goods) 

5 regulation unintended release tether on the stage of rapid deployment STS, 
consisting of portions of acceleration and deceleration. 

All of these factors must be considered when designing space missions, for transporting 
cargo via STS. For this, there can be used mathematical models of STS movement and 
analyses presented in the article. 
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