Exergetic performance of a cylindrical methane-air microcombustor under various inlet conditions
by M.E. Feyz; J.A. Esfahani
International Journal of Exergy (IJEX), Vol. 15, No. 3, 2014

Abstract: The entropy generation analysis is performed on a methane-air cylindrical microcombustor. The combustor is studied under different fuel-air equivalence ratios and two different inlet velocities. The results reveal that entropy generation due to heat transfer has the highest contribution to the total exergy destruction. Besides, the chemical and mixing entropy generations have the next greatest parts in the total irreversibility, respectively. The fuel-air equivalence ratio considerably affects the exergy efficiency of the system. This study shows that the microcombustor has the lowest irreversibility ratio near the stoichiometric conditions depending on the inlet velocity. Also the analysis shows that at Φ = 1.1 irreversibility ratio abruptly rises at both inlet velocities which highlights the great contribution of entrance region in the exergy destruction. Meanwhile in the present work, it was noticed that the irreversibility ratio reduces again when the fuel-air ratio exceeds Φ = 1.1. This observation poses the possibility of operating cylindrical micro combustors under rich conditions.

Online publication date: Thu, 30-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com