

 4 Int. J. Creative Computing, Vol. 1, No. 1, 2013

 Copyright © 2013 Inderscience Enterprises Ltd.

The creative turn: new challenges for computing

Andrew Hugill* and Hongji Yang
Creative Computing Cluster,
Bath Spa University,
Newton Park, Bath, BA2 9BN, England, UK
E-mail: a.hugill@bathspa.ac.uk
E-mail: h.yang@bathspa.ac.uk
*Corresponding author
Abstract: This is a call to action. The time is ripe for a creative turn in
computing. This article sets out a vision of what Creative Computing is and
what it might become. It distinguishes between Creative Computing and
computational creativity, and then lays out a theoretical framework. It proposes
that Creative Computing is mainly happening in software. It compares the
process of software development with the process of artistic creation and looks
at ways in which the two might productively overlap or merge. It considers the
levels of abstraction required in both and interrogates both their semantics and
underlying principles from a philosophical and practical point of view. Finally,
it sets three types of new challenges for Creative Computing in terms of
software.

Keywords: creative; computing; challenges; abstraction; levels; composition;
engineering; creativity; turn.

Reference to this paper should be made as follows: Hugill, A. and Yang, H.
(2013) ‘The creative turn: new challenges for computing’, Int. J. Creative
Computing, Vol. 1, No. 1, pp.4–19.

Biographical notes: Andrew Hugill is the Director of the Creative Computing
Cluster at Bath Spa University. He has been working in digital creativity since
the 1980s. He is a Research Professor and composer. He is a panel member of
the European Research Council. His book The Digital Musician (Routledge
2008, 2012) is a standard text on most music technology degree programmes.
Other monographs include Pataphysics: A Useless Guide (MIT Press, 2012).
His current research includes developing a creative search engine, and writing
an online opera in collaboration with the The Opera Group. He is a National
Teacher Fellow of the Higher Education Awards and was highly commended
in the 2006 Times Higher Education Awards for ‘the most imaginative use of
distance learning’.

Hongji Yang is the Deputy Director of the Creative Computing Cluster at
Bath Spa University. He obtained his PhD degree at Durham University.
His research interests cover computer organisation, networking, software
engineering and recently creative computing, and he has published in all these
areas (five books and well over 300 refereed papers). He was the Deputy
Technical Director for the Software Technology Research Laboratory at De
Montfort University, which accommodated over 100 PhD students. He has
been an organiser for several leading international conferences, such as the
IEEE International Conference on Software Maintenance and the IEEE
Computer Software and Application Conference. It is planned that he will chair
the IEEE International Symposium of Creative Computing 2014 in Oxford. He
is devoted to developing current research into conducting computing in a
creative way.

 The creative turn: new challenges for computing 5

1 Creative Computing

It is important to differentiate between the terms ‘Creative Computing’ and
‘computational creativity’. Intuitively the former is about doing computations in a
creative way, while the latter is about achieving creativity through computation. You can
think of the latter falling into the artificial intelligence category (using formal
computational methods to mimic creativity as a human trait) (Colburn and Shute, 2007)
and the former being a more poetic endeavour of how the computing itself is done, no
matter what the actual purpose of the programme might be (Hugill et al., 2013).

Creative Computing seeks to reconcile the objective precision of computer systems
(mathesis) with the subjective ambiguity of human creativity (aesthesis). This underlying
tension has a profound impact upon the creation of digital culture itself, in ways that are
frequently unacknowledged or poorly understood. In many cases, artists and people
working in the humanities accept the unambiguous constraints of computer systems
because they have the appearance of a neutral authority, of scientific ‘fact’. However,
computers are created by people, and there is no reason why they cannot better adapt to
serve the needs of the creative community.

Although human beings increasingly turn to computers as aids to creativity, the way
the software is engineered frequently enforces compromise or, worse, inhibits creativity
through unwelcome constraints. This is not to deny the potential creative benefits of
constraints, but is simply a recognition of the relative lack of sophistication of existing
software. Nor is this necessarily an argument for improved simulation, a form of machine
intelligence that takes us closer to the model of the human brain (although simulation
may prove to be one of the key aspects of the evolution of Creative Computing). It is
rather a challenge for software to become a more effective servant of people by being
more adaptive, smarter and better engineered to cope with frequent changes of direction,
inconsistencies, irrelevancies, messiness and all the other vagaries that characterise the
creative process.

In his Strachey Lecture to the University of Oxford, Anthony Finkelstein of
University College London, identified ten ‘Open Challenges’ in software engineering
which come close to the kinds of issues that drive Creative Computing. These include a
move away from current anecdotal practices towards an ‘evidence-based’ approach that
engages with social media more effectively, a weaving together of architectures and
requirements (what Finkelstein calls ‘twin peaks’) to produce detailed integrated
specifications, and a convergence of web and software engineering standards that can
handle large scale and rapid variations in demands (Finkelstein, 2011). Clarke et al. also
identify a need to improve engineering practices by developing software that evaluates,
changes and improves itself and by “making N people N times as productive as one”
(Clarke et al., 1999). We would substitute the word ‘creative’ for ‘productive’. Finally,
Broy (2006) makes the point that “tackling the daunting challenges of complex software
systems development requires a broad stream of research supported by several new
technical competencies, including a good understanding of system modeling, the
effective use of models, and a modelling theory of discrete event systems”.

Computing, in its search for new challenges, is increasingly addressing the question
of how best to serve human creativity. Whereas computing traditionally crosses various
levels of abstraction in its path from user requirements (high level) to machine language
(low level), the challenge facing Creative Computing is to do so creatively. This
represents a new level of sophistication for computing. Current creative applications are

 6 A. Hugill and H. Yang

ones to which creative people must adapt if they are to realise the potential they contain.
All too often, this involves compromise and simplification of the creative idea. The kind
of disambiguation required for effective computing affects precisely that ambiguity
which makes creativity worthwhile. This has an obvious semantic consequence, but is
more profoundly located at the level of system design and engineering.

The need for this creative turn is clear. Modern problems are too complex for human
beings without tools to solve. The solutions are transdisciplinary; they invariably require
input from several disciplines. Computing is the common factor that links these
disciplines. Laboratory studies have only limited relevance, because computer
simulations are generally preferable. The natural sciences are also insufficient as they
reach the limits of the knowable and necessarily move into purely digital domains. Nor
are such limitations confined only to the sciences. The arts and humanities, too, address
large and complex questions that are unknowable by a single scholar. Collaboration is
becoming the modern mode for studying these complex questions. In all cases, it is
computing that substrates human scholarship and enquiry. Yet, the computer systems
themselves have inherent limitations that are the consequence of their inability to respond
creatively to the challenges presented to them. This is the objective of Creative
Computing: to engineer systems that may provide satisfactory creative tools for users in
all spheres of human endeavour.

To achieve this requires an increased understanding of human creativity and
collaboration between creative people and software engineers. In particular, a mapping of
the creative process needs to be undertaken in such a way that does not compromise the
layers of ambiguity and uncertainty that are its main characteristics. This mapping will
provide the basis for the reformulation of an approach to software engineering that will
reflect this in vivo knowledge. In particular, software applications that continuously
rewrite themselves in real time in response to the creative needs of the particular problem
or question will be the primary outputs of Creative Computing. Advances towards this
ideal are already being made, but there is still a great distance to travel. Previous theory
has some value in helping to identify the best ways forward, but also some key
weaknesses that the creative turn will address.

2 The creative turn

The creative turn will be both local and global. To take one illustrative example of this
phenomenon: on 12th November 2011, Mr. Liu Binjie, Director of Press and Publication
Administration for the Chinese Communist Party observed during the China Copyright
Annual Meeting in Beijing that the creativity component of many domestic cultural and
artistic products is very low, with more than 90% being copies. This perception of a
creative lack reflected the Chinese Government’s identification of creativity as a national
priority. As Michael Keane has argued, their aspiration is to replace the familiar label
‘Made in China’ with ‘Created in China’:

“A great new leap forward is imminent. The ‘world factory’ is no longer the
default setting for development. China aspires to be a serious contender for the
spoils of the global cultural and service economies.” (Keane, 2007)

 The creative turn: new challenges for computing 7

Western cultures have demonstrated the value of creativity over many centuries, and are
consequently seen to have a ‘head start’ on the Chinese. Nevertheless, it is realistic to
predict that their efforts will rapidly bear fruit, both at the local and global levels. These
fruits will, by definition, be both novel and surprising. Given the high level of Chinese
expertise in engineering, it also seems likely that new approaches to software engineering
will be part of the process towards more creative practice.

These local and global levels reflect the two types of creativity identified by Boden
(2003):

• P-creativity (short for psychological creativity), which is the personal kind of
creativity that is novel in respect to the individual mind

• H-creativity (short for historical creativity), which is fundamentally novel in respect
to the whole of human history.

Boden says that creative ideas are surprising because they go against our expectations.
“The more expectations are disappointed, the more difficult it is to see the link between
old and new” (Boden, 2003). This suggests that fewer expectations (an open mind) allow
creativity to happen more easily. Empirical experiences (Ritchie, 2007) form
expectations, which hinder our ability to accept creative ideas when they happen. In order
to be able to recognise creative ideas we need to be able to see what they all have in
common and in what way they differ and not reject unusual, unexpected ones:

“Unless someone realises the structure which old and new spaces have in
common, the new idea cannot be seen as the solution to the old problem.
Without some appreciation of shared constraints, it cannot even be seen as the
solution to a new problem intelligibly connected with the previous one.”
(Boden, 2003)

This is in essence the challenge that faces Creative Computing, whether in China or
elsewhere. The shared constraints that need to be appreciated concern crossing levels of
abstraction, tools and environments, user requirements and acceptance, and so on. On
close examination, these are a matter of considerable disagreement within computing,
both from a formal or theoretical perspective and from a more pragmatic, engineering
point of view. Yet, they are precisely the old problems which require a new solution. The
lack of realisation of this structure has consequently enforced ignorance of the creative
aspects of software engineering.

There is today a proliferation of more or less effective ‘apps’ that are designed to
support and enable creative activities. But there is much more that could be done both to
engineer software in a more creative way and, most importantly, to place sophisticated
creative tools at the service of humans. In the present situation, people often (even
always) have to adapt their practices to suit the software, rather than the other way
around, e.g., people need to code in a computing language that a machine can understand
before a task can be computed. The challenges posed by creativity have been generally
overlooked, yet they are among the most important facing humanity. Creative solutions to
complex problems are widely agreed to be the most desirable, but where are the tools that
are specifically designed to help achieve these?

 8 A. Hugill and H. Yang

3 Creative Computing: a software challenge

We argue that Creative Computing is almost exclusively a software engineering
challenge, because of its position within the traditional ‘Three Paradigms’ of computing
(Eden, 2007):

• The rationalist paradigm, which was common among theoretical computer scientists,
defines computer science as a branch of mathematics, treats programmes on a par
with mathematical objects, and seeks certain, a priori knowledge about their
‘correctness’ by means of deductive reasoning.

• The technocratic paradigm, promulgated mainly by software engineers, defines
computing as an engineering discipline, treats programmes as mere data, and seeks
probable, a posteriori knowledge about their reliability empirically using testing
suites.

• The scientific paradigm, prevalent in the branches of artificial intelligence, defines
computer science as a natural (empirical) science, takes programmes to be entities on
a par with mental processes, and seeks a priori and a posteriori knowledge about
them by combining formal deduction and scientific experimentation.

These paradigms provide a philosophical basis for the study of the methodology,
ontology and epistemology, of computing, by treating them as either a branch of
mathematics, or an engineering discipline, or a natural science.

We argue that both the rationalist paradigm and the scientific paradigm are inimical
to creativity. This is because mathematics and science are ‘rigid’ approaches which
require the identification of truth and the elimination of ambiguity. The technocratic
paradigm, on the other hand, is flexible or ‘not rigid’ and hence creative. Given that there
are three main elements in computing: hardware, software and communications, we
observe that both hardware development and communications development follow
mathematical and physical laws, leaving little room for creativity. Software, by contrast,
has always involved some degree of creativity. Creative Computing will aim to develop
and increase this creative component.

This delimitation of the field of Creative Computing is however not restrictive,
because there are many different disciplinary perspectives from which to approach the
topic. A few examples will illustrate the point.

An Engineering perspective would see Creative Computing as an engineering
artefact, designed, tested and deployed using engineering methods, relying heavily on
testing and inspection for validation. Selinger (2004) listed a number of creative
engineers and their famous inventions, such as: Lonnie Johnson (SuperSoaker), Hedy
Lamarr (spread-spectrum telecommunications), Shuji Nakamura (gallium nitride-based
optoelectronics), Linus Torvalds (Linux), Randice-Lisa Altschul (disposable cellphone),
Steve Wozniak (Apple II), Dean Kamen (Segway), Tim Berners-Lee (World Wide Web).

A Mathematical perspective would see Creative Computing as a theory which can be
analysed for consistency and then refined into a more specialised theory.

A Cognitive Science perspective would see Creative Computing as a non-human
agent, with its own personality and behaviour, defined by its past history and structural
makeup.

A Social perspective would see Creative Computing as a social structure of software
agents, who communicate, negotiate, collaborate and cooperate to fulfil their objectives.

 The creative turn: new challenges for computing 9

All these perspectives (and there may well be others from Psychology, from
Neuroscience, from Art, and so on) have something to contribute to the formation of our
understanding of Creative Computing. In great measure, it will be the combination of
these perspectives into transdisciplinary methodologies that will offer the greatest
potential for progress in the field. Part of the aim of Creative Computing is to overcome
the disciplinary boundaries that traditionally demarcate these approaches.

4 Comparison of creativity in music composition and software engineering

The first step towards understanding how Creative Computing may be implemented is to
compare an undoubtedly creative process (in this case, music composition) with the
process of software engineering. The nature of the creative process in art is famously
elusive and subject to numerous conditioning factors. Nor is it, of course, the only form
of creativity. But artistic creativity and Creative Computing have a number of features in
common, as well as some subtle, yet important, differences. These provide an indication
of the nature of the challenge facing computing if it is to become creative. Let us
compare, therefore, the elements of the process of artistic creation for purposes of
comparison with those of Creative Computing. In this instance, we will consider musical
creation, but there are enough general similarities with other art forms for this to stand for
all.

4.1 Creativity in music composition

Musical creativity consists of several interacting layers of activity (see Figure 1). Note
that these will vary in weight and significance, depending on the project. Each is subject
to numerous variables which will also change over time as the creative process unfolds.
There are both external and internal factors that may condition a work’s creation. In other
words, the ‘user requirements’ may be dictated by external clients (commissioners,
producers, performers, and so on) or by the composer him or herself. Note also that
‘composer’ here refers to the originator of the work, but this model is not constrained to
the traditional authorial figure: an improviser (as in jazz) may be a composer, engaged in
real-time composition. The principle even extends as far as an interpretative performer,
whether this be a human being or a computational device or other machine. To some
extent, all of these are working through the layers outlined below.

Figure 1 Musical creation: steps

Motivation
|

Formulation
|

Creation
|

Dissemination
|

Revision

 10 A. Hugill and H. Yang

Motivation in its simplest form comprises the question ‘Why compose?’ The possible
answers are many and varied, ranging from the personal (inspiration, reaction to
something, ‘just because...’, etc.) to the external (a commission, a request, a concept,
etc.), or some combination of these. For a fuller discussion, see Hugill (2012).

Formulation comprises the early decisions about the composition. These may be
subject to later revision as the process of creation unfolds. Typical early decisions cover
both parametric and formal concerns. So, for example, the composer might decide at this
stage on the instrumentation, duration, context, and influences (or models) that will shape
the work. He/she may decide whether to work with sounds or notes, or a combination of
those, and hence what type of notation (if any) will be used. The issue of the likely
performance or dissemination will also be a key factor, including such questions as which
musicians or instruments are to be involved, the venue for performance, or the way in
which the work will be received, and so on.

Having established these wider constraints, some formal issues will most likely arise.
Will there be a predefined structure (such as a verse-chorus-verse-chorus song, for
example) to the composition? Will it be written ‘top-down’ by filling in the structure with
musical content, or will it be ‘bottom-up’, beginning with a musical idea which is then
grown and developed, or, as very often happens, somewhere between the two? How will
the musical material be organised? Is there some kind of compositional system or
procedure at work such as a structuring principle or pitch organisation? If so, will this be
audible in the finished work?

Finally, practical considerations will come to the fore: what are the right tools for the
job? Which instruments, software, paper, musicians, to use for the creation of the
composition (rather than the finished piece, although these might well end up being the
same)?

These kinds of decisions may be taken in any order and with varying degrees of
weight or time given to each. Many of the decisions may not be consciously taken at all,
especially when the composer is working in a way which is very familiar to them or the
result of genre conventions. Often, reducing the amount of time spent on such
decision-making is seen as a way to greater fluency and professionalism in composition.

Creation is the part of the compositional process that most people would recognise as
creative. This is where the music itself is actually made, and is essentially a recursive
process of origination, contemplation, and decision-making, intercalated with distraction,
abandonment, certainty and doubt. Typical decision-making chains go: imagine
something – realise it – listen to it (either in head or as sound) – evaluate it (using critical
judgement) – keep or discard. Each of these stages may take any amount of time. When
composing quickly (freely and easily), the whole process is compressed, sometimes to the
point of apparent invisibility. Improvisation is the most obvious example of this.

There is always room for rehabilitation of discarded material, either in actuality or as
a memory, depending on circumstances. The mind tends to flick back and forth between
‘creative’ origination and ‘reflective’ criticism. Too much of either can be bad for the
finished result – a balance must be achieved. Too much naked creativity tends to lead to
incoherent results. Too much criticism leads to creative blockage and awkward
production. In many cases, a simple ‘that works’ is sufficient, but on other occasions the
judgements may be more considered: how does it work? Is there another way of making
it fit? Maybe there is more work to do to make this ‘work?’ And so on. In many cases,
the relationship with a model (i.e., something already heard, or a previous composition) is
a crucial jumping-off point.

 The creative turn: new challenges for computing 11

Composers tend to constantly juggle the relationship between the macro (formal
structure) and the micro (moment to moment). There is also the issue of horizontal (i.e.,
linear) and vertical (i.e., overlaid) composition. Sometimes one layers up, linear fashion.
Other times one works vertically and creates textures. In many cases it is a bit of both.
Deciding when a piece is finished is often very difficult. Some composers never really
finish their works. Others just let them go after a time, or are forced to do so by
circumstance.

It should also be said that there is something mysterious about the process of artistic
creation. This mysteriousness persists despite the large amounts of neuroscientific and
psychological research that has been done on creativity. It arises from the fact that some
aspects of the creative process emanate from the subconscious mind. For many artists,
accessing these subconscious processes is a creative goal in itself, and there is a natural
wariness, even horror, of post-hoc rationalisations of creativity such as those described in
this section of this article. There are numerous well-known examples of subconscious
creativity, from Igor Stravinsky’s famous statement “I was the vessel through which Le
Sacre du Printemps passed” to Paul McCartney’s oft-repeated story that he dreamt
Yesterday and awoke convinced he had heard it somewhere before, until further
investigation revealed that it was in fact original.

Dissemination in music takes many forms, of which the most familiar are the concert
performance, the broadcast and the issue of a recording. These are points of actualisation,
during which, often for the first time, it is possible for the artist to listen more objectively.
People’s reactions and critical comments can be formative at this stage. One must take a
view whether to accept or ignore them, and to consider whether revisions might be made.
The music now has a ‘life of its own’.

Revision is optional, but quite common. Many compositions have been substantially
rewritten after the first performance. On the other hand, it can be (in fact often is) best
just to leave them to make their own way in the world.

4.2 Creativity in software engineering

Let us begin with the astonishing similarities between the process of musical creation
described above and the process of software engineering. Figure 2 describes the software
development process, whose layers closely echo those of musical creation depicted in
Figure 1:

Figure 2 Software development: steps

Requirements Engineering
|

System Design
|

Coding
|

Operation
|

Evolution

 12 A. Hugill and H. Yang

We may firstly observe that, to be truly creative, the software must be able to solve the
problem of human creativity in all its manifestations. The aspects of creativity that are
most highly valued (Boden, 1998) are the ones that the software must be capable of
exhibiting. This will inevitably lead to complexity, with the involvement of multiple
disciplines and multiple users, all with different demands and constantly varying user
requirements. There will be a high level of wastage and entropy in any creative process.
Repetition and variation present specific problems. Finally, there is the problem of
verification: how may we measure increased creativity, and how do we evaluate its
quality?

The Guide to the Software Engineering Body of Knowledge (SWEBOK) (Abran and
Moore, 2004), for which there is no equivalent in music composition, identifies the
following steps in software development, which we here annotate with observations
about the specific needs of Creative Computing.

Requirements engineering is widely used to denote the systematic handling of
requirements. The SWEBOK states: “Software requirements should be stated as clearly
and as unambiguously as possible, and, where appropriate, quantitatively. It is important
to avoid vague and unverifiable requirements which depend for their interpretation on
subjective judgment (“the software shall be reliable”; “the software shall be
user-friendly”)”. This is where we encounter the first significant challenge to established
orthodoxies. Creativity, far from stating its requirements clearly and unambiguously,
actually often requires vague and unclear statements. Furthermore, these are invariably
qualitative. Examples: “I want something that works”, “I want something that seems to
express <emotion>”, “I want something that breaks out of the norm”.

User requirements include both functional and non-functional requirements. The
functional requirements will vary enormously depending on the forms of creativity being
engineered. There is no single functional requirement for creativity per se.
Non-functional requirements is, once again, user-defined on the fly. However, there is a
degree of compromise: users cannot spend their time constantly re-defining their
requirements. This in itself would become a barrier to creativity. Instead, the software
automation must be able to deduce to redefinitions of requirements over time, based on
probabilistic principles.

There is a paradox here. While the SWEBOK states that goals are often ‘vaguely
formulated’, in fact creative goals are often very precisely formulated. For example: “I
want to write a string quartet lasting 10 minutes for the X Quartet to perform in a concert
of mixed classical and new work on such and such a day. Furthermore, the X Quartet has
a reputation for playing microtonal music, so I want to write in a microtonal way, but not
using the familiar clichés of such music from Haba onwards. I want to develop my own
style in this music, which extends my previous work. And I want the piece to reflect my
feelings about a recent tragedy”. We could go even further in detailing these particulars.
An alternative, ‘bottom-up’ set of goals might be: “I want to take the following set of
timbres, pitches and rhythms and create a 10 minute string quartet that builds over time a
structure that has an underlying sense of unity, etc. etc.” It is the creative process itself
which is much less precise.

The software engineers must have knowledge of the creative domain, but for this to
be truly effective the creative people must also have knowledge of the software
engineering. The software engineer needs to ‘identify, represent, and manage the
‘viewpoints’ of many different types of stakeholders’ rather more in the creative sector
than in traditional industries. The operational and organisational environments are also

 The creative turn: new challenges for computing 13

crucial, as per the SWEBOK. However, we may say that the creative environment is also
a conceptual environment, in a way that a call centre, for example, is not.

Our observations are as follows. For Creative Computing the software must be
constantly rewritten since the parameter specifications will constantly vary. The
parameters of process requirements will also be constantly rewritten by the users. Clearly,
Creative Computing cannot be restricted to a single platform. The main system
requirement, therefore, is cross-compatibility. User requirements are specifically ruled
out of this definition by the SWEBOK, but they are the crucial aspect for Creative
Computing.

The elicitation techniques given in the SWEBOK are all appropriate to Creative
Computing requirements. The SWEBOKs model clearly implies a fixed development/use
sequence. In Creative Computing, however, the process model should be continuous and
never-ending, since usage will only continue to develop new life cycles and processes.
The profile of the Process Actors is typical, except that the customers, users and markets
are in the creative sector. Process Quality and Improvement are practical matters that will
be defined by each project. This is a highly important aspect of the challenges facing
Creative Computing and relies on effective transdisciplinary collaboration between the
creative sector and the software engineers. This collaboration will itself throw up many
ontological and semantic issues.

System design (Abran, 2004) is at once “the process of defining the architecture,
components, interfaces, and other characteristics of a system or component” and “the
result of [that] process”. Viewed as a process, system design is the activity in which
software requirements are analysed in order to produce a description of the software’s
internal structure that will serve as the basis for its construction. It must also describe the
components at a level of detail that enable their construction. System design plays an
important role in developing software: it allows software engineers to produce various
models that form a kind of blueprint of the solution to be implemented. We can use the
resulting models to plan the subsequent development activities, in addition to using them
as input and the starting point of construction and testing.

System design consists of two activities that fit between software requirements
analysis and software construction:

• software architectural design (sometimes called top-level design): describing
software’s top-level structure and organisation and identifying the various
components

• software detailed design: describing each component sufficiently to allow for its
construction.

Software construction (Abran, 2004), or coding, refers to the detailed creation of
working, meaningful software through a combination of coding, verification, unit testing,
integration testing, and debugging. The software construction process itself involves
significant software design and test activity. It also uses the output of design and provides
one of the inputs to testing, both design and testing being the activities. Software
construction typically produces the highest volume of configuration items that need to be
managed in a software project (source files, content, test cases, and so on).

The Operation stage of a system just shows that the system is running, serving the
purpose for which it was constructed. Software development efforts result in the delivery
of a software product which satisfies user requirements. Accordingly, the software

 14 A. Hugill and H. Yang

product must change or evolve. Once in operation, defects are uncovered, operating
environments change, and new user requirements surface.

Software maintenance (Abran, 2004), or Evolution, is the totality of activities
required to provide cost-effective support to software. Activities are performed during the
pre-delivery stage, as well as during the post-delivery stage. Pre-delivery activities
include planning for post-delivery operations, for maintainability, and for logistics
determination for transition activities. Post-delivery activities include software
modification, training, and operating or interfacing to a help desk. The Evolution phase of
the life cycle formally begins following a warranty period or post-implementation
support delivery, but in fact maintenance activities occur much earlier. Software
maintenance is an integral part of a software life cycle. However, it has not, historically,
received the same degree of attention as the other phases.

Software development has historically had a much higher profile than software
maintenance in most organisations. This is now changing, as organisations strive to
squeeze the most out of their software development investment by keeping software
operating as long as possible. Concerns about the Year 2000 (Y2K) rollover focused
significant attention on the software maintenance phase, and the Open Source paradigm
has brought further attention to the issue of maintaining software artefacts developed by
others.

4.3 Crossing levels of abstraction

Given its importance to software engineering as well as computing, it might be assumed
that abstraction is a well understood concept. On closer inspection that turns out not to be
the case. In software engineering, abstraction is a cornerstone of the development process
and is habitually used in a way that resembles mathematical concepts. This masks a more
challenging reality, that, as Colburn and Shute (2007) propose: the distinction between
abstraction in mathematics and abstraction in computing lies in the fact that in
mathematics abstraction is information neglect whereas in computing it is information
hiding (Parnas, 1976). That is, abstractions in mathematics ignore what is judged to be
irrelevant (e.g., the colour of similar triangles). By contrast, in computing, any details that
are ignored at one level of abstraction (e.g., Java programmers need not worry about the
precise location in memory associated with a particular variable) must not be ignored by
one of the lower levels (e.g., the virtual machine handles all memory allocations).
Nevertheless, the concept of an abstraction is fundamental to software development
because this is probably the best way to decompose a complex task into subtasks that
may be effectively understood by human beings.

When we consider artistic creation, on the other hand, the word ‘abstract’ takes on a
different meaning. In painting, for example, it refers to non-figurative imagery, that is to
say iconography that does not appear to depict anything beyond itself. In music, the
meaning is somewhat similar: sounds that have no meaning beyond themselves heard as
(musical) sounds. This stands in contradistinction to what is often called ‘programme
music’, which implies some kind of associated narrative. In some cases this is very
explicit ‘storytelling’, in other cases it is more of musical argument. In both cases, it
tends to lead to the idea that music might be a language. It is beyond the scope of this
paper to discuss that idea, but suffice to say it has been very vigorously contested (see,
for example, Dahlhaus, 1991).

 The creative turn: new challenges for computing 15

5 Proposed framework for Creative Computing challenges

A new framework for tackling Creative Computing challenges must address the
following questions:

• What are the reasons for having challenges in Creative Computing?

• What are the types of Creative Computing?

• What are possible mechanisms of developing Creative Computing?

• What is a suitable research method for studying Creative Computing?

5.1 Reasons for challenges in Creative Computing

In Creative Computing, as in software engineering, a significant portion of the process
takes place in an abstract space between the concrete realities of user requirements (high
level) and machine processes (low level). This space consists of abstract models and
temporarily concretised representations. Since the overall process is driven by concrete
realities, there are various constraints upon these models and representations that
condition their nature. We are theorising that there are layers of abstract reality and that
the motions between these layers is crucial to the nature of the completed outcome. We
may call this the creative process. It takes place in conception rather than reality. The
representations may in themselves be concretised, but they are only evidence of the
existence of a conceptual process and have no value beyond assisting that process.

We propose to use four layers of abstraction, which correspond to the layers already
identified in the creative process and software engineering. Each of these proceeds
towards concretisation, as shown in Table 1:
Table 1 Layers of abstraction

Artistic creation Software engineering Layer of abstraction

Motivation User requirements Abstract
Formulation System design Less abstract
Creation Coding Less concrete
Dissemination/revision Operation/evolution Concrete

Each of these layers may be an action or an end result or even a combination of the two.
In order to distinguish the Creative Computing model from the existing models above,
and to suggest the synthesis between artistic and software creation, we propose the
following four layers:

Figure 3 Creative computing: steps

Motivation (digitised thinking)
|

Ideation (design sketch)
|

Implementation (creative system)
|

Operation (effect of system/revision)

 16 A. Hugill and H. Yang

5.2 Types of Creative Computing

We have identified three interrelated types of Creative Computing, based on the
properties of creativity (Mayer, 1999), as follows:

• creative development of a computing product

• development of a Creative Computing product

• development of a computing environment to support creativity.

Creative development of a computing product refers to the way in which people work in
the process of software development. This focus on people enables the deployment of
creative methods. In order to develop software creatively, people focus on Requirements
Engineering, Software Design, Software Construction, Software Testing and Software
Maintenance (SWEBOK).

Development of a Creative Computing product, by contrast, focuses upon the product
itself. The aim is to improve creativity and expressiveness in the software itself. Software
Quality is therefore the key indicator of this type.

The development of a computing environment to support creativity requires a focus
on Software Configuration Management, Software Engineering Management, Software
Engineering Process and Software Engineering Tools and Methods. The overall goal is to
create a general purpose platform for computing products that enables the same focusing
on creative processes as described earlier in this paper.

5.3 Mechanisms for Creative Computing

Boden (1998) identified three kinds of creativities. Combinational creativity involves an
unfamiliar combination of familiar ideas, and requires a rich store of knowledge. The
results are only valued if some link between them is perceived. Exploratory creativity
explores within an established conceptual space. This is more likely to arise from a
thorough and persistent search of a well-understood space. Transformational creativity,
on the other hand, deliberately transforms a conceptual space. Transformational creativity
should involve the rejection of some of the constraints that define this space and some of
the assumptions that define the problem itself.

These three kinds provide the theoretical basis of the mechanisms for Creative
Computing. The practical realities of their application must be worked out in different
applications and circumstances, usually on a case-by-case basis.

5.4 Research methods for Creative Computing

Since Creative Computing is a new field of study, a suitable research method is needed.
An initial review has been conducted to examine whether any of the existing research
methods may be suitable (Seaman, 1999; Somekh and Lewin, 2006). The problem with
these methods is their discipline-specificity. Creative Computing is inherently
transdisciplinary, which renders most established methods unsuitable. Even the pragmatic
approach of mixed methods research presents some problems in this field.

As we saw in Sections 4.1 and 4.2 above, a creative process has its own
distinguishing features. It will involve an endlessly fluctuating mix of divergent and
convergent thinking. A suitable research method should take these features into

 The creative turn: new challenges for computing 17

consideration. To give an example of one such methodology, here is the plan of a project
currently under way within our research group:

a review the work done on creativity in a number of areas, i.e., natural science, art,
humanity, business, social science and software.

b identify the key activities that constitute the creativity in this context

c analyse the processes of creation involved

d propose approaches to supporting creative activities and processes by software
development

e design and implement a software system for one of the above approaches

f experiment with this system and propose a framework.

This method straddles artistic or ‘creative’ research and computer science methods. The
combination of the two results in an approach that is flexible and involves a degree of
creativity on the part of the researchers.

5.5 Software standards and Creative Computing

What are the software standards for Creative Computing? It is clear that a conventional
approach to setting standards will not do in this case, because creativity itself is
inherently not standardisable. Indeed, it may be argued that the first standard of Creative
Computing is that it resists standardisation.

We would similarly argue that another standard is perpetual novelty. Software
development that does not innovate, but rather settles for a known standard, is
insufficiently creative. The following of traditional standards has led to software that fails
to meet the needs of the users. This is because the standards themselves ossify and embed
limitation.

A third standard is therefore defined by user interaction. We call this a ‘constructive
standard’ and it is subject to continuous re-evaluation by the community of users. Since
the standard is to encourage divergent and creative thinking, which is inherently
subjective, then the measurement of the standard must be done subjectively and over time
by the users. Writing this standardisation into the software itself should become standard.

Finally, we would argue that standards in Creative Computing should be
Combinational, Exploratory and/or Transformational. In other words, they should reflect
the mechanisms of creativity discussed earlier. Software may be measured using these
three criteria in the search for meaningful standards of creativity.

6 What to discuss in the International Journal of Creating Computing
(IJCRC)

IJCRC will encourage discussions of all issues related to Creative Computing and the
components of the proposed framework outlined above. In addition, we have a number of
particular areas of interest:

 18 A. Hugill and H. Yang

6.1 Transdisciplinary semantics

Computing scientists use words which are reassuringly familiar to artists and creative
people. Terms like ‘entity’, ‘ontology’, ‘semantics’, and so on, are well understood by the
humanities. However, the way computer scientists use these terms, and the highly
rigorous ways in which they are implemented in software engineering, belies their typical
‘fuzziness’. Attempts to address this need for ambiguity, such as ‘fuzzy logic’, generally
seem to serve to create even more precision. Yet, both sides of the art/science divide
seem to accept this situation as inevitable. How may we develop a metalanguage that
better translates the inherent tensions between the two poles? The field needs to evolve
towards a more fruitful transdisciplinary way of working. Users of software must be
involved in the design process if this is to be achieved. Theorists and users must work
together to achieve a synthetic understanding.

6.2 Novel design

How may we build subjective ambiguities into the software development process in order
to counter the prevailing tendency towards ever greater neatness? In order to do this,
computer science must analyse (or learn the lessons from existing analyses of) creativity
more effectively. Novel design methodologies need to be designed to enable effective
Creative Computing

6.3 Adaptive software

How may we create systems and software that recreates and adapts itself in real time?
Simply offering a ‘fixed’ solution to the creative ‘problem’ is inadequate to the task of
Creative Computing. Instead, software must be capable of permanent and dynamic
evolution as the creative process unfolds.

7 Concluding remarks

Studies of computing have heretofore tended to concentrate upon on a single stream, such
as Artificial Intelligence or Mathematics. It is not hard to see that, both currently and in
the future, computing needs to deal with ever more complex applications and hence needs
a framework under a new philosophy. Creativity can be the catalyst for such new
developments in computing and especially in software. For that reason, this journal will
concentrate on the transdisciplinary aspects of computing in terms of creativity.

References
Abran, A. and Moore, J.W. (2004) Guide to the Software Engineering Body of Knowledge

(SWEBOK), IEEE Computer Society Press, Los Alamitos, California.
Boden, M.A. (1998) ‘Creativity and artificial intelligence’, Artificial Intelligence, August,

Vol. 103, Nos. 1–2, pp.347–356.
Boden, M.A. (2003) The Creative Mind: Myths and Mechanisms, 2nd ed., Routledge, London.
Broy, M. (2006) The ‘Grand Challenge’ in Informatics: Engineering Software-Intensive Systems,

IEEE Computer.

 The creative turn: new challenges for computing 19

Clarke, L.A., Osterweil, L.J., Perry, D. and Taylor, R. (1999) ‘Software engineering research:
challenges, successes, and opportunities’, NFS Software Strategies Workshop, University of
Southern California, August.

Colburn, T. and Shute, G. (2007) ‘Abstraction in computer science’, Minds and Machines, Vol. 17,
No. 2, pp.169–184, Springer.

Dahlhaus, C. (1991) The Idea of Absolute Music, University of Chicago Press, Chicago.
Eden, A.H. (2007) ‘Three paradigms of computer science’, Journal of Minds and Machines

Archive, Vol. 17, No. 2, pp.135–167, Kluwer Academic Publishers Hingham, MA, USA.
Finkelstein, A. (2011) 10 Open Challenges in Software Engineering: The Strachey Lectures in

Computing Science, February, Computer Science Department, Oxford University.
Hugill, A. (2012) The Digital Musician, Routledge, New York.
Hugill, A., Yang, H., Raczinski, F. and Sawle, J. (2013) ‘The pataphysics of creativity: developing

a tool for creative search’, Digital Creativity, Vol. 24, No. 3, (Accepted, to be published
September 2013).

Keane, M. (2007) Created in China: The Great New Leap Forward, Routledge, New York.
Mayer, R.E. (1999) Fifty Years of Creativity Research: In Handbook of Creativity, edited by

R.J. Sternberg, pp.449–460, Cambridge University Press, Cambridge.
Parnas, D.L. (1976) ‘On the design and development of program families’, IEEE Transactions on

Software Engineering, Vol. SE-2, No. 1, pp.1–9.
Ritchie, G. (2007) ‘Some empirical criteria for attributing creativity to a computer program’, Minds

and Machines, Vol. 17, No. 1, pp.67–99.
Seaman, C.B. (1999) ‘Qualitative methods in empirical studies of software engineering’, IEEE

Transaction on Software Engineering, Vol. 25, No. 4, pp.557–572.
Selinger, C. (2004) ‘The creative engineer – what can you do to spark new ideas?’, IEEE Spectrum,

August, pp.47–49.
Somekh, B. and Lewin, C. (2006) Research Methods in the Social Science, Sage Publications,

London.

