A novel hybrid GAX-ejector absorption refrigeration cycle with an air-cooled absorber
by A.S. Mehr; S.M.S. Mahmoudi; M. Yari; A. Soroureddin
International Journal of Exergy (IJEX), Vol. 13, No. 4, 2013

Abstract: A novel hybrid generator-absorber heat exchange (GAX)-ejector absorption refrigeration (hybrid GAX-E) cycle, with ammonia-water as working fluid, is proposed and analysed in detail. Thermodynamic models are developed for the hybrid GAX-E, hybrid GAX, simple GAX and single effect ammonia-water absorption refrigeration cycles. A comparison among the performances of these four cycles, at an absorber temperature of 70°C and a generator temperature of more than 170°C, shows that the coefficient of performance (COP) of the hybrid GAX-E cycle is higher than those of the other three cycles. The maximum COP for the hybrid GAX-E cycle is around 1.8 which is about 20%, 125% and 260% higher than the corresponding values for the hybrid GAX, the simple GAX and the single effect cycles, respectively. Results indicate that as the ejector expansion ratio increases from 6.1 to 8.8, the COP of the hybrid GAX-E cycle decreases by up to 53.3%.

Online publication date: Sun, 08-Dec-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com