Encrypted integer division and secure comparison
by Thijs Veugen
International Journal of Applied Cryptography (IJACT), Vol. 3, No. 2, 2014

Abstract: When processing data in the encrypted domain, homomorphic encryption can be used to enable linear operations on encrypted data. Integer division of encrypted data however requires an additional protocol between the client and the server and will be relatively expensive. We present new solutions for dividing encrypted data in the semi-honest model using homomorphic encryption and additive blinding, having low computational and communication complexity. In most of our protocols we assume the divisor is publicly known. The division result is not only computed exactly, but may also be approximated leading to further improved performance. The idea of approximating the result of an integer division is extended to similar results for secure comparison, secure minimum, and secure maximum in the client-server model, yielding new efficient protocols with demonstrated application in biometrics. The exact minimum protocol is shown to outperform existing approaches.

Online publication date: Sat, 16-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Cryptography (IJACT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com