Mechanical characterisation of a scaffold under monotonic and cyclic loading conditions
by Yu-Hsiu Hsu; Colin Lupton; Jie Tong; Andy Cossey; Ada Au
International Journal of Experimental and Computational Biomechanics (IJECB), Vol. 2, No. 4, 2014

Abstract: Loading from daily activities or from intensive exercise can lead to increased risk of fracture. Implants designed for load bearing purposes, such as repair of articular cartilage and underlying subchondral bone in knees must have the necessary mechanical competence under long term physiological loadings. In this study, the mechanical behaviour of a polymer-based osteochondral scaffold was examined under monotonic and cyclic loading conditions in a phosphate buffered saline solution at 37°. Monotonic compression tests at selected strain rates were performed in both confined and unconfined conditions to investigate the influence of confinement. The effects of strain rate and sample composition on mechanical properties were also studied. Multi-step cyclic tests were carried out with increasing compressive loads. Changes in secant modulus and residual strain accumulation are monitored. The secant modulus and the number of cycles to failure of the scaffold are obtained and compared with those of human trabecular bone (Topolinski et al., 2011).

Online publication date: Wed, 17-Dec-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Experimental and Computational Biomechanics (IJECB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com