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Abstract: A generalised content-based image quality assessment technique is 
proposed in this paper. Different from many existing image quality metrics, 
where the digital image quality is evaluated by comparing with a reference 
image and a single ‘exact’ value is provided for the purpose of ‘accurately’ 
quantifying the image quality, our proposed method defines the image quality 
metric based on the theory of the rough fuzzy integral and a region (with a pair 
of the boundary values) is presented to estimate the image quality instead of a 
scalar value. The new philosophy for the proposed ‘rough’ content-based image 
quality metric lays on the acceptance of the uncertainty of subjective image 
quality assessment through the human visual system (HVS) and addresses this 
kind of uncertainty by applying the rigorous mathematical concept of the rough 
and fuzzy set on the standard content-based image quality analysis. Therefore, 
the proposed method is a good mimicking of the subjective image quality 
assessment and meets the accuracy requirement under the uncertainty 
measurement of HVS. 
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1 Introduction 

Image quality assessment is essential to any image processing. A basic quality 
assessment for an image is developed by comparing the image with the reference so that 
the judgement can be done to decide how about the quality of the image. A number of the 
different image quality assessment techniques have been suggested based on the various 
criteria and employed to the diverse applications. 

Among all different image quality assessments, it seems that the most ‘correct’ 
evaluation for an image is still through the subjective assessment. This is due to the fact 
that it is meaningful only if the image is visualised through the human visual system 
(HVS) and the final purpose of the image processing is for the perception by human 
beings. However, the subjective assessment usually resorts to a large amount of 
subjective view experiments. In order to obtain the reliable ratings for the quality of the 
digital images via the mean opinion scores (MOSs), which requires the abundance of 
subjective individual samples. Therefore, from the practical engineering point of view, 
the subject image quality assessment is vulnerable by the external environment and 
individual factors and difficult to describe by means of the precise mathematical model. 

To address the difficulty of the subjective image quality assessment, various objective 
image quality assessment techniques are employed to accurately and automatically 
provide quantitative measures that can predict perceived image quality without the 
subjective individual involved (Eckert and Bradley, 1998; Gao et al., 2005; Mannos  
and Sakrison, 1974; Pappas et al., 2005; Wang et al., 2004). From the most  
widely-used error-sensitive metric, such as mean squared error (MSE), and the related 
quantity of peak signal to noise ratio (PSNR), to the sophisticated HVS model and the 
knowledge-based method, no matter which kind of the objective image quality 
assessment method, the goal is always to predict the certain image quality features from 
the subjective assessment. In other words, the objective image quality assessment is 
imitative of the subjective image quality assessment to some extent. Therefore, there 
exists a trade-off between the accuracy and the complexity for objective image quality 
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assessment methods. For example, the MSE metric is simply to compute the MSEs of the 
pixels of the testing image compared with the reference image in the form of 

( )2

1

1 ,
N

i i
i

MSE x y
N =

= −∑  (1) 

where N is the total number of pixels in the image and xi and yi are the intensities of the  
i-th pixels of the reference and testing images, respectively. And the relevant PSNR is 
represented as 

2

1010 log ,LPSNR
MSE

=  (2) 

where L is the dynamic range of the allowable pixel intensities. Although, the MSE (or 
PSNR) metric is relatively simple, it is sometimes problematic as demonstrated in Wang 
and Bovik (2009). One problem is that the smaller MSE values may not necessarily 
guarantee the higher perceptual quality. In terms of the conclusion in Miyahara et al. 
(1998), the ‘amount of error’, the ‘location of error’ and the ‘structure of error’ are three 
essential factors of distortion. This implies that only the amount of the error itself is 
unable to always represent the perceptual quality of the testing image. 

Facing this kind of the limitation, another type of the content-based objective image 
quality assessment techniques has been proposed. For this type of the assessment 
methods, the information and the knowledge of natural visual environment in the entire 
visual observation process has been used. As a distinct example, a new full-reference 
image quality assessment scheme is proposed based on the measurement of the structure 
information change (or structure similarity) (Wang et al., 2004). According to the 
philosophy of the structural-similarity-based image quality assessment, the natural image 
signals are highly ‘structured’ and the signal samples have strong dependencies among 
themselves. Therefore, the quality of the image can be evaluated by calculating the 
structural distortion in the image considering that the procedure of visual observation is 
to extract such kind of structural information. Compared with the simple MSE metric, it 
may have a better image quality assessment because the ‘structure of error’ and ‘location 
of error’ are also involved to some extent. 

Although, in principle, it has been demonstrated that the distortion of the structural 
information plays an important role to assess the image quality in Wang et al. (2004), 
how to obtain the structural information has not been completely addressed. The concept 
of structural similarity (SSIM) index has been employed to quantify the structural 
distortion for each pixels of the image and the mean structural similarity (MSSIM) index 
is used as a single overall quality measure of the image in Wang et al. (2004). 
Furthermore, the authors in Gao et al. (2005) suggested a content-based image quality 
metric (CBM). This CBM method fuses the amount and local information into the 
similarity of the image structural information based on fuzzy integral and gives a more 
comprehensive evaluation for the quality of the specified image. 

However, both the MSSIM and the CBM are the pixel-wised assessment metrics. 
This means that the assessment has to be done by calculating the SSIM index per pixel. 
Considering the procedure of the CBM method, the correlation and redundancy remain in 
the clustered pixels in neighbourhood. This indicates that the overall effect of a cluster of 
pixels in neighbourhood is more important than the value of each pixel. Therefore, it is 
natural for us to design a metric to reflect the characteristics above. Therefore, a general 
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block-wised metric is proposed in this paper. From the experience of the visual 
observation, it is known that there exists uncertainty for the subjective assessment of the 
image quality due to the diversity of the individuals and the variations of the observation 
environment. To reflect the unavoidable uncertainty of the subjective image quality 
assessment, we introduce the concept of the rough set into the image assessment and 
propose a rough content-based metric (RCBM) by inducting the rough fuzzy integral to 
fuse the block-wised local information and providing a pair of the boundary values 
(lower and upper boundary values) to quantify the image quality. Because the new 
approach presents a region instead of a value (such as CBM and MSSIM) to define the 
image quality, although it seems less precise than the exact value, it is more reasonable to 
assess the image quality to corresponding to the uncertainty of MOS. 

The rest of this paper is organised as follows. In Section 2, the concepts of structural 
similarity and relevant SSIM index for image quality assessment are reviewed. Then the 
new proposed rough content-based image quality assessment metric is demonstrated in 
Section 3. In this section, the rigorous mathematical explanation of the rough fuzzy 
integral is provided first. After the theoretical demonstration, we illustrate the rough 
fuzzy integral-based metric for image quality assessment in details. In Section 4, a large 
amount of the experimental results are shown and we also compare the proposed 
approach with other methods to highlight the advantage of the proposed metric. Finally, 
the concluding remarks are made in Section 5. 

2 Structural similarity and SSIM index measurement 

As demonstrated in the introductory section, there exists an observation that the pixels in 
the natural image are highly correlated and structured, especially for the pixels spatially 
close to each other. Extracting such kind of structural information is the major object of 
the visual observation. Therefore, the measurement of the distortion of the structure 
information (the loss of the structure similarity) provides a good approximation to the 
perceived image quality. For this purpose, an SSIM index is suggested to quantify the 
structural similarity of each pixel sample in an image (Wang et al., 2004). 

Since the structure of the object being observed is independent of the illumination and 
the major impact of illumination change is the variation of the average luminance and the 
contrast in the image, the influence of the luminance and the contrast can be separated 
locally from the more important structure information. Once the information of the image 
is categorised into three parts: luminance information, contrast information and structure 
information, the similarity measurement is split into three comparisons correspondingly 
as shown in Figure 1. 

The luminance, contrast and structure comparison function are respectively defined as 
follows: 

( ) ( )
( ) ( )
( ) ( )

2 2
1 1

2 2
2 2

3 3

2( , )

2( , ) ,

( , )

x y x y

x y x y

xy x y

μ μ cl x y μ μ c

σ σ cc x y σ σ c

σ c σ σ cs x y

+= + +

+= + +

+ +=

 (3) 

where (x, y) represents the corresponding point pair from the original and distortion 
images respectively. μx is the local mean intensity at x, which is an estimation of the 
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luminance at x; δx is the local standard deviation at x, which is an estimation of the 
contrast at x; δxy is the local correlation coefficient between x and y, which is an 
estimation of the similarity between x and y. The constant c1, c2, c3 are included to avoid 
instability when the denominators are very close to zero. c1, c2, c3 are small constants 
given by the formula 

( )
( )

2
1 1

2
2 1 22

3 2

1,  1,
/ 2

c K L

c K KK L
c c

⎧ =
⎪
⎨ = << <<
⎪

=⎩

 (4) 

where K1, K2 and L are the dynamic ranges of the pixel values. The general form of the 
structural similarity (SSIM) index between x and y is defined as 

[ ] [ ] [ ]( , ) .( , ) ( , ) ( , ) γSSIM x y l x y c x y s x y= α β  (5) 

Figure 1 Diagram of the structural similarity (SSIM) measurement system (see online version  
for colours) 

 

Specifically, we get α = β = γ = 1 and the resulting SSIM index is given by 

( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
( , ) .x y xy

x y x y

μ μ c σ c
SSIM x y

μ μ c σ σ c
+ +

=
+ + + +

 (6) 

Once the SSIM index for each pixel of the image is calculated, the overall image quality 
can be measured using a weighted mean SSIM (MSSIM) index as follows: 

1

,
N

j j
j

MSSIM W SSIM
=

= ⋅∑  (7) 

where N is the total number of the pixel samples and Wj is the weight to the j-th pixel 

samples and 
1

1.
N

j
j

W
=

=∑  
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3 The proposed image quality metric 

In our proposed image quality assessment method, the rough fuzzy integrals are 
employed into the block of pixels to quantify the image quality. To better understand this 
technique, the relevant concept of rough fuzzy integral is first illustrated. 

3.1 Fuzzy measure and rough fuzzy integral 

To understand the concept of rough fuzzy integral, let us start with the concept of fuzzy 
integral and fuzzy measures. The theory of fuzzy measures and fuzzy integrals is first 
introduced by Sugeno in 1972. Fuzzy measure can be considered as generalisation of the 
classical probability measure. A fuzzy measure g over a set X satisfies the two conditions: 

1 g(Φ) = 0, Φ is empty set. 

2 if E ⊆ F, then g(E) ≤ g(F). 

As a special case of fuzzy measure, the Sugeno λ-measure is defined as follows: Let  
X = {x1, ···, xn} be a finite set and λ ∈ (–1, +∞). A Sugeno λ-measure is a function g from 
2X to [0, 1] with properties: 

1 g(X) = 1 

2 if A ∩ B = Φ, then g(A ∪ B) = g(A) + g(B) + λg(A)g(B). 

Based on the definition of fuzzy measure, assume that set X is finite and f: X → [0, 1] is 
the fuzzy subset of X. If g is the fuzzy measure over X, then the fuzzy integral of f over A 
with respect to the fuzzy measure g can be calculated 

( )min ( ), ( )( ) max .min
x A

f x g Af x g
∈

⎡ ⎤= ⎣ ⎦  (8) 

The fuzzy integral can be interpreted as follows. Suppose that an object is evaluated from 
the point of views of a set of quality factors X. Let f(x) denote the quality evaluation on 
the object when quality factors are considered and let g({x}) denote the degree of 
importance of this quality factor x ∈ X. It is reasonable to consider minx∈A f(x) as the  
best-secured quality evaluation that the object provides and g(A) which is called 
importance measure, expresses the grade of importance of this subset of quality factor. 
The value obtained from comparing these two quantities in terms of the ‘min’ operator is 
interpreted as the grade of agreement between real possibilities f(x), and the expectation 
g. Hence, fuzzy integration is interpreted as searching for the maximal grade of 
agreement between the objective evidence and the expectation. 

Rough fuzzy sets present roughness of fuzzy sets and are explicated in Dubois and 
Prade (1990). For fuzzy set μ, its rough membership functions are ℜ–μ and ℜ+μ, where ℜ 
is an indiscernibility relation on U, which are introduced as 

{ }
{ }

( ) inf ( ) | [ ]
( ) sup .( ) | [ ]

μ x μ y y x
μ x μ y y x

−
ℜ

+
ℜ

ℜ =⎧ ∈⎪
⎨
ℜ = ∈⎪⎩

 (9) 

They constitute rough approximation of μ(x). Let F(U, β, g) be a fuzzy measure space 
and ℜ is an indiscernibility relation on U, |U| < ∞, the following definitions are given. 
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Definition 1: The simple functions in (U, β, m) are functions that have the form 

1

n
i ii

f xc
=

=∑ α  where αi ≠ 0, ci is the β-measurable set and m is Lebegue measure. The 

simple functions are Lebegue integrable in (U, β, g), if m(ci) < ∞ for every index i. 

Definition 2: The simple functions in F are expressed as 
1

,
n

i ii
μ xc

=
=∑ α  where {ci|i ≤ r} 

is a collection of crisp subsets of U and αi are constants in [0, 1]. We have ,
B

U
ic ℜ∈   

i = 1, 2, …, n, where ℜB is an indiscernibility relation derived from attribute subset B of 
A. Moreover, αi could be explained as Mi or mi, which could be expressed as: 

( )
( )

inf ( ) |
.

sup ( ) |
i i

i i

m μ x x c
M μ x x c

=⎧ ∈⎪
⎨

= ∈⎪⎩
 (10) 

Theorem 1: Assumed that μ is a simple function in F, then it is integrable if g(ci) < 1 for 
every index i, where αi ≠ 0 and ci ∈ U/ℜ. 

Theorem 2: Let μ be a fuzzy subset of U, then ℜ–μ and ℜ+μ are simple functions in F that 
derived from (U, ℜ). 

Theorem 3: Let : [0,  1]μ U  be a fuzzy subset of F, then ℜ–μ and ℜ+μ are integrable in 
F. 

Theorem 4: Let : [0,  1]μ U  is a F-measurable function, then the rough upper and 
lower fuzzy integrals over A ∈ F of μ with respect to g are defined as 

( )

( )
1

1

( ) max
,

( ) max

i

i

i m
i nA

i mi nA

μ g m g A H

A Hμ g M g

− −
≤ ≤

++

≤ ≤

⎧ ⎡ ⎤ℜ ⋅ = ∧ ∩⎣ ⎦⎪
⎨

⎡ ⎤∩⎪ ℜ ⋅ = ∧⎣ ⎦⎩

∫
∫

 (11) 

where 

( ){ }
( ){ }

|
.

|
i

i

jm j j i

jj j iM

cH c μ m

cH c μ M

− −

+ +

⎧ = ∪ ℜ ≥⎪
⎨

= ∪ ℜ ≥⎪⎩
 (12) 

3.2 RCBM for image quality assessment 

The proposed rough-content-based metric (RCBM) is constructed on the basis of the 
SSIM measure and the three-component partition as shown in Figure 2. The procedure of 
constructing RCBM is explained as follows: First, the local structure similarity 
information is extracted for each pixel pair from the original and the distorted images 
respectively. By analysing the content of the original and distorted images, all the pixels 
of the given image are partitioned into three parts according to their gradient: edges, 
textures and flat regions. Secondly, the pixels in each of three parts are respectively 
classified into the (n × n) blocks. The pixels in each group are treated as the 
indiscernibility members, and the rough membership functions are calculated based on 
the SSIM index values of each pixel calculated above. Thirdly, the similarity 
measurement of each part is calculated by synthesising the SSIMs of all the pixels in the 
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corresponding region with rough fuzzy integral. Finally, an overall image quality is 
evaluated with the weighting of the similarities in three regions above. The system 
diagram of the proposed image quality assessment system is shown in Figure 2, which 
consists of three basic modules: structural information extraction, region classification 
and the amount information fusion. It deserves mentioning that SSIM index is modified 
to meet the requirement of rough fuzzy integral. The structural information similarity  
s(x, y) ∈ [–1, 1] is redefined as 3

3
( ,  ) [0,  1].xy

x y

σ c
σ σ cs x y +

+
′ = ∈  And SSIM index is redefined as 

[ ] [ ] [ ]( , ) .( , ) ( , ) ( , ) γSSIM x y l x y c x y s x y′ ′= α β  (13) 

Figure 2 Diagram of the proposed image quality assessment system (see online version  
for colours) 

 

Let X = {xi|i = 1, 2, …, N} and Y = {yi|i = 1, 2, …, N} denote two sets, which consist of 
the pixels correspond to the region A in the original and distorted images. Let  
S = {si = SSIM′(xi, yi)|i = 1, 2, …, N}, then the overall structural information similarity of 
A is computed as: 

( )( ) ( )

( )( ) ( )
1

1

max,
,

max,

i

i

ii i m
i nA

ii i Mi nA

dgSSIM m gx y A H

A HdgSSIM M gx y

− −
≤ ≤

++

≤ ≤

⎧ ′ ⎡ ⎤ℜ = ∧ ∩⎣ ⎦⎪
⎨

⎡ ⎤′ ∩⎪ ℜ = ∧⎣ ⎦⎩

∫
∫
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( )( ){ }
( )( ){ }

|
,  ,

|

i

i

jm j j i
j

Bjj j iM

cH c s m Uc
cH c s M

− −

+ +

⎧ = ∪ ℜ ≥⎪ ∈⎨
ℜ= ∪ ℜ ≥⎪⎩

 (15) 

and ℜB is an indiscernibility relation. 

( )( ) ( )
( )( ) ( )
( )
( )

( ) |inf

( ) |sup

inf ( ) |
sup .( ) |
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And g(k) = |k|/N, in which |k| denotes the cardinality of the set k. The overall image 
quality RCBM is computed as follows: 

{ , , }

( ),

1.

A
A E T F

E T F

RCBM w SSIM A

w w w
∈

′= ⋅

+ + =

∑
 (17) 

4 Experimental results 

In order to validate the proposed RCBM, we use the LIVE quality assessment database 
for our experiments (Sheikh et al., 2006). In the subjective database for JPEG,  
29 high-resolution 24-bits/pixel RGB colour images (typically 768 × 512) were 
compressed using JPEG with different compression ratios to yield a database of  
204 images, 29 of which were the original (uncompressed) images. The average  
numbers of bits per pixel compressed vary from 0.150 to 3.336. The MOS of each  
image is provided in the database. We take the images in Figure 3 to illustrate our 
experiments. 

Figure 3 An illustration of the image ‘Lenna’, (a) original (b) distorted (c) edges (d) textures  
(e) flat regions 

   

(a) (b) (c) 

  

(d)    (e) 

In our experiments, for simplicity we only treat the monochrome images. Since the 
original database is colour images, they are first transformed from RGB colour space to 
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the YUV colour space and only the Y component is remained. Figure 3(a) and  
Figure 3(b) are the Y components of a reference colour image and a distorted JPEG 
image with compression ratio of 0.15771 bits/pixel. Since the proposed metric requires to 
partition the image according to the content of the image, we also show the three regions 
of image 3(b) as: the edges in Figure 3(c), textures in Figure 3(d) and the flat regions in  
Figure 3(e). 

Because the SSIM index for each pixel is directly relevant to the proposed metric, the 
pictorial demonstrations of the SSIM index of image 3(b) and its three parts: the  
edges 3(c), the textures 3(d) and the flat regions 3(e) are shown in Figure 4, where  
Figure 4(a) corresponds to the values of SSIM index of the image in Figure 3(b);  
Figure 4(b), Figure 4(c) and Figure 4(d) are respectively represented those of edges, 
textures and flat regions. The relevant parameters for calculating the SSIM index above 
are as follows: K1 = 0.01, K2 = 0.03, L = 255, α = 1, β = 1, γ = 1. 

Figure 4 An example of the values of SSIM index, (a) SSIM index of the image (b) SSIM index 
of the edges (c) SSIM index of the textures (d) SSIM index of the flat regions 

  

(a)     (b) 

  

(c)     (d) 

In order to get the proposed RCBM metric, the rough fuzzy integral is employed to fuse 
the local structural information. In this procedure, different block size can be selected for 
rough fuzzy integral. After the amount information fusion in each of the three regions 
(edges, textures and flat region), then a pair of the boundary values are obtained by 
weighting the three regions considering the different importance for image quality 
assessment. In the following experiments, we have wE = 0.462, wT = 0.337, wT = 0.201. 
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Figure 5 The values of different image quality measures, (a) PSNR vs. MOS (b) MSSIM vs. 
MOS (c) CBM vs. MOS (d) RCBM-lower vs. MOS (e) RCBM-upper vs. MOS  
(see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 

 

(e) 
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Figure 6 Comparison of MOS-CBM and MOS-RCBM (2× 2) (see online version for colours) 

 

Figure 7 Comparison of MOS-CBM and MOS-RCBM (3 × 3) (see online version for colours) 

 

Figure 8 Comparison of MOS-CBM and MOS-RCBM (4 × 4) (see online version for colours) 

 

Firstly, we compare the different objective image quality metric with the subject MOSs 
as shown in Figure 5. Figure 5(a) to Figure 5(e) are the image quality evaluation values 
by using PSNR, MSSIM, CBM and RCBM respectively. In each figure, the quality 
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assessment values of 233 images with different contents and distortions are shown. From 
Figure 5, we may observe that RCBM has the high consistency confidence versus 
subjective measure MOS compared with other metrics. 

Next, we especially compare the CBM metric and the RCBM metric. It deserves 
noting that CBM can be treated as a specific instance of RCBM considering that the 
pixels in each of three regions are respectively classified into the 1 × 1 blocks (every 
pixel as a classification for rough fuzzy integration). In this experiment, we adopt the 
block sizes of 2 × 2, 3 × 3 and 4 × 4 for classification in RCBM metric, respectively. It 
can be seen that each CBM values are always between the RCBM lower and upper 
boundary values. 
Table 1 Statistics of a series of ‘Parrots’ images 

Images ‘parrots’ Compression ratio RCBM-lower RCBM-upper MOS score 
a 0 (no compression) 1.0000 1.0000 83.1968 
b 0.33221 0.9074 0.9242 60.39 
c 0.92118 0.9750 0.9793 79.28 
d 0.31453 0.8997 0.9179 59.04 
e 0.21000 0.7917 0.8327 47.07 
f 0.15717 0.5691 0.5792 30.64 

Figure 9 A series of ‘parrot’ images, (a) image ‘parrots’ a (b) image ‘parrots’ b  
(c) image ‘parrots’ c (d) image ‘parrots’ d (e) image ‘parrots’ e (f) image ‘parrots’ f 

   
(a) (b) (c) 

   
(d) (e) (f) 

Table 2 Statistics of a series of ‘house’ images 

Images ‘house’ Compression ratio RCBM-lower RCBM-upper MOS score 
a 0.28831 0.6884 0.7333 36.25 
b 0.56641 0.8473 0.8693 57.85 
c 0.32699 0.7292 0.7679 41.35 
d 1.4029 0.9487 0.9563 73.00 
e 0.15798 0.5082 0.5259 7.77 
f 1.8851 0.9678 0.9727 80.77 
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Figure 10 A series of ‘house’ images, (a) image ‘house’ a (b) image ‘house’ b  
(c) image ‘house’ c (d) image ‘house’ d (e) image ‘house’ e (f) image ‘house’ f 

   
(a) (b) (c) 

   
(d) (e) (f) 

Table 3 Statistics of a series of ‘monarch’ images 

Images ‘monarch’ Compression ratio RCBM-lower RCBM-upper MOS score 

a 0.32107 0.8825 0.9116 39.60 
b 0 (no compression) 1.0000 1.0000 75.45 
c 0.77547 0.9720 0.9775 69.20 
d 2.6482 0.9937 0.9950 79.00 
e 0.1814 0.6007 0.6689 25.85 
f 0.60179 0.9600 0.9682 67.08 

Figure 11 A series of ‘monarch’ images, (a) image ‘monarch’ a (b) image ‘monarch’ b (c) image 
‘monarch’ c (d) image ‘monarch’ d (e) image ‘monarch’ e (f) image ‘monarch’ f 

   

(a) (b) (c) 

   

(d) (e) (f) 
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Finally, we select three groups of the JPEG images with the different compression ratio. 
The quality of these images are evaluated using RCBM metric and the MOS, 
respectively. The experimental results are shown in Figure 9, Figure 10 and Figure 11 
and listed in Table 1, Table 2 and Table 3. 

From the experimental results, we can see that the RCBM lower and upper boundary 
values are always dropping with the increasing intensity of the compression ratio. The 
proposed RCBM metric is consistent with subjective image quality assessment. 

5 Conclusions 

In this paper, we have suggested a rough CBM based on the rough fuzzy integrals. 
According to the image content, the image is partitioned into edges, textures and flat 
regions corresponding to different gradient. By fusing the local structural information 
with the theory of rough and fuzzy set, the overall image quality is evaluated. To validate 
the proposed metric, the whole LIVE subjective database for JPEG is used for the 
experiments. We analyse and compare the RCBM with the other objective image quality 
assessment methods, such as PSNR, MSSIM, and CBM. The experimental result shows 
that our proposed metric can effectively assess the digital image quality with a pair of 
boundary values and provides a more flexible measure technique under the condition of 
the existence of uncertainty for subjective visual observation. 
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