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Abstract: In this paper, we focus on the hierarchy and discriminating ability of 
visual vocabulary. We propose to use the category information of images and 
the spatial context of keypoints to select appropriate visual words from 
different hierarchical levels. Existing approaches, such as flat vocabulary and 
vocabulary tree, can change the hierarchy of all visual words at the same time, 
by setting different cluster numbers and tree height respectively. However, the 
most appropriate visual words may be at different hierarchical levels, and 
existing approaches could not adjust the hierarchy of different visual words 
separately. To address this problem, we propose an object function to describe 
the consistence of visual words, with category information of images and 
spatial context of keypoints, and then we adopt simulated annealing algorithm 
to search for a sub-optimal solution, which corresponds to a visual vocabulary 
selected from the vocabulary tree. Different from existing methods, the 
proposed approach can select the most appropriate visual words from different 
levels adaptively, which can improve the performances in image annotation and 
classification tasks. Experiments on widely-used 15-scenes dataset demonstrate 
the effectiveness of the proposed approach. 
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1 Introduction 

In the bag-of-visual-words (BoVW) model, which has become very popular in 
multimedia research, visual vocabulary plays a key role. It is trivial to determine the 
words and vocabulary in the text domain, where the BoVW model derives from. 
However, in the image/video domain, the generation of visual vocabulary is a more 
difficult and error-prone task. The local image patches, which are usually detected or 
densely-sampled keypoints, are described by statistical features, and then clustered into 
visual words, which are region centres in the high-dimensional space. Much work has 
been proposed to generate more accurate visual vocabularies. 

Existing approaches can be roughly divided into two categories: flat vocabulary and 
tree vocabulary. Flat vocabulary: Early research such as the work by Sivic and Zisserman 
(2003) uses k-means to build flat visual vocabulary. In fact, k-means is still one of the 
most popular methods of vocabulary generation until now. To overcome the high 
computational complexity of k-means, Philbin et al. (2007, 2008) propose approximate  
k-means (AKM) algorithm, which adopts ‘approximate nearest neighbours’ instead of 
‘nearest neighbours’, and accelerate the quantisation of keypoints by indexing. The AKM 
method is faster than k-means, and can generate much larger visual vocabularies for 
large-scale real applications. However, the visual vocabulary generated by AKM 
algorithm is still single-level flat vocabulary. The problem with flat vocabulary lies in the 
inconvenience to adjust visual word hierarchy. It is only possible to adjust all the visual 
words at the same time, by changing the size of visual vocabulary: with smaller 
vocabulary size, the feature space is split into fewer but larger regions, so all visual words 
become more general and less discriminative; with larger vocabulary size, the feature 
space is split into more but smaller regions, so all visual words become less general and 
more discriminative. Tree vocabulary: Nister and Stewenius (2006) propose the 
vocabulary tree (VT) method, which builds a tree structure as vocabulary. The VT is 
generated by a top-down hierarchical clustering process, with pre-specified branch 
number and level number. Ji et al. (2009) also adopt tree vocabulary, where the clustering 
process may locally end before reaching maximum tree level, if the keypoint number of a 
leaf node is smaller than a threshold. For tree vocabulary, the hierarchy of leaf nodes can 
be adjusted by changing the maximum level, or changing the threshold of keypoint 
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number per node. However, it is also very difficult for a tree vocabulary to adjust the 
hierarchy of different visual words differently. A compromise approach is to use all the 
nodes at all levels with different weights, which does not solve the problem at root. In 
one word, both flat vocabulary and tree vocabulary fail to handle the hierarchical 
diversity of visual words. Some visual words need to be at higher levels to be more 
general, while other visual words may need to be at lower levels to be more 
discriminative. The most appropriate visual words may be at different hierarchical levels. 
Ignoring these facts may lead to inappropriate visual vocabulary. 

Recently much research has been done to exploit information other than the statistical 
information of keypoint. For example, Ji et al. (2010) propose to integrate image category 
information from Flickr labels for supervised vocabulary construction. Zhang et al. 
(2009) propose to use visual phrases as the visual correspondence to text phrases, where 
visual phrases refer to the frequently co-occurring visual word pairs. Zheng et al. (2009) 
construct visual phrases from frequently co-occurring visual word-set with similar spatial 
context, and further cluster visual phrases into visual synsets, based on class probability 
distribution. There are also works that use spatial information in kernels (Lazebnik et al., 
2006; Lu and Ip, 2009), or to re-rank original retrieval results based on a measure of 
spatial consistency (Sivic and Zisserman, 2003; Philbin et al., 2007). Motivated by these 
works, in this paper, we will exploit image category information and spatial information 
to optimise vocabulary hierarchy. 

Our proposed approach is related with but different from two recent approaches. Li  
et al. (2008) propose to learn optimal compact codebooks by selecting a subset of 
discriminative visual words from a large visual vocabulary. To do that, they adopt two 
discriminative criteria, namely likelihood ratio and Fisher, to evaluate the importance of 
each visual word. Our proposed approach is similar to Li et al. (2008) in that both 
approaches try to select a subset from an initial large vocabulary of candidate words. But 
our proposed approach differs from Li et al. (2008) in the following aspects: 

1 Li et al. (2008) select the visual words from a flat vocabulary that is generated by  
k-means, while we select the visual words from an over-segmented hierarchical VT, 
which enables us to find the most appropriate visual words from different 
hierarchical levels. 

2 The criteria adopted by Li et al. (2008) are only based on the category information of 
images. 

Besides the category information, we also exploit the spatial context of keypoints to 
evaluate the selected subset of visual words. Another related work is by Li et al. (2011), 
which proposes to improve the bag-of-words representation by modelling the semantic 
conceptual relation and spatial neighbouring relation between local patches. Different 
from our proposed approach which selects an appropriate subset of visual words as visual 
vocabulary, Li et al. (2011) directly operate on the histogram of words. By hierarchically 
merging, the bins of related visual word pairs, Li et al. (2011) could generate a  
multi-resolution representation of the pyramid structure. 

The main contribution of this paper can be summarised as follows: We propose to 
select the most appropriate visual words from different levels of the VT. We propose an 
object function, which is based on the category information of images and the spatial 
context of keypoints, to describe the hierarchical property of selected subset of visual 
words. Then simulated annealing algorithm is adopted to search for a sub-optimal 
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solution to the object function, which corresponds to a sub-optimal subset of visual 
words. With the proposed method, the most appropriate visual words can be selected 
from different levels adaptively, and thus performance improvements can be achieved in 
real applications such as image annotation and classification. 

The rest of this paper is organised as follows: We will present the detailed algorithm 
of the proposed approach in Section 2. In Section 3, experiment results on 15-scene 
categories dataset are reported. And we conclude this paper in Section 4. 

2 Proposed approach 

2.1 Overview 

To generate a hierarchically more proper visual vocabulary, we propose to use the 
category information of images and the spatial context of keypoints to select the most 
appropriate visual words from an over-segmented hierarchical tree. The proposed 
approach consists of four steps, which is summarised as follows and also illustrated in 
Figure 5: 

1 Initialisation: 

 Generate a K-branch L-level VT (denoted as VT), where K and L are the parameters 
that respectively specify the number of children at each non-leaf node and the 
maximum tree level. Like most approaches with VT, we would use a small K value 
(e.g., 2 or 3), to accelerate the hierarchical clustering process and to simplify the 
initialisation process. And we would use a fairly large L value to ensure that the leaf 
nodes are over-segmented regions in the feature space, and the most hierarchically 
proper visual words are the leaf nodes’ ancestors that can be found somewhere in the 
middle of the VT. 

2 Object function definition: 

 Since we are going to select a proper subset of visual words V from the VT, we need 
a reliable way to quickly evaluate the quality of the selected subset. In our views, a 
proper visual vocabulary should have good consistence with the spatial context of 
keypoints and category information of images, so we will define an object function 
E(V) to assess the quality of the selected word subset by evaluating its consistence 
with spatial and category information. 

3 Search with simulated annealing: 

 A trivial solution is to find the optimal solution to the object function with brutal 
search. However, brutal search is too time-consuming and is not affordable. Instead, 
we adopt the simulated annealing algorithm to search for a sub-optimal solution to 
the object function, which corresponds to a sub-optimal visual word subset. 

4 Soft selection of hierarchy: 

 After the subset V is selected, it is used as the visual vocabulary. We can use the  
tree structure of VT to accelerate keypoint quantisation. Beside the selected visual 
vocabulary V, we also adopt an auxiliary vocabulary VA, which consists of all the 
children of the nodes in selected vocabulary V. We conduct the keypoint quantisation 
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with these two visual vocabularies separately, and combine their histogram features 
with different weights, which is similar to the soft-weighting approach in the 
quantisation step of flat-vocabulary. 

We will explain each step of the proposed approach in detail in the following subsections 
(2.2 to 2.5). 

2.2 Initialisation 

In the initialisation phase, we adopt the following steps to generate the over-segmented 
VT, which contains possible candidate visual words at all hierarchical levels (as 
illustrated in Figure 1): 

1 All the keypoints belong to the root node, which is the top level visual word and is 
obviously not discriminative at all. Then we cluster all keypoints of the root node 
into K clusters using k-means algorithm, and use the K cluster centres as the root’s 
children. 

2 For each level-l node, we cluster its keypoints into K clusters, and use the K 
centroids as its level-(l+1) children nodes. 

3 We continue this clustering process iteratively, from top to bottom, from coarse to 
fine, splitting the feature space hierarchically into a visual VT. This process ends 
when the pre-specified maximum level L is reached, or when the node contains too 
few keypoints (less than minKP, which is a pre-specified parameter). 

In the initialisation step, L should be large enough and minKP should be small enough, 
ensuring that the leaf nodes of the tree are over-segmented, and thus the VT contains the 
proper visual words at some levels in the middle sections. 

Figure 1 Initialisation of VT (see online version for colours) 

 

2.3 Object function definition 

As described above, VT contains visual words at different hierarchical levels: higher-level 
nodes are usually too coarse and thus not discriminative enough to distinguish keypoints 
from images of different categories, while lower-level nodes would be too fine and thus 
not general enough that they may assign keypoints with similar semantic meanings into 
different visual words. Our aim is to select the visual words at the most appropriate 
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levels, which can tell images from different categories apart, while at the same time keep 
similar images in the same category. To achieve this goal, at first we must make it clear 
that we are going to select a subset of word nodes V that obey the following rules: 

a Any two word nodes in V do not contain each other, that is, there do not exist two 
nodes vi and vj such that vi is the ancestor of vj. 

b V is a complete subset of VT, that is, adding any new word node into V breaks rule 
(a). 

With the above two constraints, we could greatly reduce the scope of search without 
losing important candidate subsets. Then we define an object function, which evaluate the 
consistence with the spatial context of keypoints and category information of images, 
enabling us to quickly assess the quality of the selected subset of word nodes. 

2.3.1 Consistence with category information 

The selected subset of visual words (denoted as V) should be consistent with the category 
distribution of images. We define the category consistence (CC) of V as follows in 
equation (1): 

( )
( )

|| ||
i

iv V
CC v

CC V
V

∈=
∑

 (1) 

( ) ( )
( )

max ki
ki

ki

tf lvCC v
tf lv

⋅
=  (2) 

( ) 1 2, , ...,i i initf tf tf tfv =  (3) 

1 2, , ...,k k k knl l l l=  (4) 

Figure 2 A sample subset (solid orange circles) that obeys the two rules (see online version  
for colours) 

 

 

As shown in equation (1), the category consistence (CC) of subset V is the mean value of 
the category consistence of all visual words vi in V. Equation (2) calculates the category 
consistence of single visual word vi as the maximum cosine similarity between tf(vi) and 
lk, both of which are defined in equations (3) and (4), respectively. As shown in equation 
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(3), tf(vi) is the image distribution vector of word node vi, where tfij is the occurrence 
number of visual word vi in the jth image in training dataset, and n is the number of 
training images. In equation (4), lk is the ground-truth image label vector for the kth 
category, where lkj ∈ {0, 1} is the ground-truth label of the kth category in the jth image. 
Larger CC value of subset V means its better consistence with the category information of 
images. 

2.3.2 Consistence with spatial information 

The selected subset of visual words V should be consistent with the spatial context of 
keypoints. We define the spatial consistence (SC) of V as follows in equation (5): 

( )
( )

|| ||
i

iv V
SC v

SC V
V

∈=
∑

 (5) 

( ) ( ) ( )
( ) ( )
( ) ( )

1
( 1)

ji
i i ipa ji

vnw nwv
SC pav v v

K vnw nwv

⋅
= =
− − ⋅∑  (6) 

( ) 1 2, , ...,i i iminw nw nw nwv =  (7) 

Figure 3 Co-occurrence with rotation-invariant spatial histogram (see online version for colours) 

 

 

Notes: The red and green circles are instances of two visual words. The green circle is in 
the red keypoint’s context in both images. 

As shown in equation (5), the spatial consistence (SC) of subset V is the mean value of 
the spatial consistence of all visual words vi in V. In equation (7), nw(vi) is the 
neighbouring-word vector of word node vi, where nwij is the co-occurrence number of 
word node vi with visual word vj (nwij = 0 for i = j). Similar to Zhang et al.’s (2009) work, 
here we adopt rotation-invariant spatial histogram (Liu et al., 2008) to count the  
co-occurrence of visual words, which is illustrated in Figure 3. In equation (6), SC(vi) 
reflects the difference of spatial context between vi and its sibling word nodes, where 
pa(vi) denotes the parent node of vi (we have pa(vi) = pa(vj) for sibling nodes). Notice that 
we introduce the minus sign in equation (6), to change ‘similarity’ into ‘difference’. 
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Larger SC(vi) means greater diversity with sibling nodes, and that visual word vi (and its 
sibling nodes) shall not be replaced with its parent. Larger SC(V) value means better 
consistence with spatial information. 

( ) ( ) 1(1 ) ( )E V CC V SC V= ⋅ + − ⋅α α  (8) 

We define the object function as a weighted combination of category consistence and 
spatial consistence, as shown in equation (8). By optimising the following object 
function, we could find a hierarchically proper subset of visual words that is consistent 
with both the spatial context of keypoints and category information of images. 

2.4 Search with simulated annealing 

Due to the huge computational complexity of brutal search, we adopt the simulated 
annealing algorithm to search for a sub-optimal solution to the object function, which 
corresponds to a sub-optimal visual word subset. 

The simulated annealing algorithm is inspired by the annealing process in metallurgy, 
which involves the heating and controlled cooling of a material to reduce defects. By 
analogy with the physical cooling process, each step the simulated annealing algorithm 
attempts to replace the current solution by a new solution that is randomly generated near 
the current solution. The new solution may be accepted with a probability that depends 
not only on the value change of the object function, but also on the current temperature T, 
which is gradually decreased during the process. 

{ } ( ){ }| jj j ii vV V v v VT pa vv′ = − + ∈ ∧ =  (9) 

( ) ( ){ } ( )| jj j i ivV V v v VT pa pa pav v′ = − ∈ ∧ = =  (10) 

In our proposed approach, each step we may apply one of the following two changes on 
the current subset V, as illustrated in Figure 4: 

a Top-down change: replace a randomly-selected word node in the subset, with all its 
children nodes, as denoted in equation (9). 

b Bottom-up change: replace a randomly-selected word node vi and all its sibling 
nodes, with its parent node, as denoted in equation (10). Notice that this kind of 
change can apply on the current subset only when all the sibling nodes of vi are the 
current subset. 

The proposed simulated annealing algorithm for vocabulary hierarchy selection is as 
follows: 

a Select all leaf nodes of VT as the initial subset V. 

b Iteratively try to alter the current subset V by applying one of the two changes 
described above in equations (9) and (10). If the newly-generated subset V′ is better 
than the current subset V (that is, V′ has higher value of object function), we will 
accept the change, and use the newly-generated subset V′ to replace V. Otherwise, we 
may still accept the newly-generated subset V′ at a small probability, which is 
decided by the current temperature T. As the iteration goes, the temperature would 
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gradually decrease, reducing the probability of accepting subsets slightly worse than 
the current subset. 

c The simulated annealing algorithm stops searching when no change is accepted for 
successive steps at the current temperature, or when the temperature is lower than a 
pre-specified threshold. 

In the above simulated annealing algorithm, we could also adopt a restarting strategy that 
would roll back to a previous subset that was significantly better than the current subset, 
rather than always moving from the current state. 

Figure 4 Two possible changes based on Figure 2, (a) replace the green circle with its children 
(change a) (b) replace the green circles with their parent (change b) (see online version 
for colours) 

 

 
(a)     (b) 

2.5 Soft selection of hierarchy 

Similar to the soft-weighting approach in the keypoint quantisation of flat-vocabulary, 
which increases the robustness of quantisation by assigning each keypoint to multiple 
visual words with the shortest distances, in this paper we adopt the soft selection of visual 
word hierarchy. 

( ){ }| jj j i ivVA v v VT v V pa v= ∈ ∧ ∈ ∧ =  (11) 

Besides the visual vocabulary V that is selected from the VT, we also adopt an auxiliary 
vocabulary VA that is close to the selected vocabulary V in word hierarchy. The aim of 
the auxiliary vocabulary is to increase the robustness of the selected visual vocabulary by 
redundancy of hierarchy. The auxiliary vocabulary VA consists of all the children of the 
nodes in selected vocabulary V, as denoted in equation (11). When generating the 
histogram feature for images, we would conduct the keypoint quantisation with V and VA 
separately, and combine VA-based histogram feature with V-based histogram feature, but 
with lower weights. 
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Figure 5 Simulated annealing algorithm for vocabulary hierarchy optimisation 

Algorithm: Vocabulary hierarchy optimisation with simulated annealing 
Input: 
 Keypoint set: P 

Parameters: s, T, δ 
Initialisation: 
 Generate tree structure VT from P 

Select leaf nodes as initial word subset V0 
Simulated annealing: 
Repeat the following steps: 
 Repeat for s times: 
  Generate new subset V′  

  Calculate energy change ΔE = E(V′) – E(V) 
  if ΔE > 0, accept V′: V ← V′ 

else, accept with probability (–ΔE / kT) 
 Update temperature: 
  if no change accepted at T, stop 

else, update temperature T ← δT 
Output: 
 Final subset of visual words V* 

3 Experiments 

3.1 Evaluation tasks 

To evaluate the effectiveness of our proposed vocabulary hierarchy optimisation 
approach, we conduct our experiments on the following two tasks: image annotation and 
image classification. 

The image annotation task is to automatically annotate descriptive labels on images. 
Instead of annotating binary decisions (having or not having the concept), the image 
annotation task usually outputs 0-1 probabilities to indicate the existence of concept. And 
when evaluating the performance of image annotation, we would rank the images 
according to their probabilities (that contain the concept) in descending order, and 
calculate average precision (AP; Yilmaz and Aslam, 2006) which is the average of 
precisions at indices across the ranked list where recall changes (i.e., at indices of images 
containing the concept). For image annotation task with multiple concepts, we would 
calculate the average of AP (MAP) as the overall performance metric. 

The image classification task is to decide (classify) which one (and only one) of  
pre-specified categories an image belongs to. For the image classification task, we adopt 
mean accuracy (MAC) as evaluation metric, which is the average of diagonal elements in 
the confusion matrix. 

For both image annotation and image classification tasks, higher values of MAP and 
MAC imply better performance respectively. 
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In our experiments, we carry out the image annotation task first, and the image 
classification task afterwards. In the image annotation task, we adopt the one-against-all 
strategy and annotate the concepts one by one, that is, each time we select one category 
as the concept to annotate: in the training phase, we adopt images in the selected category 
as positive samples and the rest categories as negatives samples, based on which we can 
train classifiers; in the testing phase, for each image we predict the probability of 
containing the selected concept (category). In the image classification task, we classify 
the images based on the probability produced in image annotation task: we classify each 
image into the category with the highest probability. Both the image annotation and 
image classification tasks rely on the predicted probability of concept existence; the 
difference between them lies in: in image annotation task, for each concept, we compare 
the probability between images and sort a ranking list; in image classification task, for 
each image, we compare the probability between the categories and select only the 
highest category. 

3.2 Experiment setup 

We conduct our experiments on fifteen scene categories (15-scenes) dataset (Lazebnik  
et al., 2006), which is a common dataset adopted extensively in the research area of 
image classification. The images are mainly collected from the COREL image collection, 
personal photographs, and Google image search, by several researchers including Oliva 
and Torraba (2001), Fei-Fei and Perona (2005), and Lazebnik et al. (2006). The  
15-scenes dataset contains 4,485 images in total, which are divided into 15-scene 
categories, such as bedroom, kitchen, coast, forest, and highway. The number of images 
in each category ranges from 200 to 400. A common practice we follow in this paper is to 
randomly select 100 images from each category as training images, while using the left 
images for testing. The average image size of 15-scenes dataset is about 300 × 250 pixels. 
Figure 6 shows some sample images, which are resized due to space limit. 

Figure 6 Sample images of 15-scenes dataset, which are resized due to space limit 

 
Bedroom Suburb Industrial Kitchen Living room 

 
Coast Forest Highway Inside city Tall building 

 
Mountain Open country Street Office Store 
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Since the experimental procedure adopted in Lazebnik et al. (2006) has became the 
common practice in research works that use the 15-scenes dataset, to make fair 
comparison, we strictly follow the same experimental procedures as Lazebnik et al. 
(2006), which makes our experimental results directly comparable to other papers. We 
randomly split the dataset into training set and testing set: the training set contains 100 
images from each category, while the testing set contains the rest images. For more 
reliable results, the experiments are carried out on ten different random splits, and the 
mean value and standard deviation of MAP and MAC for each split are reported. 

In the experiments, we adopt SVM (LibSVM implementation) as classifier, with 
default parameters and pre-computed histogram intersection kernel. 

As for the parameters in the proposed algorithm, although better parameters could be 
selected by cross-validation, we simply adopt the following settings heuristically and 
already achieve good results: K = 2, L = 20, minKp = 50, α = 0.5, and δ = 0.9. 

3.3 Experimental results 

The experimental results are shown in Table 1, where ‘VocTree’ stands for the VT 
method adopted from Nister and Stewenius’s (2006) work, while ‘Our’ refers to the 
proposed approach to optimise vocabulary hierarchy. 

For more comprehensive comparison, the same experiments are done for the 
following three keypoint detectors separately: Difference-of-Gaussian (DoG) (Lowe, 
2004), Harris Laplace (Mikolajczyk and Schmid, 2005) and Dense Sampling (Oliva and 
Torraba, 2001). From Table 1, we can see that the proposed vocabulary hierarchy 
optimisation approach out-performs the VocTree method, in both image annotation and 
image classification tasks, and for all three keypoint detectors, which shows its 
effectiveness and robustness. In Table 2, we further compare our proposed approach with 
some state-of-the-art methods on the 15-scenes dataset, where we can see our proposed 
approach achieves comparable result. 
Table 1 Experimental results on 15-scenes dataset 

 Annotation (MAP)  Classification (MAC) 
VocTree Our  VocTree Our 

DoG 0.749 ± 0.007 0.762 ± 0.006  0.723 ± 0.005 0.735 ± 0.004 
Harris Laplace 0.778 ± 0.004 0.794 ± 0.004  0.759 ± 0.006 0.774 ± 0.005 
Dense Sampling 0.821 ± 0.005 0.835 ± 0.007  0.801 ± 0.006 0.817 ± 0.007 

Table 2 Experimental comparison with some state-of-the-art approaches  

Approach MAC 

van Gemert et al. (2008), ECCV 2008 0.767 ± 0.004 
Yang et al. (2009), CVPR 2009 0.803 ± 0.009 
Our approach 0.817 ± 0.007 

The proposed algorithm can improve the performance of image annotation and image 
classification, mainly because: 

1 the proposed object function can correctly reflect the consistence of selected visual 
words with image category information and spatial context 
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2 the simulated annealing search algorithm can find a sub-optimal solution for the 
object function, which corresponds to a sub-optimal visual vocabulary. 

In the experiments, we mainly compare our approach with Nister and Stewenius’s (2006) 
work, which also uses hierarchical vocabulary but does not utilise spatial context and 
image category information to optimise the vocabulary. Lazebnik et al. (2006) is another 
research work that is related to our proposed approach, which partitions the image into 
increasingly fine sub-regions and computes the histograms of keypoints found inside 
each sub-region. But for each sub-region, Lazebnik et al. (2006) adopts a flat vocabulary 
generated by k-means algorithm. In fact, our approach and Lazebnik et al. (2006) are 
complementary to each other and could be combined together to further improve 
performance. 

As for the computational efficiency of the proposed approach, the initialisation step 
of the proposed algorithm is relatively efficient, since we adopt VT instead of flat 
vocabulary, and the hierarchical vocabulary has been reported to be more efficient (Nister 
and Stewenius, 2006). However, the optimisation step could be quite time-consuming, 
since each step we need to calculate the energy function in equation (8) for all the nodes 
in the current subset. Fortunately, the computational efficiency of the optimisation step 
could be significant improved by taking advantage of the fact that in each step only a 
small part of the nodes could be changed in the current visual word subset. In the 
proposed approach, each step we may apply one of the following two possible types of 
change: 

a top-down change, which replaces one node with all its K children nodes 

b bottom-up change, which replaces one node and all its (K – 1) sibling nodes with its 
parent node. 

Notice that both types of change involve K+1 nodes only, so in each step we only need to 
update the energy change of K+1 nodes, instead of all the nodes in the current subset. 

4 Conclusions 

In this paper, we have proposed to use the category information of images and the spatial 
context of keypoints to optimise vocabulary hierarchy by selecting the most appropriate 
visual words from different levels of a hierarchical tree, which improves performance in 
real applications such as image annotation and classification. 

Future work will be carried out focusing on the following aspects: 

1 We will try to find better object function to more precisely describe the quality of 
visual words. 

2 We will use other information, such as the image segmentation results, to help 
further optimise the visual vocabulary. 

3 We will find further methods to improve the computation efficiency of the proposed 
optimisation algorithm. 



   

 

   

   
 

   

   

 

   

   106 Z. Yang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Acknowledgements 

This work was supported by National Natural Science Foundation of China under  
Grant 61073084, Beijing Natural Science Foundation of China under Grant 4122035, 
National Hi-Tech Research and Development Program (863 Program) of China under 
Grant 2012AA012503, National Development and Reform Commission High-tech 
Program of China under Grant No. [2010]3044, and National Key Technology Research 
and Development Program of China under Grants 2012BAH07B01 and 2012BAH18B03. 

References 
Fei-Fei, L. and Perona, P. (2005) ‘A Bayesian hierarchical model for learning natural scene 

categories’, IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 
Ji, R., Xie, X., Yao, H. and Ma, W-Y. (2009) ‘Vocabulary hierarchy optimization for effective and 

transferable retrieval’, IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR). 

Ji, R., Yao, H. and Sun, X. (2010) ‘Towards semantic embedding in visual vocabulary’, IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR). 

Lazebnik, S., Schmid, C. and Ponce, J. (2006) ‘Beyond bags of features: spatial pyramid matching 
for recognizing natural scene categories’, IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). 

Li, T., Mei, T. et al. (2008) ‘Learning optimal compact codebook for efficient object 
categorization’, IEEE Workshop on Applications of Computer Vision (WACV). 

Li, T., Mei, T. et al. (2011) ‘Contextual bag-of-words for visual categorization’, IEEE Transactions 
on Circuits and Systems for Video Technology (TCSVT), Vol. 21, No. 4, pp.381–392. 

Liu, D., Hua, G., Viola, P. and Chen, T. (2008) ‘Integrated feature selection and higher-order 
spatial feature extraction for object categorization’, IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). 

Lowe, D.G. (2004) ‘Distinctive image features from scale-invariant keypoints’, International 
Journal of Computer Vision (IJCV),Vol. 60, No. 2, pp.91–110. 

Lu, Z. and Ip, H.H.S. (2009) ‘Image categorization with spatial mismatch Kernels’, IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR). 

Mikolajczyk, K. and Schmid, C. (2005) ‘A performance evaluation of local descriptors’, IEEE 
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol. 27, No. 10,  
pp.1615–1630. 

Nister, D. and Stewenius, H. (2006) ‘Scalable recognition with a vocabulary tree’, IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), pp.2161–2168. 

Oliva, A. and Torraba, A. (2001) ‘Modeling the shape of the scene: a holistic representation  
of the spatial envelop’, International Journal of Computer Vision (IJCV), Vol. 42, No. 3, 
pp.145–175. 

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A. (2007) ‘Object retrieval with large 
vocabulary and fast spatial matching’, IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). 

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A. (2008) ‘Lost in quantization: 
improving particular object retrieval in large scale image databases’, IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp.1–8. 

Sivic, J. and Zisserman, A. (2003) ‘Video Google: a text retrieval approach to object matching in 
videos’, International Conference on Computer Vision (ICCV). 

van Gemert, J.C., Geusebroek, J-M., Veenman, C.J. et al. (2008) ‘Kernel codebooks for scene 
categorization’, European Conference on Computer Vision (ECCV). 



   

 

   

   
 

   

   

 

   

    Vocabulary hierarchy optimisation based on spatial context 107    
 

    
 
 

   

   
 

   

   

 

   

       
 

Yang, J., Yu, K., Gong, Y. and Huang, T. (2009) ‘Linear spatial pyramid matching using sparse 
coding for image classification’, IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). 

Yilmaz, E. and Aslam, J.A. (2006) ‘Estimating average precision with incomplete and imperfect 
judgments’, ACM Conference on Information and Knowledge Management (CIKM). 

Zhang, S., Tian, Q., Hua, G., Huang, Q. and Li, S. (2009) ‘Descriptive visual words and visual 
phrases for image applications’, ACM Multimedia Conference. 

Zheng, Y-T., Neo, S-Y., Chua, T-S. and Tian, Q. (2009) ‘Visual Synset: a higher-level visual 
representation for object-based image retrieval’, The Visual Computer, pp.1–8. 


