
   

  

   

   
 

   

   

 

   

   Int. J. Creative Computing, Vol. 1, No. 1, 2013 57    
 

   Copyright © 2013 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Creative software crowdsourcing: from components 
and algorithm development to project concept 
formations 

Wenjun Wu 
State Key Laboratory of Software Development Environment, 
Beihang University, 
Beijing, 100191, China 
E-mail: wwj@nlsde.buaa.edu.cn 

Wei-Tek Tsai* 
School of Computing, Informatics, and Decision Systems Engineering, 
Arizona State University, 
Tempe, AZ 85281, USA 
and 
Department of Computer Science and Technology, 
INLIST, Tsinghua University, 
Beijing, 100084, China 
Fax: (480) 965-2751 
E-mail: wtsai36@gmail.com 
*Corresponding author 

Wei Li 
State Key Laboratory of Software Development Environment, 
Beihang University, 
Beijing, 100191, China 
E-mail: liwei@nlsde.buaa.edu.cn 

Abstract: Software development is complex and creative as it involves 
requirement analysis, design, architecture, coding and testing. Recently, 
software crowdsourcing has been popular with numerous software coders 
participated in various software competitions. This paper first analyses the data 
collected on software crowdsourcing and summarises major lessons learned. 
This paper then examines two software crowdsourcing processes including 
TopCoder and AppStori processes. Lastly, this paper identifies the min-max 
nature among participants as an important design element in software 
crowdsourcing for software quality and creativity. Although in a min-max 
game, one party tries to maximise the finding of bugs in a set of artefacts, and 
the other parties try to minimise the potential bugs in the same artefact, 
software crowdsourcing can still be a collaborative and win-win process for all 
parties. By using this approach, lots of aspects of software development can be 
crowdsourced with the crowd can contribute their creativity to each aspect. 

Keywords: crowdsourcing; software development; creativity; TopCoder; 
AppStori; game theory. 



   

 

   

   
 

   

   

 

   

   58 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Reference to this paper should be made as follows: Wu, W., Tsai, W-T. and  
Li, W. (2013) ‘Creative software crowdsourcing: from components and 
algorithm development to project concept formations’, Int. J. Creative 
Computing, Vol. 1, No. 1, pp.57–91. 

Biographical notes: Wenjun Wu is a Professor in the School of Computer 
Science and Engineering at the Beihang University. He was previously a 
Research Scientist from 2006 to 2010, at the Computation Institute (CI) at the 
University of Chicago and Argonne National Laboratory. He was a Technical 
Staff and Postdoctoral Research Associate from 2002 to 2006, at the 
Community Grids Lab at the Indiana University. He received his BS, Master 
and PhD in Computer Science from Beihang University in 1994, 1997 and 
2001, respectively. He has published over 50 peer-review papers on journals 
and conferences. His research interests include: crowdsourcing, green 
computing, cloud computing, e-science and cyber infrastructure, and 
multimedia collaboration. 

Wei-Tek Tsai is currently a Professor in the School of Computing, Informatics, 
and Decision Systems Engineering at Arizona State University, USA. He 
received his PhD and MS in Computer Science from University of California at 
Berkeley, and SB in Computer Science and Engineering from MIT, Cambridge. 
He has produced over 300 papers in various journals and conferences, two best 
paper awards, and was awarded several guest professorships. His work has 
been supported by US Department of Defense, Department of Education, 
National Science Foundation, EU, and industrial companies such as  
Intel, Fujitsu, and Guidant. In the last ten years, he focused his energy on 
service-oriented computing and SaaS, and worked on various aspects of 
software engineering including requirements, architecture, testing, and 
maintenance. 

Wei Li is a member of Chinese Science Academy. He received his PhD in 
Computer Science from University of Edinburgh and BS in Mathematics from 
Peking University. He is the Director of State Key Lab of Software 
Environment Development and Vice-chair of Chinese Institute of Electronic. 
He was President of Beihang University from 2002 to 2009. Currently, he is 
serving as the Editor-in-Chief for Science China – Information Sciences, Editor 
for Journal of Computer Science and Technology and International Journal of 
Advanced Software Technology, Science in China Publisher. He has published 
over 100 papers and one book. 

 

1 Introduction 

Crowdsourcing has captured the attention of the world recently (Doan et al., 2011). 
Numerous tasks or designs conventionally carried out by professionals are now being 
crowdsourced to the general public who may not know each other to perform in a 
collaborative manner. Specifically, crowdsourcing has been used for identifying chemical 
structure, designing mining infrastructure, estimating mining resources, medical drug 
development, logo design, and even software design and development. 

The proliferation of crowdsourcing practices indicates a new peer-production 
paradigm, where large numbers of regular end-users are empowered as co-creators or  
co-designers, and their creative energy is coordinated to participant in large projects 
without a traditional organisation. Such a new model of socio-economic production is 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 59    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

called commons-based peer production, a term coined by Benkler (2012). Several  
well-known software systems and services have been produced and available for public 
access on a daily basis using this approach. One of the most popular website is Wikipedia 
where hundreds of thousands of authors participated in creating an online encyclopaedia 
without a central organisation managing all the contents. But is this approach suitable for 
software crowdsourcing? 

Software development is considered one of the most challenging and creative 
activities. As one software problem is solved by a new solution, another new software 
problem is subsequently created by the solution. Thus, the software engineering history 
has a long list of techniques, processes, and tools in the last 50 years, yet, the field is still 
seeking for new solutions and new technologies each year as it encountered new 
problems. The term ‘software engineering’ was invented to address the importance of the 
engineering aspects of software development where many traditional engineering 
techniques such as modelling, simulation, prototyping, testing and inspection are used in 
software development. Furthermore, many new techniques such as model checking, 
automated code generation, design techniques, have been developed for software. 

Many authors have argued that crowdsourcing encourages creativity and problem 
solving (Kittur, 2010), but software crowdsourcing has many unique features and issues 
different from general crowdsourcing. Specifically, software crowdsourcing need to 
support 

• The rigorous engineering discipline of software development, such as rigid syntax 
and semantics of programming languages, modelling languages, and documentation 
or process standards such as UML, CMMI (2012), and 2167A (DoD, 2012). 

• The creativity aspects of software requirement analysis, design, testing, and 
evolution. The issue is to stimulate creativity in these software development tasks 
through collective intelligence? 

• The big data aspects as numerous data will be generated and need to be analysed for 
ranking and evaluation of both clients and developers including their products. 

• The psychology issues of crowdsourcing such as competition, incentive, recognition, 
open, sharing, collaboration, and learning. The psychology must be competitive 
while at the same time friendly, socialable, learning, and personal fulfilment for 
participants, requesters and administrators. 

• The financial aspects of all parties including requesters, crowdsourcing platforms, 
and participants. 

• Quality aspects including objective qualities such as functional correctness, 
performance, security, reliability, maintainability, safety, and subjective qualities 
such as usability. 

• The liability issues in case of failure of software that caused the harm. For example, 
who is responsible for the software faults? Developers, administrators, requesters, or 
users? 

• Reputation of all parties including requesters, administrators, and participants. 

Thus, software crowdsourcing is different from general crowdsourcing. Furthermore, 
most code developed by the crowd carries no liability in case of damage that may be 



   

 

   

   
 

   

   

 

   

   60 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

incurred by running the application. A mobile app is a typical example. It can be 
downloaded and provided useful services for clients, but the app carries no liability. For 
the software that has liability issues, the organisation that crowdsourced the software will 
perform additional validation, manual or automated (Li and Li, 2012), before the 
software can be used. 

This paper examines two software crowdsourcing development processes, and 
identifies key issues in these processes. A key feature of software crowdsourcing is that 
competitions are held to select the best software and to identify the best software coder. 
While competitions promote creativity and support quality software development, but 
stiff competitions may also restrict massive participation. Specifically, only limited 
number of people can play the Olympic game as only the best can participate while 
leaving the massive to passively watch. Thus, stiff software competitions may restrict the 
activities of the crowd. Another key feature of software crowdsourcing process is the 
min-max nature of game playing by different people in different roles. This kind of  
min-max phenomenon has observed often in general crowdsourcing (Tibbetts, 2012), and 
this is the first time this kind of min-max nature is identified in software crowdsourcing. 

This paper is organised as follows: Section 2 reviews the general crowdsourcing 
work; Section 3 provides some software crowdsourcing sites and original data collected 
from the TopCoder website; Section 4 analyses the TopCoder process including the 
competition rules, compares it with the IBM Cleanroom methodology known to produce 
zero-defect software, identifies the min-max nature in collaborative software 
development, and produces an updated process with more participants to contribute to 
software development; Section 5 analyses the AppStori process with respect to the min-
max nature of collaborative competitions; Section 6 provides game theory interpretation 
of games used in software crowdsourcing; Section 7 concludes this paper. 

2 Related work 

Many researchers have analysed the economics of crowdsourcing contests. Archak and 
Sundarrarajan (2009) used game theory in analysing crowdsourcing contests particularly 
related to optimal price structure for designing contests. Then Archak (2010) extended 
the approach to studying the impact of TopCoder’s reputation system on the TopCoder 
community members, and analysed the principal factors such as project payment and 
requirements on the quality of the outcome in the competition. The author presents an in-
depth analysis of the reputation system and the registration strategy utilised by 
contestants. Similarly, other researchers (DiPalantino and Vojnović, 2009; Horton and 
Chilton, 2010) attempted to model crowdsourcing as business auction and leverage the 
research of auction theory to build models for reward system and effective strategies for 
crowdsourcing participants. DiPalantino proposed an all-auction model to describe the 
contest process of crowdsourcing, and capture the essential relationship between rewards 
and participation. All these efforts have different focus from this paper. Their goal is to 
study the mechanism of crowdsourcing systems, such as pricing and bidding strategies as 
well as rewarding rules. Their discussions are mostly in the scope of classic auction 
methodology and are not related to issues in software development, i.e., maximising the 
software quality and creativity via crowdsourcing. 

 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 61    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Bacon et al. (2009) introduced a new paradigm of software evaluation through a 
market-driven mechanism that presents rewards for developers, testers, and bug reporters 
to bidding for the tasks of bug fixing. The author also defined the notion of ‘sufficient 
correctness’ in the context of crowdsourcing and designed the components for the market 
design. 

Bullinger and Moeslein (2010) listed several factors in designing crowdsourcing 
contests such as media (online, offline, or mixed), organiser (companies, government 
agencies, non-profit, and individuals), participants (individuals, teams, or both), contest 
periods (from short term to long term), reward/motivation (monetary rewards, reputation 
rewards, or both), evaluation (such as jury evaluation, peer evaluation, self evaluation), 
types of deliverables (such as concepts, prototypes, and solutions). They also suggested 
several research topics in crowdsourcing. 

Leimeister et al. (2009) proposed the concept of ‘activation-enabling’ as the basis for 
using competitions in software crowdsourcing and open innovation, and presented many 
factors related to IT software crowdsourcing. For example, motivation for participation 
can be learning, self-marketing, social motives, and direct compensation. 

Relationship between creativity and software development has been extensively 
discussed in Resnick et al. (2005), Obrenovic et al. (2008) and Shneiderman (2007). They 
summarised a dozen principles for supporting creativity in design tools, such as 
embracing exploration, collaboration, low threshold, high ceiling, and wide walls as well 
as iterative thinking processes. Opportunistic software development framework 
(Obrenovic et al., 2008) was proposed to encourage professional developers and students 
in computer science to develop innovative ideas and solutions by thinking out-of-box and 
exploring unconventional combination of different technologies. The focus of these 
efforts is on individual or group level creativity not in crowdsourcing. 

Recent papers on social-level creativity show the new insight into the dynamic of 
competition and collaboration in the crowdsourcing process. Fischer (2004) and 
Shneiderman (2007) discussed the social nature of creativity and the necessity of  
social-technical environments to sustain social creativity. The authors believe that the 
distribution among location, time, and background from contributing individuals can 
enhance creativity by enabling people to be aware of others’ work and learn from each 
other. Hutter et al. (2011) and Shneiderman (2011) studied the synergy between 
competition and collaboration in crowdsourcing based design contests. The authors 
suggested to introduce the firm-level concept co-opetition in the research of 
crowdsourcing and highlighted that the vital factor in the creativity of the contests is the 
balance between competition and cooperation. Competitive participation should be 
employed to stimulate crowd’s motivation of making contributions and performance 
without disabling the climate for knowledge sharing and collaboration. Most of the work 
today is related to crowdsourcing in general, and those specifically related to software 
crowdsourcing will be discussed in the next section. Specifically, this paper analyses two 
software crowdsourcing development processes, and identifies the unique nature of these 
processes such as collaborative and competitive games played by people of different roles 
in these processes with the end goal of either identify top coders and/or delivering quality 
software. 



   

 

   

   
 

   

   

 

   

   62 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3 Software crowdsourcing websites, data, and major lessons learned 

Software development is distinct from other human creative activates as it is highly 
iterative, and traditional software development processes often emphasise on delivery of 
intermediate documents such as requirement documents, design documents, test plans, 
test case documents. Furthermore, software development processes have evolved from 
the traditional Waterfall model, Spiral model, and model-driven process to recent Agile 
methods (Agile Software Development, 2012), component-based methods, open-source 
approach, and service-oriented computing (Chen and Tsai, 2010). These processes differ 
significantly with respect to the steps used as well as the intermediate deliverables made. 
For example, the Waterfall model requires significant documentation efforts during the 
process, and each document is cross validated with other documents during the process. 
But those modern Agile processes are light on specifications, but heavy on code 
development. 

Current practices of software crowdsourcing suggest the feasibility of every phase in 
software development: 

• Source code can be crowdsourced and this is evidenced by TopCoder.com and 
AppStori.com. 

• Testing (and code review) can be crowdsourced and this is evidenced by uTest.com, 
mob4hire.com, and TopCoder.com. 

• Security testing can be crowdsourced, and this is evidence by uTest.com (Fink et al., 
2011). 

• Requirement specification can be crowdsourced and this can be evidenced by 
TopCoder.com and AppStori.com. 

• Architecture can be crowdsourced, and this can be evidenced by TopCoder.com. 

• Usability and performance evaluation can be crowdsourced and this can be 
evidenced by AppStori.com, TopCoder.com, uTest.com, and Mob4hire.com 

• Algorithms can be crowdsourced and this is evidenced by TopCoder.com. 

3.1 Popular software crowdsourcing sites and their applications 

In fact, software crowdsourcing has been popular with numerous software coders 
participated in software crowdsourcing. Specifically, TopCoder reported that it has 
450,000 of software coder registered at their site with 50,000 of active coders from  
204 countries. Figure 1 shows the originality of the active coders. Given such a global 
workforce, some large research institutes are taking advantage of the TopCoder platform 
for their software crowdsourcing projects. For instance, NASA, teamed up with Harvard 
University, has established NASA Tournament Lab (NTL) (2010), to encourage 
competitions among talented young programmers for the most creative algorithms needed 
by NASA researchers. 

While software crowdsourcing has been popular, the planned applications of software 
crowdsourcing are still growing at a rapid speed. Specifically, Harvard University and 
TopCoder will provide an environment where MBA students will develop new online 
software (Harvard University, 2012), from concept generation to final product 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 63    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

deployment. Harvard also puts this practice as a part of its Business School curriculum 
Field Immersion Experiences for Leadership Development (FIELD) as a new trend of IT 
software development. 

Figure 1 TopCoder has 48,850 active contestants from 204 countries (see online version  
for colours) 

 

Another example is that US DARPA initiated a software crowdsourcing platform to 
attract middle and high-school students to perform software development (‘DARPA and 
TopCoder also seek a platform middle and high school students on software development 
in October 2011’, 2011) in October 2011. As many high-school students find computer 
science a difficult subject to learn, but the competition nature of software crowdsourcing 
may be interesting enough to attract youth to computing. 

3.2 Interesting software crowdsourcing data 

3.2.1 Number of people participating is smaller than expected 

One of the premise of crowdsourcing is that a large number of people will be attracted to 
work on problems posted on the web, and this is consistent with TopCoder data where it 
has shown that many people from a large number of countries (Figure 1 showed) are 
willing to participate in TopCoder competitions. 

However, close examination of data tells a different story. According to Tibbetts 
(2012), for a common TopCoder competition, the optimal number of submissions turns 
out to be just two, and this is surprisingly low comparing to the number of active coders 
that are available. Figures 2 to 3 show that the average registration number for each 
TopCoder design and development competition is about 13 and 25 respectively. And out 
of these registrations, only two design submissions and five development submissions can 
be generated. This is a far cry from a large number of software coders available. One 
possible reason is that as often only the top two competitors will win the price, once a 
potential participant sees that two strong contenders already signed up for a competition, 
the participant will opt out of the competition. 



   

 

   

   
 

   

   

 

   

   64 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 (a) Average registration numbers for design and (b) development tasks in TopCoder 
(see online version for colours) 

 
(a) 

 
(b) 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 65    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 (a) Average submission numbers for design and (b) development tasks in TopCoder 
(see online version for colours) 

 
(a) 

 
(b) 



   

 

   

   
 

   

   

 

   

   66 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.2.2 Number of hours spent on competition is smaller than anticipated 

Most of the competition was done within two or three weeks. If each competition lasted 
for such short period of time, the sophistication of software constructed cannot be 
significant. 

3.3 Lessons learned in current software crowdsourcing 

Many reports are now available for major lessons learned from software crowdsourcing, 
and as software crowdsourcing is another form of software engineering, some of major 
lessons learned have been shown to be consistent with traditional software engineering. 

1 Problem definition must be clear: This is reported as the most important factor in 
software crowdsourcing, just like in traditional software engineering, clear 
requirement definition is the most critical factor. If the problem is not well defined, 
regardless whether the traditional software development process or crowdsourcing 
development process is used, requirement bugs will be incorporated into the design 
and the code. This may mean 
• Thus, problems must be well written in natural languages (such as English), 

formal or semiformal modelling languages such as UML. 
• The overall architecture of the application should be shown to all contestants so 

that they know the role of specific components to be developed during the 
competition. 

• The tools that must be used should be explicitly stated. 
• The tasks should be well specified and decomposed into components to be used 

in competitions. 

2 Transparency is critical. It is important that potential participants know who they will 
be competing with before deciding to join a competition, and they must be able to 
understand the problem, and know exactly how their solutions will be evaluated in 
an objective manner. Also, the participants need to understand that they retain the 
ownership of their work unless they release the ownership. This transparency can be 
reflected in the following ways: 
• All questions posed are answered in a timely manner and the all the responses 

will be shown to every contestant. 
• The ranking of contestants of the current competitions will be known to all the 

contestants. 
• The reputation of the client should be informed to all contestants and potential 

participants to know the value of the current competition. 
• The evaluation criteria and processes including evaluation of products and 

evaluation of contestants must be objective and open. The contestants should 
have the right to appeal the evaluation results in an open and objective manner. 
For example, Apple App Store published a comprehensive list of review criteria 
(Apple App Store Review Guidelines, 2010) in 2010, and thus all participants 
know clearly how the evaluation will be performed. 

 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 67    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

3 Diversity is important for creativity in a community. 
• Crowdsourcing needs a diverse community of crowd workers in different 

locations with different background to ensure a diversity of opinions are 
expressed to encourage creativity, and to avoid any biased of individual 
leaderships within a specific community. This reflects one of creativity 
principles ‘low threshold, high ceiling and wide walls’. Crowdsourcing often 
sets up a ‘low threshold’ to encourage more people to take a variety of software 
development tasks to broaden the community. 

• Software crowdsourcing also adopts ‘high ceiling’ strategy to screen qualified 
programmers for complex and challenging projects. Moreover, it also enables 
access to traditional IT personnel to propose, interact, and evaluate the 
submissions from the community workers. Thus, at the current stage, it is not 
reasonable to completely depend on the community workers to produce the 
quality products needed. 

• Idea exploration is the important aspect in the processing of software 
crowdsourcing. ‘Wide walls’ in software projects suggest that designers can 
propose a wide range of concepts and models for a public solicitation. 

• Software crowdsourcing also adopts ‘high ceiling’ strategy to screen qualified 
programmers for complex and challenging projects. Moreover, it also enables 
access to traditional IT personnel to propose, interact, and evaluate the 
submissions from the community workers. Thus, at the current stage, it is not 
reasonable to completely depend on the community workers to produce the 
quality products needed. 

• Idea exploration is the important aspect in the processing of software 
crowdsourcing. ‘Wide walls’ in software projects suggest that designers can 
propose a wide range of concepts and models for a public solicitation. 

As one can easily see that while software crowdsourcing has been popular and even 
Harvard University teaches future business managers to develop software completely 
using the software crowdsourcing on the TopCoder platform, but software crowdsourcing 
is at an early stage of development. 

This paper evaluates two well-known software crowdsourcing processes: the 
TopCoder process and the AppStori process. Both processes show distinct approaches to 
software crowdsourcing, one follows a rigorous engineering process with strong 
documentation requirements, and the other follows more like an Agile process of 
software development. 

The goal is to identify factors that may extend from the current crowdsourcing 
projects with single person versus teams of multiple people ranging from the small scale 
of 2 to 5 to the medium scale of 100 to 200, even to the large scale of 1,000 to 2,000, 
from mainly components to large and complex systems, from developing well-defined 
modules to ill-defined complex and even evolving systems, and from individual 
applications to a cloud-based system with lots of infrastructure. 

 

 

 



   

 

   

   
 

   

   

 

   

   68 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

4 TopCoder development processes 

Section 4.1 analyses the overall development process including activities performed at 
each step, and deliverables produced during the process; Section 4.2 examine the 
competition rules used in software crowdsourcing and their implications to activities that 
will be performed, and quality of software produced; Section 4.3 identifies the people 
involved, the time they are involved, and the kind of activities involved including 
evaluation; and Section 4.4 compares the TopCoder processes with a traditional software 
development process, IBM Cleanroom methodology, that may lead to a potential update 
in the current software crowdsourcing process. 

Figure 4 TopCoder development process (see online version for colours) 

 

 

 

 

 
 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 69    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

4.1 TopCoder processes 

TopCoder has the following overall process as shown in Figure 4: 

1 Conceptualisation: This defines the initial requirement analysis including features 
and use cases. The inputs to this step are goals, high-level workflow, and 
questionnaire, and the outputs are high-level business requirements captured in text 
documents with use-case diagrams and workflow diagrams. After the high-level 
requirement for a project is described, the next step called ‘studio ideation’, where 
brainstorming tools such as studio storyboard and wireframe are utilised to quickly 
create new product ideas and express them in form of mockup. In studio ideation, 
contestants can engage in two types of competitions: wireframe and storyboard. 

2 Wireframes: This step defines the screen blueprint and informational process used in 
the application. The input to this step is the conceptualisation document developed in 
the first step, and the output results are the wireframes. During wireframe 
competitions, contestants define web page flows, user inputs, and content of each 
page of an application, without regard to the specific UI styles of the application. 

3 Storyboards: This step develops a storyboard that consists of GUI or the high-level 
application view. The inputs to this step are wireframes and conceptualisation 
document, and the outputs are storyboards. 

4 UI prototype: This step develops a GUI interface of the application based on HTML 
based on the storyboards developed earlier. 

 The above four steps are designed to stimulate crowd creativity through 
opportunistic requirement analysis, idea formation and fast prototyping. Popular 
tools such as wireframes and storyboards are effective for enabling people to capture 
the requirement essences and express their design ideas in an intuitive and graphical 
way. These tools also facilitate the open interchange between other design tools and 
allow designer to collaborate and explore together with alternative ideas and UI 
schemes. Meanwhile, experienced designers can give guidelines and suggestions for 
other contestants to improve their conceptual designs. By leveraging all the creativity 
and contribution from community designers, the project manager can synthesise 
novel and attractive elements from various designs. 

5 Specification: This step produces detailed requirement specifications. In this phase, 
provided with a business requirements document and a set of wireframes resulted 
from previous phases, contestants make the detailed requirements specification and 
UML diagrams such as use case and activity diagrams. 

6 Architecture: This step develops the application architecture including all the 
modules based on the functional specification developed in the previous step. In this 
phase, contestants are required to complete a group of design documents and UML 
diagrams including sequence diagrams, class interface diagrams, component 
specifications and diagrams, an architecture design specification document and even 
a small prototype to demonstrate the architecture. 

 

 



   

 

   

   
 

   

   

 

   

   70 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

7 Component design and development: This step develops the component code by 
participants in contests. At the design step of the phase, TopCoder contestants are 
asked to convert a set of architecture documents into a set of diagrams and a 
component specification document that define design patterns, algorithms, standard 
technologies, class list, exception handling, running environment as well as 
configuration. Following the component design documents and diagrams, contestants 
develop the specified components. 

8 Assembly: Once the components are developed, together with the architecture, the 
fully functional application is developed by linking all the components together with 
the application flow. Contestants follow the architecture and specification 
documentations from the previous phases and reuse TopCoder component templates 
if necessary. 

9 Test scenarios and test suites: This step develops the software assurance plan to 
validate that all the requirements are fully implemented in the code. Contestants are 
required to define testing scenarios, test code, and automated scripts to ensure that 
the software under test (SUT) meets the specified requirements and functionalities. 
In test scenario competitions, they need to figure out a QA plan for the application 
with both high-level application test cases and detailed test scenarios. Test scenarios 
are derived from requirements documentation and in many cases a prototype. In 
automated script competitions, they are expected to deliver automated test scripts 
derived from the QA plan. 

10 Bug hunt and race: TopCoder provides competitions for finding and fixing bugs. In 
the competition of Bug Hunt, all registrants access the application in trial and file 
bug reports to a JIRA issue tracker for the application. In the competition of Bug 
Race, contestants make changes, resolve issues, and perform test validations. 

Table 1 summarises the deliverables in all the development phases of TopCoder. As one 
can see, the key elements of the TopCoder development processes are component-based 
development, peer review, component customisation, and application integration. 
Table 1 TopCoder software development phases and deliverables 

Phases Deliverables 
Specification Application requirement specification; use cases, activity diagrams, 

architecture diagram, site map and site definition, prototype, quality 
assurance plan, and logical ER model. 

Application architecture Design specification, component deployment diagrams, component 
sequence diagrams, component interface diagrams, persistence 
schemas. 

Component production Component specification, use case diagram, class diagram, sequence 
diagrams, configuration data, working solutions, and test cases. 

Application assembly Complete and tested application. 
Certification Certified solution and certified performance. 
Deployment Fully functioning solution. 

 

 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 71    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

4.2 Competition rules analysis 

TopCoder has many kinds of competitions, and the following descriptions show typical 
competition rules: 

• ‘The coding phase is a timed event where all contestants are presented with the same 
three questions representing three levels of complexity and, accordingly three levels 
of point earnings potential. Points for a problem are awarded upon submission of any 
solution that successfully compiles and are calculated on the total time elapsed from 
the time when the problem was opened until the time it was submitted. The coding 
phase lasts 75 minutes. 

• The challenge phase is a timed event wherein each competitor has a chance to 
challenge the functionality of other competitors’ code. A successful challenge will 
result in a loss of the original problem submission points by the defendant, and a  
50-point reward for the challenger. Unsuccessful challengers will incur a point 
reduction of 25 points as a penalty, applied against their total score in that round of 
competition. The challenge phase lasts 15 minutes. 

• The system testing phase is applied to all submitted code that has not already been 
successfully challenged. If the TopCoder System Test finds code that is flawed, the 
author of that code submission will lose all of the points that were originally earned 
for that code submission. The automated tester will apply a set of inputs, expecting 
the output from the code submission to be correct. If the output from a coder’s 
submission does not match the expected output, the submission is considered flawed. 
The same set of input/output test cases will be applied to all code submissions for a 
given problem. All successful challenges from the challenge phase will be added to 
the sets of inputs for the system testing phase. 

Note the following key elements in competition rules: 

a limited time 

b cross testing among contestants to win competition 

c the software is further validated by automated tools to ensure minimum quality. 

These rules show that the major objective of the TopCoder is to identify top software 
engineers first, and the quality product is a by-product of competition. As often only the 
top two teams will win any award or price, and thus one of the main goals is to identify 
the bugs in competitor’s code to eliminate the competitor. However, at the same time, as 
the competitor will do the same, the contestant will spend significant effort to ensure the 
code is correct. Thus, the contestant may spend significant effort in verifying his/her code 
as many times as possible with the time limit to ensure that the competitor will not be 
able to identify a bug. These activities can be seen in Table 2. 

 

 

 

 



   

 

   

   
 

   

   

 

   

   72 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 TopCoder process 

First phase (defence) Second phase (offence) 

Inspect/test the code over and over again to 
ensure it has no bug. For example, use the list of 
features in the specification documents provided 
to see if the code satisfies the requirements. 
Rank those features that competitors may fail. 

Inspect/test the code of competitor using the 
ranked features. As own code has been 
inspected already, inspection of 
competitor’s code can be easier. 

Provide a list of test cases, and rank them 
according to the possibility of faults. Use the 
ranked test cases to go through own code to 
ensure no fault. 

Use the ranked test cases developed to test 
run the competitor’s code. 

Identify the most difficult aspect of components, 
such as the starting and ending point of complex 
loop statements. Make a list of such difficult 
spots. 

Use this list to check the competitor’s code. 

Note that this competition rule is not a zero-sum game in game theory. The zero-sum is 
where the gain of one party will be matched by the loss of the other party. In a 
TopCoder’s competition, everyone has a chance of lose as each party can find bugs in 
counterpart’s code. If coder A finds a bug in coder B’s software, and B also finds a bug in 
A’s software, both A and B lose the game, and no one will advance. Similarly, A cannot 
find a bug in B’s code, and B cannot either in A’ code, both can advance, but only the top 
two coders will win. Thus, as reported in Tibbetts (2012), most often only two teams will 
join a competition. To become winners in such a mutual destructive contest, a coder must 
do his/her best to avoid losing to other coders and secure a high ranking score in the 
system to scare off other potential competitors. That is the nature of this kind of 
competition, often called Chicken Game or Hawk-Dove Game (Rapoport and Chammah, 
1966) in the game theory because less aggressive players (chicken or dove) will yield to 
aggressive players. 

If software quality is most important, and it is not necessary to rank top engineers in 
the current competition, the following rules may be used instead: 

• Limit development time by software quality constraints rather than competition time. 
For example, unless the fault arrival rate of the target code has been approaching 
zero for an extended period time, the competition will be continued. This criterion 
has been used in conventional software development for test completion, and a rule 
of thumb is that the testing should continue until no new bugs are discovered for an 
extended period of time. 

• Encourage cross testing and validation such as paying money for any bugs identified 
rather than using the bug counts to eliminate competitors. 

• Supply automated tools for developers and testers so that everyone has the same 
starting point. 

• Reward unique contribution such as a new design framework that others can build on 
to develop the software. 

 

 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 73    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

This is a collaboration-based software crowdsourcing rather than competition-based 
crowdsourcing where limited number of contestants will win a price. In the  
collaboration-based approach, more people will win either a monetary reward or a 
reputation. The jury is out whether the competition-based rules or the collaboration-based 
rule will be better in term of software quality. The competition-based rules may be better 
in identifying top software designers, coders, and testers, but collaboration-based rules 
may be better for massive participation and education. The selection of rule styles also 
impacts the creativity of the community. Collaboration-based contests can trigger intense 
interactions between participants so that the community members with less experience 
can improve their skills from expert members. And competitive coding can stimulate 
them to do their best to seek innovative solutions. 

4.3 Who-what-when analysis 

While the focus of TopCoder is for competition-based component development, but its 
process has been extended to develop almost all kinds of software deliverables including 
specification, design, architecture, and testing. To simplify the analysis, we will discuss 
component and algorithm development only first, specifically we will use the simplified 
model as shown in Harvard Catalyst (Harvard University, 2012). This process has 
essentially four parties with their responsibilities below: 

• Researchers: They work with catalysts to finalise the submission to the crowd 
including problem statement, they also prepare test data, and finally score algorithms 
submitted by the crowd. 

• Catalysts: They prepare the needs and funding for researchers and the crowd. 

• Crowd: They look at the problems issued by researchers, participate in the 
competition by coming up with new algorithms, and if they win, they will get 
rewards from catalysts. 

• TopCoder people: They will work with researchers in preparing the platform for the 
competition. 

The operational sequence indicates that researchers and catalysts are earliest participants 
of this process, and they need to finalise the problem statements together. However, 
researchers have additional tasks of preparing the test data, and scoring the algorithms 
submitted. 

Using software engineering terms, the catalysts are responsible for problem 
statements and they approve the requirement statements prepared by researchers, and 
finally accept the solutions done by the crowd; the researchers responsible for 
requirement analysis, high-level design, test case generation, and test case execution; the 
crowds responsible for algorithm design within the context of a problem. 

Software engineering textbooks often indicated that the most critical element in 
software development is that the requirement analysis must be properly done. This lesson 
is re-learned in crowdsourcing as stated in Section 2 (Tibbetts, 2012). However, if the 
characterisation of the Harvard-TopCoder process is correct, majority of the requirement 
work will be done by researchers, and the crowd works on a limited scope in software 
development after requirements are well understood and high-level architecture is known. 
Recall that the researchers need to come up with the problem statements (requirement 



   

 

   

   
 

   

   

 

   

   74 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

analysis and specification and also high-level design), prepare test data, and actually 
score algorithms submitted. Furthermore, they work from the beginning to the end of the 
competition. Thus, a great majority of work for the project is done by researchers, rather 
than the crowd. While, the crowd may contribute a critical piece of the puzzle, i.e., the 
algorithm, but they will be active only in the middle step as they are not involved either 
in problem statements or in scoring algorithms. 

Figure 5 Harvard-TopCoder algorithm development process 

 

The TopCoder process also allows other aspects of software development to be 
crowdsourced such as design and testing. But the overall processes are similar, except the 
funding party can crowdsource the design first, and after the design is fixed, they can 
crowdsource the code, and finally they can crowdsource the testing of the code to 
complete their project. 

4.4 Comparing with a traditional development process 

IBM Cleanroom development methodology has been popular in late 1980s to 1990s. It 
focuses on formal methods on specification and testing using statistical control. An 
important element of this methodology is the separation of responsibility. Specifically, in 
a three-party Cleanroom, one team will be responsible for specification, the second team 
responsible for coding without compilers, and the third team is responsible to verify the 
code developed by the second team with respect to the specification developed by the 
first team. Software development by three independent parties in the IBM Cleanroom 
methodology allows cross-validation of the deliverables by other two teams. The cross 
validation activities can be characterised as offence (finding bugs in other people’s work) 
and defence (reducing bug in people’s own work). 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 75    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

• Offence: To carry out the tasks, each team needs to understand its requirements, and 
examine the validity of the inputs to determine if they are feasible, correct, consistent 
and complete. This can be done by inspecting, reviewing, simulating, model 
checking, verifying the contents of the inputs. This kind of process often reveals 
mistakes, inconsistency, incompleteness, complex user interaction, invalid 
assumptions, and other issues, which can be useful feedbacks to those who prepared 
the input documents. Because any mistakes in the input document may cause 
significant problems in the current tasks. Thus, the goal is to maximise the fault 
detection rate of the input documents. 

• Defence: Once requirements are understood, the team needs to prepare its output. 
However, the team realises that their outputs will be cross examined by other teams 
carefully, and the team may lose its creditability if its outputs are of low quality. 
Thus, the team needs to spend significant time to check and verify its deliverables to 
minimise the probability of bugs and to minimise the damage of potential bugs. 

Table 3 summarises the offence-defence relationship. 
Table 3 Offence and defence definition 

Offence activities Defence activities 
Evaluate the inputs including any input documents, 
prototypes, interviews and relevant materials that will 
be used in performing the tasks. 

Evaluate the outputs including any 
deliverables such as documents and 
software. 

Goal: Maximise the number of faults in the input 
documents, and provide feedback to those who 
prepared the inputs. 

Goal: Minimise the number of bugs 
that will be found by other teams or 
people (crowd). 

Table 4 shows the cross-relationships among these three teams with their tasks, and their 
offence and defence activities. 
Table 4 Offence and defence of IBM Cleanroom teams 

 Main tasks Offence Defence 

Specification 
team 

Develop a specification 
for the problem at hand. 
May need to do 
requirement analysis 
and high-level design 
before developing a 
specification detailed 
enough for the coding 
team to develop the 
code. 

The team must understand 
the problem well, identify 
those bugs in the 
requirement documents to 
maximise the probability 
for identifying bugs in 
requirements.  

As the specification 
will be reviewed 
carefully by the coding 
team, the specification 
team will inspect the 
specification and 
possibly even simulate 
the specification 
multiple times before 
delivering it to the 
coding team to 
minimise the probability 
of bugs in the 
specification. 

 

 

 



   

 

   

   
 

   

   

 

   

   76 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 4 Offence and defence of IBM Cleanroom teams (continued) 

 Main tasks Offence Defence 

Coding team Develop the code based 
on the specification 
delivered without using 
compilers. As no 
compiler will be 
available, thus code 
will be reviewed and 
inspected multiple 
times before delivering 
to the testing team. 

The team needs to review, 
inspect, and simulate the 
specification to maximise 
the probability to identify 
bugs in the specification. 
The specification bugs 
will be reported back to 
the specification team. 

The coding team will 
inspect and review the 
code over and over 
again with no 
compilation to minimise 
any potential bugs in 
the code.  

Testing team Compile the code, 
develop test cases, and 
run test cases according 
to statistical quality 
control models. 

As the team needs to 
review and inspect the 
specification and the code, 
the code will also be 
compiled and tested to 
maximise the probability 
of finding bugs in the 
specification and or the 
code. If there is any bug in 
the specification and/or 
code, and any bugs found 
will be reported back to 
the specification or coding 
team 

The code will be 
reviewed by customers, 
and thus the testing 
team must verify and 
test the code over and 
over again according to 
statistical models to 
minimise the probability 
of bugs in the final 
code. 

One reason that IBM Cleanroom methodology has received significant attention in 1980s 
and 1990s is that its ability to develop zero-defect software. While one may argue various 
features in the IBM Cleanroom methodology1 for its capability to develop zero-defect 
software, one reason is the division of responsibility where all three parties must 
cooperate with each other intensively but independently: 

• The specification team will be evaluated with respect to the quality of the 
specification delivered (such as the number of bugs in the specification detected by 
other teams), and thus they must work hard to minimise any potential specification 
faults. 

• The coding team will be evaluated with respect to the quality of the code (such as the 
number of coding bug delivered by the testing team during the process), even worse 
they must develop the code without compilers, and thus they must inspect and re-
inspect the code carefully. 

• The testing team will be evaluated with respect to the quality of the final code using 
statistical models, and thus they must work on all the documents including the 
specification and code carefully, and they must compile and test the software 
according to statistical models. 

 

 

 
 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 77    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

By classifying the activities of each team into offence and defence activities, one can see 
that the IBM Cleanroom methodology is an application of game theory in software 
development as there are min-max (or defence-offence) activities among these 
independent teams. The idea is that once the developers are divided into different teams 
with different tasks, objectives, and evaluation criteria, these teams will compete 
according to their evaluation criteria, and the end result is the quality of software 
produced due to the competition among the team members. 
Table 5 Comparing IBM Cleanroom and Harvard-TopCoder process 

 IBM Cleanroom Harvard-TopCoder 
Number of parties Three. Three. 
Specification  Formal. UML. 
Party one responsibility Specification. They develop 

the specification of the 
software to be developed by 
the second team. 

Catalysts. They provide: 
1 funding 
2 original problem 

statements 
3 review of the final 

solutions submitted. 
Party two responsibility Coding. They review the 

specification done by the first 
team, develop the code 
according to the specification 
developed by the first team 
and they inspect the code 
over and over again to 
minimise the bug without a 
compiler. 

Researchers. They 
decompose the problem, 
develop the specification, 
develop the test cases, and 
evaluate the code developed 
by the crowds. 

Party three responsibility Testing team. They verify the 
code developed by the second 
team with respect to the 
specification developed by 
first team. 

Crowds. They develop 
algorithms according to the 
specification delivered by the 
party one. 

Allow incremental 
development 

Yes. Yes as this process can be 
modified so that the whole 
algorithm can be decomposed 
into sub-algorithms. 

One can now compare the IBM Cleanroom with Harvard-TopCoder process to see their 
similarities and differences. 

One can see that in the Harvard-TopCoder process, the task for the researchers is 
much heavier than the IBM Specification team as the team carries the load of both the 
specification team and the testing team of the IBM Cleanroom methodology. Now the 
offence-defence analysis can be done for the Harvard-TopCoder process as shown in 
Table 6. 

 

 

 



   

 

   

   
 

   

   

 

   

   78 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6 Offence and defence analysis of Harvard-TopCoder teams 

 Main tasks Offence Defence 

Catalysts Develop problem 
statements with 
Researchers for the 
project, need to specify 
final acceptance criteria, 
secure funding for 
crowdsourcing. 

Need to ensure the 
problem is feasible, 
thus go over with the 
Research team to 
maximise the 
probability of 
identifying problems 
in requirements.  

The team needs to ensure 
that the Researcher 
understand the problem 
and well decompose the 
problem to minimise the 
probability of bugs in 
problem statements. 

Researchers Understand the problem, 
decompose the problem, 
develop the high-level 
design for the crowd to 
develop components or 
algorithms, develop test 
cases for acceptance 
testing, and evaluate the 
algorithm/code submitted 
by the test cases 
developed. 

Working with the 
catalysts to develop 
quality specification, 
make sure that the 
problem is feasible to 
maximise the 
probability of 
identifying problems 
in requirements. 

The specification/test 
cases developed must be 
of high quality, and thus 
they need to review and 
inspect the specification 
carefully, and answer any 
inquiries from the crowd. 
These minimise the 
probability of finding 
bugs in specifications and 
test cases. 

Crowd Develop algorithms or 
components based on 
specification supplied. 

The crowd will review 
the specification 
carefully to ensure 
complete 
understanding, and 
identify any bugs in 
the specification, and 
develop test cases 
based on specifications 
to test other algorithms 
or components 
submitted by other 
contestants. These will 
maximise the 
probability of finding 
any bugs in 
specification provided 
by the research team. 

The crowd will evaluate 
its algorithm or 
components carefully 
using test cases developed 
to minimise the possibility 
of bugs in the code. 

4.5 Updated software crowdsourcing process 

Based on the IBM Cleanroom methodology, the Harvard-TopCoder process may be 
updated with the following processes with two or more kinds of crowds: 

• Catalysts: they have the usual role as before. 

• Researchers: Their role is now reduced as test cases preparation is crowdsourced, 
and evaluation may be also crowdsourced. 

• Crowd 1: Their role is the same, i.e., to develop algorithm or components. 

• Crowd 2: They prepare test cases and perform evaluation. Crowd 2 can be further 
divided into two or more sub-groups. 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 79    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

a Crowd 2.1: This sub-group is responsible for test case development, and cross 
validation of test cases by each other. They may be responsible for ranking test 
cases according to various criteria such as criticality. Note that multiple crowds 
can serve here, for example, one group can develop test cases for GUI 
navigation, and the other for generating cases based on control flow. 

b Crowd 2.2: This sub-group is responsible for execution of test cases on the 
submitted solutions provided by Crowd 1, and they can also cross validate the 
evaluation performed by other fellow participants. They can rank test cases 
according to potency of test cases (Tsai et al., 2008). 

The updated process is shown in Figure 6. 

Figure 6 Updated software crowdsourcing process 

 

 

The evaluation of each party will also be updated. The Crowd 2 will be evaluated with 
respect to the number of test cases developed, as well as the test results. For example, one 
ranking criteria is test potency, and the potency is defined as the capability of detecting 
bugs in the code. The more bugs it can detect, the higher the potency is. Test cases can 
also be ranked according to criticality. A critical test case means that if the software fails 
it, the system does not pass the acceptance test. A test case can be critical but not potent 
because the software passes the test cases. Similarly, a test case can be potent but not 
critical because the software fails the test case, but as it touches only the minor feature of 
the software. For example, the logos in the presentation may be displayed at a place that 
is not most appropriate while the software works fine. A test case may be both critical 
and potent if the software fails this feature and is rejected by the client. Table 7 
summarises the discussions. 



   

 

   

   
 

   

   

 

   

   80 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

While coders and software engineering will be rewarded for developing algorithms or 
components, testers will be rewarded for developing test cases and more importantly 
finding bugs in algorithms and components. Highest awards should be given to test cases 
that are both critical and potent, and lowest awards should be given to those test cases 
that are not critical and not potent at the same time. 
Table 7 Test case criticality and potency 

 Criticality Potency Cases Ranking 
1 High High A critical test case and it failed the 

software often. 
Highest ranking 

2 High Low A critical test case but it failed to 
identify bugs in the software. 

High 

3 Low High A non-essential test case, but it failed 
the software often. 

High 

4 Low Low A non-essential test case and it does not 
catch a bug in the software. 

Low 

Note that the updated process follows the Webstrar (Tsai et al., 2004, 2005) principles: 

• software can be tested, evaluated and ranked by running test cases on the software 

• test cases can be verified, evaluated, and ranked according to the criticality and 
potency criteria by various methodologies and models of test case evaluation 

• methodologies and models of test case evaluation can be evaluated and ranked as 
well by cross evaluation and validation 

• different policies can be established to set the testing guidelines for specific domain 
or specific design techniques. 

Thus, the entire test and evaluation items can be evaluated and ranked. The updated 
process allows testers to conduct cross evaluation of each other’s test cases, and rank 
these test cases based on both criticality and potency. 

This new crowdsourcing process, while similar in certain ways with the current 
TopCoder process, such as shown in Section 4.2, has different psychology effect. In the 
TopCoder process, contestants who developed a component will be competing in 
discovering bugs in competitor’s code directly, i.e., the competition is cut throat. 
Specifically, if there K contestants, we have the following competition: 

• [K × K] where K parties look over K components to eliminate each other. 

But in the updated processes, we have instead: 

• [M × N × L] where M components will be developed by M teams, and these 
components will be evaluated using test cases prepared by N parties, and the actual 
test runs done by L parties. 

The discussion can be summarised in Table 8. 

 

 

 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 81    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 8 Competition parties and rules in Harvard-TopCoder and revised processes 

 Competition Parties Competition rules 
Harvard-TopCoder 
process 

K × K among contestants, 1 × K 
between researchers and crowd, 
1 × 1 between catalysts and 
researchers 

Live and let live between catalysts 
and researchers; live and let live 
between researchers and crowd; live 
and let die among contestants. 

Updated process M × N × L among algorithm 
crowd, test case crowd, and test 
execution crowd; 1 × M between 
researchers and crowd, 1 × 1 
between catalysts and 
researchers 

Live and let live among and 
between all parties. 

Furthermore, while individual persons can participate in all the parties, but in general, 
this is a live-and-let-live competition, where each party will be rewarded by their 
respective criteria stated before. Thus, the psychology in this kind of competition will be 
different from the [K × K] competition. 

While traditional independent verification and validation (IV&V) and IBM 
Cleanroom methodology do not allow any party to overlap, the updated crowdsourcing 
process can allow overlap. As the person who developed the initial component may be a 
good candidate to develop critical test cases as the person just went over the mental 
process of developing the algorithm. The issue of whether allowing the people to be 
involved in both development and testing and evaluation (T&E) in a crowdsourcing 
environment is a research topic. 
Table 9 Offence and defence analysis of the updated process 

 Main tasks Offence Defence 

Catalysts Develop a problem 
statement with 
Researchers; specify 
final acceptance criteria; 
secure funding. 

Need to ensure the 
problem is feasible, thus 
go over with the 
Researcher team to 
maximise the probability 
of identifying problems 
in requirements.  

The team must ensure 
the Researchers 
understand the problem 
and well decompose the 
problem to minimise the 
probability of bugs in 
problem statements. 

Researchers Understand the problem; 
develop a specification 
for the problem at hand; 
May also develop the 
high-level design for the 
crowd to develop 
algorithms and test 
cases. 

Working with the 
catalysts to develop 
quality specifications, 
make sure that the 
problem is feasible to 
maximise the probability 
of identifying problems 
in requirements.  

The specification 
developed must be of 
high quality, and thus 
they need to review and 
inspect the specification 
carefully, and answer 
any inquiries from 
algorithm or testing 
crowds timely. These 
minimise the probability 
of finding bugs in 
specifications. 

 

 

 



   

 

   

   
 

   

   

 

   

   82 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 9 Offence and defence analysis of the updated process (continued) 

 Main tasks Offence Defence 

Algorithm 
Crowd 

Develop the algorithm 
for the specification.  

The crowd must review 
the specification 
carefully to identify any 
bugs in the specification, 
and must develop 
algorithm or code to be 
tested and evaluated by 
all other teams. These 
will maximise the 
probability of finding 
any bugs in 
specifications. 

As the algorithm or code 
delivered by the crowd 
may be reviewed by all 
other teams, and thus the 
deliverables will be  
self-tested and inspected 
over and over again to 
minimise the possibility 
of bugs. 

Testing 
Case 
Crowd 

Based on the 
specification, develop 
black-box or functional 
test cases, and develop 
white-box test cases on 
selected output from the 
Algorithm crowd; rank 
test cases based on 
criticality. 

Inspect the 
specifications delivered 
carefully to find any bug 
to develop test cases; 
inspect the 
algorithm/code 
delivered by the 
Algorithm crowd to 
identify key features to 
test. These will 
maximise the probability 
of finding bugs in 
specifications or 
algorithm/code, and 
report any bugs found to 
the Researcher team and 
Algorithm crowd 
immediately.  

All the test cases and 
ranking can be cross 
validated by fellow test 
case participants can be 
cross validated. These 
will minimise the 
probability of bugs in 
test cases, report any 
report any bug in test 
cases developed by 
fellow participants.  

Test 
Evaluation 
Team 

Based on the 
specification, 
algorithm/code 
developed by the 
Algorithm crowd, and 
test cases developed by 
testing case crowd, 
execute the test cases to 
see if the algorithm/code 
pass the evaluation. 
Record and rank the 
potency of test case 
dynamically based on 
test results. 

The team can cross 
validate specifications, 
algorithm/code, and test 
cases for possible 
inconsistency to 
maximise the probability 
of identifying bugs in 
these documents, report 
any bugs in the 
specification, 
algorithm/code, and test 
cases to appropriate 
teams. 

Test results can be cross 
validated by fellow test 
evaluation team, this 
will minimise the 
probability of mistakes 
in test evaluation. 

5 Creativity in AppStori development processes 

Another interesting case of software crowdsourcing is the mobile application 
development. One well-known place is Apple App Store where it is essentially an online 
IOS application market where developers can directly delivery their products with 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 83    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

creative design to smartphone users. These developers are motivated to contribute 
innovative design and attract more user downloads by the micro-payment mechanism of 
the App Store. Within less than four years, it becomes a huge mobile application 
ecosystem with over 150,000 active developers and over 700,000 IOS applications. It is 
also the largest online software distribution channel for IOS applications. 

Figure 7 AppStori Crowdsourcing Development Processes (see online version for colours) 

 

 

Apple App Store publishes the review guidelines and sets up an executive review board 
with 40 staffs that check every application submitted and determine whether to accept 
these submissions based on the guideline. Apple keeps all the review jobs completely 
within its own organisation to make sure that all the submissions strictly follow the 
guideline and achieve reasonable level of quality. The delay between submission and 
review is not guaranteed. According to App Store Metrics (http://148apps.biz/app-store-
metrics/), this delay currently averages at 5.91 business days with a maximum delay of  
34 days. 

Recent studies on millions of IOS developers suggest that the majority of iPhone apps 
are actually developed by small teams or individuals. To create a successful and profit 
iPhone application, they often need external funding and beta testers to support their 
projects and improve the quality of the applications. Many online platforms such as 
AppStori (http://www.appstori.com) and iBetaTest (http://www.iBetaTest.com), adopt 
software crowdsourcing model to help these IOS developers to make their creative ideas 
and dreams into reality. AppStori is a community-based, collaborative platform that 
encourages mobile creativity and foster innovations by bringing developers, beta-testers, 
donors and supportive customers together. AppStori provides a ‘preview’ window for 



   

 

   

   
 

   

   

 

   

   84 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

iPhone application enthusiasts to choose their favourite ideas, support and actively 
engage in the promising projects. The process is shown in Figure 7. 

• Crowdfunding and stakeholders: Similar to Kickstarter.com in the financial market, 
any AppStori member can post a novel idea of IOS application onto the AppStori, 
specifying the project goals and deadlines, and ask for funding. After the AppStori 
Review Board approves the project, its content will be visible online. Any people 
who may be interested in the project can become a stakeholder by funding a project. 
Although a stakeholder cannot withdraw its fund before the end of the project, the 
person can check the progress of the project and request the project leader to finish 
the project within a specified time frame. Otherwise, the funding will not be 
transferred to the developer team at the end. In addition, the developers may setup a 
tiered rewarding system to allow shareholders to benefit from the project profit. 

• Transparency and Agile development: AppStori encourages 100% transparency 
between the developer team and the community. Every team member must provide 
detailed personal profile to present their background and role in the project. And the 
project status must be updated in time to display the progress to the community. 
Anyone who is willing to be part of the team can join the project as either a 
developer or a beta tester. The beta testers can evaluate early versions of the 
application under test and give direct feedbacks and bug reports to the developers. 

• Web 2.0 collaboration and communication: AppStori provides Web 2.0 tools that 
can support collaboration among all parties with Blog, Twitter and Facebook. These 
Web 2.0 tools greatly facilitate users to know about the activities and status of the 
project 

5.1 Stimulating creativity in mobile application development 

AppStori encourages exploration diverse paths and embracing rich styles to create 
innovative mobile applications. It supports transparent and agile development to create an 
open platform for all the stakeholders and allow iterative refinement for innovative ideas. 
Web 2.0 communications make it easier for donors, developers, and testers to exchange 
ideas, post comments and figure out brilliant ideas. AppStori’s open and creative 
environment enables numerous cycles of ‘trial-and-error’ towards the successful design 
until it can be ready for publication on AppStore. 

Comparing to the TopCoder development process, AppStori is much flexible with 
significant freedom that TopCoder contestants do not enjoy. Table 10 compares with 
these processes. 

One can see that AppStori is much close to the agile methods while TopCoder is 
closer to the traditional processes such as Waterfall, Spiral and documentation-based 
processes. The most striking idea of AppStori is that from the beginning, almost 
everything can be crowdsourced including initial project concept formation (where 
developers come up with an idea to put on AppStori.com), to development (developers 
can join the developer team), to T&E (developers and users can join the testing), and 
funding (users and testers can see the software to see if the product will be downloaded 
by people for profit).While TopCoder catalysts and researchers control much of the 
development processes, and show only those things that they want to expose to the 
crowd, AppStori is a go-anywhere style of project development. 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 85    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 10 Comparing TopCoder and AppStori 

 TopCoder AppStori 
Project ideas The clients (catalysts) come up 

with the idea. 
Developers (and they can be co-
users) come up with the idea. 

Developing 
specification 

Clients with researchers or in-
house IT professionals to 
understand the problem, 
decompose the problem, and 
deliver the specification written in 
UML. 

Developers come up with the 
design, and specification languages 
can be informal or light weighted. 

Time for algorithm 
or component 
development 

Limited so that contestants need to 
be focused during the competition 
time 

Freestyle, yet developers have 
project deadlines to meet, they can 
work asynchronously any time in a 
day. 

Test case 
preparation 

Can be done by researchers or 
crowdsourced. 

Crowdsourced to beta testers and 
other users. 

Test run and 
evaluation 

Can be done by researchers or 
crowdsourced. 

Crowdsourced to best testers and 
other users. 

Crowd participants Mainly compete against each other 
to win competitions 

Mainly help each other to develop 
the best products for customers to 
download. 

Development 
processes 

While the code or algorithm may 
be important, documents generated 
are important. 

Software developed is important 
with minor concerns with 
documentation. 

Competition 
Parties 

People can first choose to 
participate in certain competitions 
only, and then the best of two 
among all those participate will 
win. Those not participated are not 
engaged in any competition. 

As the project ideas are open to 
AppStori, and thus the 
competitions are really among the 
crowd, or the crowds form their 
own parties to compete with 
another crowd parties. In certain 
ways, everyone is competing with 
every other for most 
monetary/enjoyment rewards, 
either they are developers, beta 
testers, users, or shareholders. 

Can AppStori develop quality software? If they cannot develop software, no one will 
download their software from App Store, and thus no profit potential, and that is the main 
driving force for quality. Table 11 shows the offence and defence among AppStori parties 
to come up with quality products. 

Crowdsourcing sites such as AppStori enable the app developers to build and 
maintain relationship with their user base through a variety of communication. While 
crowdfunding is an important part of the solution that AppStori provides, it is only one 
aspect of the platform. There are other ways that AppStori community members can 
participate. For example: users can contribute ideas and feedback that guide an app’s 
development process, provide social support for projects via social media promotion, 
become beta testers to test out early versions of apps, as well as discover the next 
generation of mobile apps. 

 



   

 

   

   
 

   

   

 

   

   86 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 11 Offence-defence analysis of AppStori process 

 Main tasks Offence Defence 

AppStori 
Review 
Board 

Review the proposal of 
a AppStori project 
creator and decide 
whether to allow the 
creator to publish his 
project 

Screen the creative ideas 
from project team in the 
pre-quality step and 
make decision for 
admission based on the 
innovation of the idea 
and the qualification of 
the team leader. This 
will maximise the 
quality of accepted 
proposal and the 
probability of its 
success.  

Ensure the accepted 
project submission is a 
legitimate proposal for 
mobile application. This 
will minimise the 
possibility of web spam 
and low quality 
proposals.  

Project team Propose an innovative 
mobile application to 
the AppStori; raise 
funding for the project; 
attract skilled 
programmers to join the 
team; develop the 
mobile app in an agile 
manner; design a 
rewarding structure for 
people to fund the 
project; develop the 
quality code quickly to 
meet the project 
milestone. 

Interact with potential 
users about the project 
concepts to know their 
preference and choices. 
Submit the proposal to 
the AppStori and 
convince the AppStori 
Review Board about the 
promising prospect of 
the proposal. This will 
maximise the probability 
of success as user 
preferences are known.  

Ensure the software is 
good enough to be 
tested by Beta testers by 
performing in-house 
testing and/or inspection 
rigorously. This will 
minimise the probability 
of bugs in the code. 

Beta-test 
volunteers 

Following the project 
requirement, develop 
mobile app test cases 
and perform functional 
tests, locality tests and 
usability tests of the 
mobile app. And post 
test reports to the 
development team for 
further improvement. 

Understand the project 
goal, attempt multiple 
user interface approach 
to ensure the software is 
good for as many users 
as possible. This will 
maximise the probability 
of finding bugs in the 
project concepts and 
user preference early to 
provide feedbacks and 
suggest alternative 
design. 

Make sure that tests are 
done correctly so that 
they can maintain their 
reputation in Beta 
testing. This will 
minimise the probability 
of bugs in test cases. 

Funding 
contributors 

Evaluate the project to 
see the financial future 
of the product, and 
provide fund for the 
project team. 

Select the best projects 
for funding; check the 
status of the project 
often to remind the 
developer team. These 
will maximise the 
chance for the project to 
be successful and future 
profit brought from their 
contributions. 

The best defence is to 
identify the best project 
idea that people wanted, 
and identify the best 
available team to carry 
out the project. These 
will minimise the 
possibility of project 
failure. 

 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 87    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 11 Offence-defence analysis of AppStori process (continued) 

 Main tasks Offence Defence 
AppStore 
review team 

Perform the conformity 
test on Mobile apps 
according to the IOS 
APP Guideline and 
decide whether to put 
the app into the 
AppStore. 

Rigorously review and 
test all aspects of the 
app under test, and two 
reviewers can jointly 
decide whether to admit 
the app or not. These 
maximise the quality 
level of apps in the 
AppStore platform. 

The team needs to test 
the app and verify the 
conformity of the app. 
These will minimise the 
probability of  
non-compliance. 

AppStori is a great place for people to learn new applications, technologies, and trend in 
mobile applications, and mobile consumers and enthusiasts can connect directly with 
mobile developers and entrepreneurs for direct feedbacks. These feedbacks are expensive 
to obtain in the past. All these features of AppStori are essential to foster crowd creativity 
for better mobile applications. 

6 Game theory interpretation 

6.1 IBM Cleanroom methodology 

If IBM Cleanroom methodology is a game, it is a cooperative game. A cooperative game 
is a game where groups of players will work together to achieve common goals, and 
individuals within groups do not make their own moves independently. The group will 
decide its strategies to achieve its own goals. Specifically, each of three teams in the IBM 
Cleanroom works as a group to reach its own goals and objectives. 

It is also an asymmetric game. A symmetric game is a game that will reach the same 
results if the same strategy is used regardless who are involved in the strategy. Software 
development is unfortunately highly human dependent, two persons working on the same 
problem, using the same methodology and even the same design patterns, are likely to 
end up with two distinct even though similar designs. Similarly, two testing evaluations, 
using the same testing techniques and processes, will identify different set of bugs even 
though the two sets overlap. 

It is not a zero-sum game, but it is a simultaneous game where participants can make 
their moves simultaneously even though activities may need to be coordinated. It is also 
an imperfect game as not all the information will be available to all the parties. 

6.2 Harvard-TopCoder process and revised process 

Both have elements of a cooperative game as the catalyst and researcher teams work as 
groups with a team goal and objective, but the individual people in the crowd work alone, 
not cooperative. It is asymmetric as different people will produce different results in all 
three teams with significant performance variation. It is not a zero-sum game, but a 
simultaneous game, and an imperfect game as no one knows the complete status of the 
project. 



   

 

   

   
 

   

   

 

   

   88 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

6.3 AppStori process 

This process is a cooperative game even though the group decision may be made within 
the crowd, and thus may be difficult to reach consensus. It is asymmetric as the results 
depend on the people who participate in the game; it is not a zero-sum game, but a 
simultaneous game, and an imperfect game. 

As both processes are not zero-sum game, they can encourage co-creativity by 
allowing each one to contribute and gain rewards through participation. Cooperative 
games often tend to have positive influence on the player creativity as they are willing to 
help each other to improve their performance. Non-cooperative game such as  
Harvard-TopCoder has fewer stimuli for people to learn from each other. Furthermore, 
TopCoder is also like a game of Chicken (Chicken Game, 2012) where each participant 
will try their best to beat their competitors, and thus each party may be mutually 
destroyed by each other as the worst outcome for all participants. The Chicken game 
came from a game where two drivers facing each other for a head-on collision, if any 
party changes the direction, the other party will win. However, the worst possible 
outcome will happen if both will not yield, and both are killed in the collision. 

AppStori is like a Coordination game (Coordination Game, 2012) where all parties 
can gain from the game mutually, if they trust each other and are willing to make 
mutually satisfying group decisions. In some scenarios where people have not formed a 
well-functioning community yet, they may also take tit-for-tat strategy to cooperate with 
others on the condition that other players also make reciprocal contributions. 

While many papers are available today on software crowdsourcing, however, few 
have studied the detailed process to identify the min-max issues. This paper starts from 
software crowdsourcing processes, and identified key ideas particularly related to the 
min-max issues and the impact on creativity in software development. 

7 Conclusions 

Software development has been deemed as both technical and creative activities. It 
demands disciplined engineering approach to achieve project goals in an efficient and 
cost-effective manner. And it also needs creativity from developers to think out-of-box 
for innovative concepts, elegant design, and clean code. The emerging crowdsourcing 
practices inspire a new dimension to stimulate creativity through online collective 
intelligence while ensuring high quality of software products. 

One can see that, TopCoder, being one of the pioneers in software crowdsourcing, 
starts a process based on competition and rigorous documentation. Furthermore, while 
many software development artefacts can be crowdsourced, TopCoder is known to 
produce quality software components and algorithms. AppStori takes a rather distinct 
path, and it has even crowdsourced project concepts, development, funding, and 
evaluation all to the crowd. In fact, in AppStori, crowds interact with crowds with the 
organisers play a less role, while in TopCoder, the crowd interact with the client mostly 
with the organisers play a heavy role. One can view that AppStori has pushed the 
capability to crowdsourcing further as the crowds can play multiple roles during the 
process, and stimulate collective creativity during the process. 

Another important identification is that it is the min-max nature of competition within 
software crowdsourcing that produce the creativity and quality of software. The min-max 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 89    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

nature can be practiced in a live-and-let-die competitions (such as in TopCoder process) 
or in a collaborative manner where all participants can win, including the crowds who 
fund the project, create the initial project concept, develop the project, test and evaluate 
the project, download and use the product delivered the product can all win this by 
participating in this highly complex and iterative process. Therefore, the min-max is the 
key component in the crowdsourcing process to affect the collective creativity in the 
software development. 

TopCoder and AppStori showed that two dramatically different software 
crowdsourcing approaches with different techniques and processes can both lead to 
delivering quality software. 

Acknowledgements 

This project is sponsored US National Science Foundation project DUE0942453 and 
National Science Foundation China (No. 61073003), National Basic Research 
Programme of China (No. 2011CB302505), the Open Fund of the State Key  
Laboratory of Software Development Environment (No. SKLSDE-2009KF-2-0X and 
SKLSDE-2012ZX-19), and Fujitsu Laboratory. 

References 
‘DARPA and TopCoder also seek a platform middle and high school students on software 

development in October 2011’ (2011) [online] http://www.topcoder.com/aboutus/archive/ 
2010/10/darpa-and-topcoder-seek-to-change-how-students-spend-time-online-2/  
(accessed 10 July 2011). 

Agile Software Development (2012) Wikipedia [online] http://en.wikipedia.org/wiki/Agile_ 
software_development (accessed 29 June 2012). 

Apple App Store Review Guidelines (2010) [online] https://developer.apple.com/ 
appstore/guidelines.html (accessed 9 September 2010; 10 June 2012). 

Apple Store Metrics [online] http://148apps.biz/app-store-metrics/ (accessed 25 June 2012). 
Archak, N. (2010) ‘Money, ‘glory and cheap talk: analyzing strategic behavior of contestants in 

simultaneous crowdsourcing contests on TopCoder.com’’, Proceedings of the 19th 
International Conference on World Wide Web. 

Archak, N. and Sundararajan, A. (2009) ‘Optimal design of crowdsourcing contests’, Proc. of 
International Conference on Information Systems (ICIS), Association for Information Systems, 
pp.1–16. 

Bacon, D.F., Chen, Y., Parkes, D. and Rao, M. (2009) ‘A market-based approach to software 
evolution’, 24th ACM SIGPLAN Conference Companion on Object oriented Programming 
Systems Languages and Applications, 25–29 October, Orlando, Florida, USA. 

Benkler, Y. (2012) Wikipedia [online] http://en.wikipedia.org/wiki/Commons-
based_peer_production (accessed retrieved 29 June 2012). 

Bullinger, A. and Moeslein, K. (2010) ‘Innovation contests – where are we?’, AMCIS (Americas 
Conference on Information Systems) 2010 Proceedings, Paper 28, http://aisel.aisnet.org/ 
amcis2010/28 (accessed 28 June 2012). 

Capability Maturity Model Integration (CMMI) Wikipedia [online] http://en.wikipedia.org/wiki/ 
Capability_Maturity_Model_Integration (accessed 28 June 2012). 

Chen, Y. and Tsai, W.T. (2011) Service-Oriented Computing and Web Software Integration,  
3rd ed., Kendall Hunt Publishing, ISBN: 978-1-4652-0558-2 



   

 

   

   
 

   

   

 

   

   90 W. Wu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Chicken Game (2012) Wikipedia entry [online] http://en.wikipedia.org/wiki/Chicken_(game) 
(accessed 25 June 2012). 

Coordination Game (2012) Wikipedia [online] http://en.wikipedia.org/wiki/Coordination_game 
(accessed 25 June 2012). 

Department of Defense-STD-2167A (DoD) (2012) Wikipedia [online] 
http://en.wikipedia.org/wiki/DOD-STD-2167A (accessed 29 June 2012). 

DiPalantino, D. and Vojnović, M. (2009) ‘Crowdsourcing and all-pay auctions’, EC ‘09 
Proceedings of the 10th ACM conference on Electronic Commerce. 

Doan, A., Ramakrishnan, R. and Halevy, A.Y. (2011) ‘Crowdsourcing systems on the  
World-Wide Web’, Communications of ACM, April, Vol. 54, No. 4, pp.86–96. 

Fink, E., Sharifi, M. and Carbonell, J.G. (2011) ‘Application of machine learning and 
crowdsourcing to detection of cybersecurity threats’, Proceedings of the DHS Science 
Conference, Fifth Annual University Network Summit. 

Fischer, G. (2004) ‘Social creativity: turning barriers into opportunities for collaborative design’, 
Proceedings of the Eighth Conference on Participatory Design: Artful Integration: 
Interweaving Media, Materials and Practices, Vol. 1, pp.152–161. 

Harvard University (2012) Harvard University Clinical and Translational Science Center, 
‘Algorithm Development through Crowdsourcing’, 
http://catalyst.harvard.edu/services/crowdsourcing/ (accessed 10 June 2012). 

Horton, J.J. and Chilton, L.B. (2010) ‘The labor economics of paid crowdsourcing’, EC ‘10 
Proceedings of the 11th ACM conference on Electronic Commerce, pp.209–218. 

Hutter, K., Hautz, J., Füller, J., Mueller, J. and Matzler, K. (2011) ‘Communitition: the tension 
between competition and collaboration in community-based design contests’, Creativity and 
Innovation Management, March, Vol. 20, No. 1, pp.3–21 

Kittur, A. (2010) ‘Crowdsourcing, collaboration and creativity’, XRDS, Winter, Vol. 17, No. 2, 
pp.22–26. 

Lakhani, K.R., Garvin, D.A. and Logstein, E. (2010) ‘TopCoder: developing software through 
crowdsourcing’, Harvard Business School Case 610-032. 

Leimesister, J.M., Huber, M., Bretschneider, U. and Krcmar, H. (2009) ‘Leveraging 
crowdsourcing: activation-supporting components for it-based ideas competition’, Journal of 
Management Information Systems (JMIS), Vol. 26, No. 1, pp.197–224. 

Li, W. and Li, N. (2012) ‘A formal semantics for program debugging’, Science China – 
Information Sciences, Vol. 55, No. 1, pp.133–148. 

NASA Tournament Lab (2010) [online] http://www.topcoder.com/aboutus/archive/2010/10/ 
nasa-to-crowdsource-software-development/ (accessed 10 June 2012). 

Obrenovic, E., Gasevic, D. and Eliens, A. (2008) ‘Stimulating creativity through opportunistic 
software development’, IEEE Software 2008, Vol. 25, No. 6, pp.64–70. 

Rapoport, A. and Chammah, A.M. (1966) ‘The game of chicken’, American Behavioral Scientist, 
Vol. 10. 

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B. and Pausch, R. (2005) Design Principles 
for Tools to Support Creative Thinking, Institute for Software Research, Paper 816. 

Schenk, E. and Guittard, C. (2009) ‘Crowdsourcing: what can be outsourced to the crowd, and 
why?’, 7 December [online] http://halshs.archives-ouvertes.fr/docs/00/43/92/56/PDF/ 
Crowdsourcing_eng.pdf (accessed 20 June 2012). 

Shneiderman, B. (2007) ‘Creativity support tools: accelerating discovery and innovation’, 
Communications of the ACM, December, Vol. 50, No. 12, pp.20–32. 

Shneiderman, B. (2011) ‘Social discovery framework: building capacity and seeking solutions’, 
C&C ‘11 Proceedings of the 8th ACM Conference on Creativity and Cognition, pp.307–308. 

Tibbetts, H. (2012) ‘Maximizing crowdsourcing success: strategies for minimizing risk and 
maximizing success’, 13 September [online] http://hollistibbetts.sys-con.com/node/1975837 
(accessed 12 June 2012). 



   

 

   

   
 

   

   

 

   

    Creative software crowdsourcing 91    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Tsai, W.T., Cao, Z., Chen, Y. and Paul, R.A. (2005) ‘Web services-based collaborative and 
cooperative computing’, ISADS 2005, pp.552–556. 

Tsai, W.T., Chen, Y., Paul, R.A., Liao, N. and Huang, H. (2004) ‘Cooperative and group testing in 
verification of dynamic composite web services’, Proc. of IEEE COMPSAC Workshops, 
pp.170–173. 

Tsai, W.T., Zhou, X., Chen, Y. and Bai, X. (2008) ‘On testing and evaluating service-oriented 
software’, IEEE Computer, Vol. 41, No. 8, pp.40–46. 

Notes 
1 IBM Cleanroom methodology has evolved, and this paper focused a specific version only. 


