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Abstract: As methods for detecting improvised explosive devices (IEDs) 
continue to diversify, it becomes increasingly important to establish a 
framework for coordinating distributed IED monitoring resources to best 
protect a designated area. The purpose of this paper is to establish the 
beginnings of such a framework in a distributed plan execution context. The 
first contribution of this paper is defining an automated planning domain for 
distributed IED detection. In doing so, we investigate approaches for 
coordinating distributed plan execution resources. Whereas many existing 
multi-agent system (MAS) frameworks abstract network information from 
agent decision-making processes, we instead propose that MAS frameworks 
consider network properties to improve effectiveness. The second contribution 
of the paper is the description of several types of network-aware planning, 
execution, and monitoring agents and a comparison of their performance and 
effectiveness in an IED monitoring scenario. The results of this research 
indicate that network-awareness improves distributed plan execution (e.g., IED 
monitoring). Furthermore, we find that an agent’s benefit from reasoning about 
network properties is directly affected by the amount of dynamism in the 
network. 
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1 Introduction 

As improvised explosive device (IED) detection techniques continue to emerge and 
diversify, it becomes increasingly important to coordinate the efforts of multiple, 
heterogeneous detection resources, e.g., unmanned aerial vehicles (UAVs), unmanned 
ground vehicles (UGVs) and trained personnel. Such coordination can potentially lower 
the costs (e.g., time, manpower and fuel) and increase the effectiveness of distributed 
IED detection activities. Multi-agent planning systems are commonly used to coordinate 
heterogeneous resources such as those outlined here. The purpose of this article is to 
extend such planning systems with network-aware mechanisms and then evaluate the 
performance and effectiveness of network-centric approaches to automated planning, 
plan execution, and plan monitoring in the distributed IED detection scenarios. 

The contributions of this article are as follows: 

• the definition of an automated planning domain for distributed IED detection 

• a description of network-aware planning, execution, and monitoring agents and a 
comparison of their performance and effectiveness in a distributed IED monitoring 
scenario. 

The article has the following organisation: The remainder of this section presents more 
detail on the IED detection scenario. Section 2 establishes necessary background 
information. Section 3 first describes our network extensions to the automated planning 
domain, then presents descriptions of network-aware planning, execution, and monitoring 
agents. The experiments that we use to determine the performance and effectiveness of 
each agent are explained in Section 4 and the empirical results are in Section 5. Finally, 
we present related work and conclusions in Section 6 and 7, respectively. 
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1.1 Distributed IED Detection Scenario 

The distributed IED detection scenario, depicted in Figure 1, consists of heterogeneous 
actors monitoring key locations for IEDs. Coloured rectangles (Locations 1, 2, 3 and 4) 
represent key physical locations that require monitoring (e.g., busy intersections, 
marketplaces, etc.). The white rectangles represent locations of actors capable of carrying 
out various IED detection techniques. The white lines connecting actors represent the 
current network topology in the scenario. 

The goal is to maximise the effectiveness of IED detection while minimising the 
overall cost of evaluation. Both the effectiveness and cost are affected by the monitoring 
techniques selected (e.g., visual change detection, manual searching), the entities that 
perform the techniques (e.g., UAV, humans, robots), the schedule in which the 
techniques are executed, and the resources utilised during IED detection (e.g., camera 
type and resolution, robotic detection accuracy). 

Figure 1 The IED detection scenario (see online version for colours) 

 

Note: Several locations are monitored for IEDs using manual searching or visual change 
detection. 

Actors in the distributed IED scenario generally include units such as UAVs, UGVs, 
trained personnel, stationary sensor nodes, checkpoints, and guard towers. The following 
are several ways in which actors may vary: 
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Mobility Mobile units are capable of travelling to remote locations to perform IED 
detection tasks with travel time determined by locomotion methods, e.g., an 
airborne asset is likely to move faster than personnel on foot. Stationary 
units can only monitor their current area. 

Sensing Sensing capabilities can vary with sensor type, range, and resolution. Likely 
sensor types include cameras or other visual sensors, chemical sensors 
capable of detecting explosive components, radar and LIDAR. 

Communication The strength of a communication link will depend on an actors position and 
its communication hardware. Further, different actors have different 
communication requirements (e.g., trained personnel may only need 
intermittent network connectivity to receive plans and report results) and do 
not need to maintain persistent network links throughout the scenario. 

Autonomy Some units, e.g., UGVs, may require a nearby operator. 

These properties can be seen as key domain-specific dependencies for the effectiveness 
of a given IED detection techniques, e.g., visual change detection, chemical sensor 
readings, object recognition, manual inspection, and semantic web-based analysis. 

2 Background 

2.1 Network-centric systems 

We adapt the ideas from Peysakhov et al. (2004) to incorporate network-awareness into 
the agents involved in creating plans, executing plans, and monitoring plan execution. 
Particularly, we use the concept of the overlay network as a formulation of the 
connections between agents, and generalise their claim that sensing and reasoning about 
the underlying network can improve the effectiveness of distributed problems, such as 
coordinated IED detection. We do so by categorising agents according to their goals and 
analysing their performance (i.e., the utilisation of resources during system execution) 
and effectiveness (i.e., how well the system accomplishes its goals) under different types 
of network dynamism (Basili et al., 1994). 

We define network-centric systems (see Definition 1) based on Peysakhov’s 
evaluation of network-awareness. 

Definition 1: A network-centric system is a distributed system where effectiveness is 
dependent on the quality of the underlying network communication links. 

In other words, a system is network-centric if its effectiveness changes as a result of 
network fluctuations. 

We propose that the effectiveness of actors performing distributed IED detection 
depend on network quality, and thus are a network-centric system. Network performance 
is vital for coordinating actions among the many actors in the distributed IED detection 
scenario and for reporting detected IEDs. Furthermore, many IED detection techniques 
rely on vast computational power or extensive data stores which likely exceed the 
resources available on tactical devices such as UAVs and UGVs, and requiring these 
platforms maintain connectivity to a remote data centre. For instance, visual change 
detection requires the comparison of current images to archived images of the same 
geographic area. The limited storage capabilities of actors such as UAVs and UGVs 
would likely be exhausted by the image archives required to perform visual change 
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detection for their effective operational area. Similarly, change detection is 
computationally intensive, and not necessarily suited to the embedded platforms upon 
which these devices commonly run. Other similar examples include automated object 
detection which often requires access to large object databases and is computationally 
expensive, as well as semantic web-based analysis which require massive data stores and 
computational power. 

For these reasons, we see the distribute IED detection network as a network-centric 
system. 

2.2 Automated planning 

Collaborative IED detection is a difficult problem, largely due to the huge number of 
variables required to coordinate distributed resources to best monitor some set of 
geographical areas. Automated planning is a branch of artificial intelligence that is 
designed to determine the best allocation of resources and sequence of actions to 
accomplish a goal. We draw heavily upon automated planning for modelling the IED 
detection scenario and determining which resources (e.g., UAVs, human-robot teams, 
etc.) should perform which actions (e.g., visual change detection, chemical detection, 
etc.) at what geographical locations. 

The remainder of this section discusses: 

1 the role of agents in the planning and execution process 

2 the classical planning domain model upon which we build our extensions. 

Figure 2 The interactions between agents in a planning architecture (see online version  
for colours) 
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2.2.1 Agent roles 

Tate (1993) discusses the roles of agents in the planning process and defines three key 
agent roles: task assignment, planning, and execution. In this notion, the planning agent is 
responsible for solving a static planning problem and passing the plan to the execution 
agent. The execution agent interacts with the real system, and in some situations, can 
react to some action execution failures. The task assignment agent communicates with 
the planning and execution agents to trigger plan creation and execution respectively. 

The agent interactions in Tate (1993) form a control theoretic feedback loop. A 
feedback loop contains a controller which initially accepts a plan and then gives input to 
some system, or plant. A sensor component determines the current state of the system to 
help guide the controller in the remaining execution steps. In this terminology, the 
controller functions as the task assignment and execution agent – it should be noted that 
these operations can be separated. Figure 2 combines Tate’s agent roles with the feedback 
loop of agents in planning systems. 

2.2.2 Classical planning model 

We adopt the classical planning notation from Nau et al. (2004) where the planning 
domain, Σ, is a state transition system such that Σ = (S, A, E, γ) where S is the set of 
states, A is the set of actions, E is the set of events, and γ = S × (A ∪ E) → 2S. Each 
action, a, is defined by its requirements for execution, precond(a), and its positive and 
negative post-conditions of execution, effects+(a) and effects–(a). 

The planning problem, ,P  can in turn be expressed as the triple (Σ, s0, Sg) where s0 is 
the initial state and Sg is a set of goal states. Table 1 summarises the notation of the 
classical planning model for convenience. See Nau et al. (2004) for more details 
regarding classical planning. 
Table 1 Summary of the classical planning model 

P  Is the planning problem 

Σ Is the planning domain 
s0 Is the initial state 
Sg Is the set of goal states 
S Is the set of states in Σ 
A Is the set of actions, {a0, a1, …, a|A|} in Σ where each a = (precond(a), effects–(a), 

effect+(a)) 
E Is the set of system events in Σ 
γ Is the state transition function 

precond(a) Returns the preconditions of action, a 
effects+(a) Returns the positive effects of action, a 
effects–(a) Returns the negative effects of action, a 
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2.3 Plan monitoring 

Plan execution monitoring has been studied extensively by control theorists as the fault 
detection and isolation (FDI) problem (Pettersson, 2005). The functional concepts of 
monitoring systems include: 

• fault detection – determining that an anomaly has occurred in the behaviour of the 
monitored system 

• fault isolation – the classification of the fault (a.k.a. fault diagnosis) 

• fault identification – determining the magnitude of the fault. 

Chiang et al. (2001) list three classifications of execution monitoring. The following 
sections explain the analytical, data-driven, and knowledge-based approaches in detail. 

In the analytical approach, the presence of a fault is derived from the difference 
between two analytically generated quantities. The difference is called residual and the 
algorithm that processes the measurable inputs and outputs to a system is called residual 
generation. The analytical approach utilises some decision making algorithm, d(r) where 
r is a residual, based on residual generation, r(s) where s is a signal from a system. The 
process relies on the concept of analytical redundancy and is influenced by the residual 
generation technique. 

Data-driven approaches do not rely on mathematical models, but instead they are 
directly derived from sensor data. For example, a fault might be detected if sensor data 
exceeds some range of deviation from the mean of the previously collected data. These 
approaches are classified by the number of variables included in their monitoring.  
Single-variable approaches are labelled univariate statistical monitoring and all other 
approaches are labelled multivariate statistical monitoring. 

Knowledge-based approaches to execution monitoring are designed to simulate 
human problem-solving. They can be model-free, model-based, or some hybrid of other 
methods. To offset the high cost of human behaviour simulation, knowledge-based 
monitoring systems often perform fault isolation in addition to fault detection. 

3 Approach 

This section explains our approach toward creating and evaluating network-aware agents. 
First, we discuss the sources of uncertainty in the IED detection domain that necessitate 
this work. Next, we explain our extensions to the planning domain for incorporating the 
notion of distributed services into a formal planning problem. Then, we explain our 
approach to creating network-aware planning, execution, and monitoring agents. 

3.1 Uncertainty in the IED detection scenario 

In our coordinated IED detection scenario, resources collaborate to find and report IEDs 
that may be present in their operating environment. The resources and areas of 
importance are fixed, however there remain a large number of variables that are unknown 
a priori. These variables represent the uncertainty in the scenario and this uncertainty is 
the primary difficulty in finding a solution. 
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In the IED detection scenario, uncertainty exists in several forms. First, the 
environment can be changed by a variety of factors, not all of which can be realistically 
modelled. These deviations in the environment can cause problems during execution that 
may have not occurred otherwise. For example, a large cloud could cast a shadow on an 
area during a photograph, making visual change detection on that area less-reliable. This 
source of uncertainty is usually called domain dynamism and we account for this by using 
reactive/proactive execution agents as well as monitoring the progress of plan execution 
for anomalies. Planning occurs on an as-needed basis and the severity of detected 
anomalies triggers plan repair (i.e., an update to the plan) or replanning (i.e., generating a 
new plan). 

Next, our distributed agents have limited visibility; the source of uncertainty that 
arises from lack of visibility is called partial observability. We utilise communication 
between devices to minimise the effects of partial observability. Further, reasoning about 
how and when to communicate between devices lessens the communication overhead. 

Finally, our goal is to find the ‘best’ solution, rather than ‘any’ solution to the 
coordinated IED detection planning. That is, not only do we want a solution that will 
monitor all locations for an IED, but we also want a solution that can be executed quickly 
(i.e., in less time), efficiently (i.e., using fewer finite resources e.g., gasoline), and 
effectively (i.e., to a sufficient degree of reliability). Finding ‘any’ solution, or satisfying 
the problem, is significantly simpler that finding the ‘best’ solution, or optimising the 
solution. Difficulty in optimisation arises from the high-dimensionality of the  
problem-space. We use domain-independent, domain-dependent, and network-centric 
heuristics (listed in Section 3.3.1 and Section 3.3.3) to better explore the dimensionality 
of the problem-space and to determine which plans are likely to be the most effective and 
efficient. 

3.2 Planning domain extensions for network-awareness 

This section establishes a formal problem statement which builds on the planning 
notation established in Section 2.2.2. The following extensions are designed to be added 
to any traditional planning problem to represent distributed services and the network 
upon which they operate: 

H The network hosts H = {h0, h1, …, h|H|} 
ωH The host link weighting, ωH: H × H → (0, 1]. The value represents the quality of 

the link, 0 being the lowest and 1 the highest. This link is only conceptual and 
the actual data route may go between other hosts or routers 

offers(a) Returns the precondition(s) stating that a host offers the service represented by 
action, a 

host(a) Returns the single host h ∈ H on which action a can be run, or 0/  if the action is 
ungrounded 

resources(a) Returns the set of resources (parameters) of action a, or {} if the action is 
ungrounded 

Figure 3 shows the conceptual diagram of the formal problem statement. Hosts, h ∈ H 
are connected via a network, with links from host hi to hj. Each link also has a relative 
quality, ωH, illustrated as the thickness of the connecting lines. The value of ωH can vary 
based on the domain. For example, if timeliness is critical, ωH should be some function of 
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network latency and bandwidth between two hosts. Furthermore, our host link weighting 
uses the notion of an overlay network such that two hosts with a non-zero ωH may not 
necessarily be capable of communicating directly, but rather that they can communicate 
through some means (e.g., through another host in H or through some communication 
infrastructure such as cellular or satellite networks). 

It is important to note, however, that ωH is not restricted by transitivity or the triangle 
inequality. That is, a link from hi to hj could have a higher or lower ωH than 

[ ]{ },i x x jH h h h hω → →∑  for any hx. 

Figure 3 The conceptual diagram of the formal problem statement 

 

Notes: Rounded rectangles represent hosts h ∈ H, which are capable of executing a set of 
services. Planning, execution, and monitoring agents reside on hosts. Lines between 
hosts represent communication links between the hosts and the thickness of the line 
is a representation of link quality, ωH. 

Figure 4 shows the role of agents in the formal problem statement. There are three types 
of agents: planning, execution, and monitoring. Each agent runs on a host and the agents 
communicate with each other over the network. 

Also, Figure 4 shows the data flow between agents in the formal problem statement. 
The planning agent is given the tuple IP = 〈Σ, s0, Sg, H, ωH〉 and constructs a plan pI ∈ P. 
The execution agent accepts IE = 〈pI, H, ωH〉, and invokes the totally ordered service calls 
described by the actions in pI. The plans can be augmented with temporal constraints to 
better describe the sequence of service invocations. 

Figure 5 shows the sequence diagram for the plan execution process. Plans are 
created by the planning agent and passed to the execution agent. The execution agent 
causes changes to a system, which can be sensed by monitoring agents. When a 



   

 

   

   
 

   

   

 

   

    Network-centric IED detection planning 53    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

monitoring agent detects a fault, it isolates and identifies the fault (see Section 2.3). 
Based on the magnitude of the fault and the capabilities of the agents, the monitoring 
agent reports the fault to the execution agent (for plan repair) or planning agent (for 
replanning). 

The problem is to find and execute pI ∈ P where 0 1 | |{ , , ..., }II pp a a a=  and the 
execution of pI yields the best domain-dependent and network-centric evaluations. Using 
this goal, we can now formally define network-awareness as Definition 2. 

Definition 2: An agent exhibits network-awareness if changes to ωH cause the agent’s 
output to change while all other inputs remain constant. 

In other words, agents are network-aware if changes to only the networking conditions 
(ωH) cause the agent to act differently. We use this definition to describe our network-
aware agents in Sections 3.3, 3.4, and 3.5. 

Figure 4 The data flow and role of agents in the formal problem statement 

 

Notes: There are three types of agents: planning, execution, and monitoring. Each agent 
runs on a host and the agents communicate with each other over the network. The 
planning agent is responsible for creating plans and passing them to the execution 
agent. The execution agent invokes services on the hosts according to the plan. 
The monitoring agents report execution faults to the planning and execution agent 
as needed. Each network link has a relative quality, ωH, illustrated as the thickness 
of the lines connecting hosts. Service-specific, inter-host communications are not 
illustrated in this diagram. 

3.3 Network-aware planning 

The planning agent is responsible for producing a plan, the goal of which is to give 
advice to the execution agent(s). The main implementation differences between the 
planning agents stem from the technique used to guide the planner’s search strategy. 
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Following the notation introduced in Section 3.2, the purpose of a planning agent is to 
accept the tuple IP as input and produce a plan in the form of an ordered service 
composition pI. 

The remainder of this section discusses three planning agents: 

1 the domain-independent planning agent (or I-Plan planning agent) 

2 the random planning agent 

3 the guided planning agent. 

Of these three, the guided planning agent exhibits network-awareness as defined in 
Definition 2. 

Figure 5 The sequence diagram for the plan execution process 

 

Notes: The planning agent is responsible for creating plans and passing them to the 
execution agent. The execution agent invokes services on the hosts according to 
the plan. The monitoring agents report execution faults to the planning and 
execution agent as needed. 

3.3.1 Domain-independent planning agent 

All planning agents presented in this paper were implemented using Tate et al.’s  
plan-space HTN planner, I-Plan (Currie and Tate, 1991). The domain-independent 
planning agent is based on I-Plan’s default search strategy, which uses a combination of 
exploration and optimisation to return different plans. As the planner traverses the search 
space, it switches between a depth-first exploration strategy and an A* optimisation 
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strategy using the number of activities in the partial plan as its admissible heuristic. The 
planner starts by traversing the space in a depth-first manner and when it encounters an 
alternative whose constraints cannot be satisfied, it backtracks using the A* search and 
that alternative is removed. 

The domain-independent planning agent utilises domain-independent heuristics to 
guide the planner’s search strategy. Included in these heuristics are the following: 

• the number of steps the planner took to generate a plan 

• the number of alternatives the planner uncovered along its way 

• the number of options below the revealed alternatives 

• the number of alternatives left unexplored 

• the longest path along temporal ordering constraints 

• the number of duplicate plans found before returning a new plan. 

3.3.2 Random planning agent 

The random planning agent conducts a depth-first search, selecting randomly among 
branch-point alternatives in I-Plan’s plan-space search. Algorithm 1 shows the process of 
the random planning agent. 

Algorithm 1 ConstructRandomPlan ( )P  

Require: P  is the planning problem for which this algorithm constructs a plan to solve. 

Ensure: s0 is the initial state of ,P  toVisit is a deque of branch-point alternatives in the  
plan-space, visited is a list of alternatives already traversed, randomise(z) is a function that 
returns the ordered set z with all its original elements in a random order, and solution(x) is a 
Boolean function that returns true if x meets solution criteria set by the planner. 
1: toVisit.push(s0) 
2: while ¬ toVisit.empty() ^ ¬ solution(toVisit.peek()) do 
3:  v ← toVisit.pop() 
4:  if v ∉ visited then 
5:   visited.add(v) 
6:   r ← randomise(v.children()) 
7:   toVisit.push(r) 
8:  end if 
9: end while 
10: return toVisit.peek() 

3.3.3 Plan evaluation guided planning agent 

The guided planning agent defines domain-dependent plan evaluators for criteria that are 
important to the end-user. In this case, we create evaluators for network performance as 
well as domain-dependent criteria. The guided algorithm seeks to exploit the trade-offs 
between the defined evaluation criteria by finding qualitatively-different plans. 
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The guided planning agent is the only planner in the experiments that is network-
aware. It utilises network-based plan evaluations and generates qualitatively-different 
plans over those criteria. 

Current work on generating qualitatively-different plans discusses two high-level 
techniques: domain-independent, and domain-dependent. We use plan evaluation criteria 
to represent both techniques. The reasoning for using a single mechanism for  
both techniques is that plan evaluators are sufficiently capable of recognising  
domain-independent as well as domain-dependent information about a plan. 

Our method for biasing the planner’s search strategy based on plan evaluations is to 
maintain a set of priority queues, 0 1 | |{ , , ..., }Q Q Q= LL  – one for each plan evaluator. 
Every time a new partial-plan/backtrack-point is generated, its viability is assessed and it 
is inserted into each priority queue according to the partial plan evaluation of the priority 
queue’s plan evaluator. Psuedocode is found in Algorithm 2. 
Algorithm 2 HandlePartialPlan(p) 

Require: p is the partial plan accepted as input. E  is the set of plan evaluators. L  is a list of 
priority queues containing plan evaluations. 
Ensure: evalPartialPlan(evaluator, p) is a function that evaluates partial plan, p, using the 
partial plan evaluator, evaluator. insert(Q, e, p) is a function that inserts a partial plan, p, into the 
priority queue, Q, according to the evaluation, e. 
1: for all evaluator ∈ E  do 
2:  Q ← L [evaluator] 

3:  e ← evalPartialPlan(evaluator, p) 
4: insert(Q, e, p) 
5: end for 

In addition to the domain-independent criteria that is listed in Section 3.3.1, the guided 
planning agent also uses domain-dependent and network-centric heuristics. Included in 
the domain-dependent heuristics are the following: 

• estimated IED detection accuracy (measured as a percentage of certainty that an IED 
would be discovered if present) 

• plan execution time (measured as the time required to complete all plan actions). 

Our network-centric heuristics include the following: 

• network bandwidth usage (measured in Mbps) 

• number of network hops (measured as the total number of links that are required 
along the data-path). 

The planner uses the greedy strategy discussed in Srivastava et al. (2006) to generate 
multiple plans. The planner iterates over the plan evaluators for each plan it generates. 
Thus, every new plan represents an alternative from the head of a different evaluator 
queue. 
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3.4 Network-aware execution 

The execution agent is responsible for executing a set of actions on a system. Different 
types of execution agents are defined formally in this section. 

Following the notation introduced in Section 3.2, the purpose of an execution agent is 
to accept a plan IE as input from a planning agent and invoke its services, respecting 
ordering constraints. The policies for service invocation and error handling are defined by 
the type of execution agent. 

3.4.1 Naïve execution agent 

The naïve execution agent receives a plan as input and executes its actions blindly. It 
ignores errors that occur as a result of communication problems and failed action 
execution. Table 2 shows the summary of the naïve agent’s execution policies. 
Table 2 Description of the Naïve execution agent policies using the formalisation described in 

Section 3.2 

Policy Description 

Service invocation Invokes services exactly as described by pI. The naïve agent requires 
that ∀ actions a ∈ pI, host(a) ≠ 0/  ^ resources(a) ≠ {}. 

Error handling Ignores execution errors. 

3.4.2 Reactive execution agent 

The reactive execution agent, like the naïve agent, receives a fully-ground plan as input. 
The reactive agent, however, can react to action execution failures. Furthermore, if the 
sensing action detects a fault in plan execution, the reactive agent has the opportunity to 
isolate and correct the fault. 

The method of reaction is based on the type of monitoring. A reactive execution agent 
working with a synchronous monitor (i.e., analytical) adds its own sensing actions after 
each action in the original plan. Thus, the reactive agent has some notion of plan 
execution progress, and if a fault is detected, the agent knows which action(s) caused the 
fault. 

A reactive execution agent working in conjunction with an asynchronous monitor 
(i.e., data-driven) receives fault information asynchronously. Therefore, the action(s) 
which caused the fault is uncertain to the execution agent. For this reason, passing fault 
isolation information to the execution agent is extremely useful for reacting to failures. 

Table 3 shows the summary of the reactive agent’s execution policies and Figure 6 
shows the flow chart of the reactive agent’s processing. 
Table 3 Description of the reactive execution agent policies using the formalisation described 

in Section 3.2 

Policy Description 

Service invocation Invokes services exactly as described by pI . The reactive agent requires 
that ∀ actions a ∈ pI, host(a) ≠ 0/  ^ resources(a) ≠ {}. 

Error handling Repairs the failed pI by replacing failed service call(s) with new ones, 
creating .Ip′  
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Figure 6 Flow chart of the reactive execution agent 

 

3.4.3 Proactive execution agent 

The proactive execution agent differs from the naïve and reactive agents in that it does 
not require fully-ground plans as input. Instead, the proactive agent accepts a list of 
actions and it conducts reasoning to determine how best to allocate resources at execution 
time. In other words, the proactive execution agent checks for an action’s pre-conditions 
before executing that action, and if those conditions are not met, then it alters the plan 
(e.g., by modifying or replacing the action). 
Table 4 Description of the proactive execution agent policies using the formalisation described 

in Section 3.2 

Policy Description 
Service invocation Invokes services using network-aware logic to choose the host and 

resources at execution time. The proactive execution agent uses only 
service descriptions from actions a ∈ pI, meaning ∀a ∈ pI, host(a) = 0/  ^ 
resources(a) = {} 

Error handling Repairs the failed pI by replacing failed service call(s) with new ones, 
creating .Ip′  
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This method requires less-intensive planning, but incurs higher cost at execution time 
because it conducts resource allocation logic. The proactive agent reacts to failures in 
plan execution in the same way as the reactive execution agent, although fewer failures 
are expected to occur due to proactive sensing prior to action execution. 

Table 4 shows the summary of the proactive agent’s execution policies and Figure 7 
shows the flow chart of the proactive agent’s processing. 

Figure 7 Flow chart of the proactive execution agent 

 

3.5 Network-aware monitoring 

Monitoring agents are responsible for monitoring the progress and status of plan 
execution. The monitoring agent performs FDI, reporting its results to the execution 
and/or planning agent(s). In this section, three types of network-based monitoring agents 
are described: the analytical, data-driven, and knowledge-based monitoring agents. 

3.5.1 Analytical monitoring agent 

The analytical monitoring agent is a synchronous monitor, based on the model-free 
observer method. It is synchronous in that the monitor is polled by an external agent. In 
this method, an action is executed after observing sensor values. When the action 
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completes, another sensor reading is performed and the observed residual is compared to 
an estimate. 

Analytical monitors are particularly useful to systems where actions have predictable 
effects on a system. For example, after a crane’s grab action, we expect the weight of the 
crane to be larger than before because it is now holding an item. If the crane is no 
heavier, than it is arm is empty and we can infer that a fault occurred while executing the 
grab. 

In the case of network-centric monitors, we expect actions to have certain effects on 
the system’s network. Network observers monitor the number of packets and bytes 
transmitted in accordance with each action. A residual is calculated from an estimate 
based on the action and its resources. Finally, fault-detection logic determines if the 
residual falls within an acceptable range of the expected value. The sequence diagram for 
the analytic monitor is shown in Figure 8. 

Figure 8 Sequence diagram showing the interaction between the execution agent and analytic 
monitoring agent(s) 

 

3.5.2 Data-driven monitoring agent 

The data-driven monitoring agent is an asynchronous agent that conducts multivariate 
statistical analysis to ensure that sensor data falls within the limits of a given model. It is 
asynchronous in that the monitoring agent runs autonomously and informs external 
agents of faults when they are detected. For this reason, data-driven monitors are useful 
for systems that operate according to a predictive model. 

In our implementation, we monitor network factors that should remain  
relatively static under normal operation such as packet error rate (PER), the  
number of retransmitted packets, socket timeouts, connection resets, and failed 
connections/datagrams. 
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The sequence diagram for the data-driven monitor is shown in Figure 9. 

Figure 9 Flow diagram showing the interaction between the execution agent and data-driven 
monitoring agent(s) 

 

3.5.3 Knowledge-based monitoring agent 

Knowledge-based monitoring agents use advanced reasoning techniques to observe faults 
in the system. Expert systems and neural networks are two commonly used reasoning 
techniques in this approach. 

In the case of distributed systems, the physical location of the nodes as well as the 
physical layer and data link layer communication systems have a major impact on the 
quality of the network. Therefore, geographical location and signal strength can serve as 
knowledge-based fault indicators. 

4 Experiments 

This section describes the implementation of the agents and the network emulator in 
which the experiments were run. 

4.1 CORE 

All of the experiments in this section were executed in the Naval Research Laboratory’s 
Common Open Research Emulator (CORE) (Ahrenholz et al., 2008). CORE is a 
framework for emulating networks on a single computer. Using FreeBSD network stack 
virtualisation, CORE allows for heterogeneous networks to be emulated. Furthermore, 
the geographical position and mobility of hosts in CORE can be controlled using scenario 
mobility scripting. Using these features, a large emulation scenario can be deployed and 
controlled by a single GUI. Figure 10 shows the geographical positions of the hosts and 
monitoring areas for our IED detection scenario. 

All of the core hosts are running simple multicast forwarding (SMF) (Lacharite et al., 
2007) for multicast packet forwarding and open shortest path first (OSPF) as a unicast 
routing protocol. Figure 11 shows a screenshot of the CORE nodes configured to run the 
IED detection scenario. 
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Figure 10 Geographical map of the topology of locations, resources, and a network overlay  
(see online version for colours) 

 

4.2 Network dynamism – mobility models 

CORE supports loading mobility models, which dictate the geographical movement of 
hosts while CORE is running. We implemented three mobility models to show how 
different types of network dynamism affect plan execution and monitoring. All scenarios 
started with the hosts positioned as shown in Figure 11. 

The first mobility model, static, had no host movement. The nodes all remained in the 
positions shown in Figure 11. The second, dynamic, moved the hosts as dictated by the 
plan actions that were executed. The last, partition/merge or part-merge, split the 
network into two ‘islands’ (as shown in Figure 12) and merged the network back 
together. This mobility model caused a complete disconnect between the two islands. 

4.3 Experimental process 

All planning agents presented were implemented using Tate et al. ‘s plan-space HTN 
planner, I-Plan (Currie and Tate, 1991). After the domain and each of the agent types 
were implemented, each of the planning agents produced plans for five minutes. From 
these plans, a multi-objective optimisation (MOO) function was used to select a single 
plan from each of the sets produced. 

The plans are passed to execution agents running in CORE. Other hosts in CORE are 
running the services that correspond to the plan actions. All hosts that house services also 
run monitoring agents (unless no monitoring agents are specified by the test). The 
monitoring agents report faults they detect to the execution agent. 
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Figure 11 Screenshot of the IED detection scenario running in the network emulator, CORE  
(see online version for colours) 

 

Notes: The blue circles are hosts in CORE and the green lines represent network links. 
The white rectangles in the background of CORE are used to show the starting 
locations of the hosts for the IED detection scenario. 

4.4 Experimental trials 

The variables in the experiments include the following: 

• the implementation of the planning agent used 

• the implementation of the execution agent used 

• the implementation of the monitoring agents used 

• the type of network dynamism under which the agents operated. 

The types of planning, execution, and monitoring agents we implemented are 
summarised in Table 5 – those marked with an asterisk are network-aware 
implementations. 

Because CORE uses FreeBSD network stack emulation, different results were 
experienced on each run – even when all the above variables were constant. 
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Table 5 A summary of the types of agents and a list of our implementations techniques for 
those agents 

Agent Implementation technique 
Planning Random 
 (I-Plan) domain-independent 
 Guided* 
Execution Naïve 
 Reactive* 
 Proactive (sensing)* 
Monitoring Data-driven* 
 Analytical* 

Notes: Agent implementations marked with an asterisk are network-aware. 
* → network-aware. 

Figure 12 Screenshot of the partition/merge mobility model running in CORE (see online version 
for colours) 

 

Note: The blue circles are the CORE hosts, the white rectangles show the starting positions. 

Several criteria were used to measure the performance and effectiveness of the 
combinations of agents and network. For these experiments, we are primarily concerned 
with the following effectiveness metrics (which are equivalent to our domain-dependent 
evaluation criteria from Section 3.3.3): 
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• IED detection accuracy (measured as a percentage of certainty that an IED would be 
discovered if present) 

• Plan execution time (measured as the time required to complete all plan actions). 

Also, since we are largely concerned with networking overhead, the scenario’s 
performance was measured using a single metric: the sum of the number of packets sent 
over each network link. For this metric, a single packet that traverses two network links, 
(i.e., is forwarded by a network node) counts as two separate packets. 

Performance and effectiveness of the trials was judged based on the actions that 
completed successfully (i.e., the execution agent reported that the plan action was able to 
be completed, given the available resources and time). For example, manually searching 
all of the locations yields a 90% IED detection accuracy. However, if a manual search of 
one area does not complete, the overall IED detection accuracy decreases. Similarly, the 
execution time depends on the actions executed, the order in which they are executed, 
and the resources that they utilise. Additionally, during each of the trials, all of the 
network traffic was logged to determine the network overhead associated with each 
unique run. 

5 Results 

5.1 Planning and execution 

5.1.1 Effectiveness 

When networking is not a factor, as in our control experiment (shown in Figure 13), 
using the network-aware agents (e.g., the Guided planning agent and the Reactive 
execution agents) is of little consequence. All the combinations of planning and 
execution agents yielded similar execution times. 

However, when the network services are distributed, as in Figure 14, network-
awareness becomes a critical factor. Note that the network-aware Guided planning agent 
outperforms the I-Plan and Random planning agents under the Partition/Merge network 
scenario, the most volatile mobility model. 

Figure 15 shows the effectiveness of the Naïve, Reactive, and Proactive agents in 
combination with the I-Plan [Figure 15(a)], random [Figure 15(b)], and guided  
[Figure 15(c)] planning agents. Effectiveness is measured using two criteria: 

1 IED detection accuracy 

2 plan execution time. 

These criteria are plotted along the x and y axes accordingly – where higher accuracy and 
lower times are preferred. The results from Figure 15 include equal numbers of 
experiments using each type of network dynamism (static, dynamic, and partition-
merge). We use these results for experimental analysis of the effectiveness of planning 
and execution agents. 
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Figure 13 Control experiment: mean plan execution times (in minutes) by plan, execution agent, 
and monitoring agent types (see online version for colours) 
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Note: All agents and services are located on a single host so the network is not affecting 
the results. 

Figure 14 Mean plan execution time for plans that executed successfully to completion by 
planning agent and the network dynamism (as indicated by the mobility scenario)  
(see online version for colours) 
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Note: Static mobility exhibits the least network dynamism, dynamic has varying link 
weights but never completely partitions the network, and partition-merge  
(part-merge) separates the network into two islands and then merges the islands. 
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Figure 15 Mean IED detection accuracy versus mean plan execution time of the (a) I-Plan,  
(b) random, and (c) guided planning agents in combination with each execution agent 
(see online version for colours) 
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Figure 15 Mean IED detection accuracy versus mean plan execution time of the (a) I-Plan,  
(b) random, and (c) guided planning agents in combination with each execution agent 
(continued) (see online version for colours) 
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(c) 

We start with an analysis of the planning agent effectiveness. The I-Plan planning agent 
[Figure 15(a)] uses domain-independent heuristics (e.g., number of actions in the plan) 
and IED-domain-dependent heuristics (e.g., IED detection accuracy and plan execution 
time). Thus, its results tend to be faster and more-accurate than those of the random 
planning agent. However, the guided planning agent’s results further converge on the 
ideal mix of IED detection accuracy and plan execution time. This is because the guided 
planning agent also considers the networking conditions during its planning stages. Thus, 
its plans are usually more-conducive to the network conditions at runtime and perform 
better than their network-unaware counterparts as a result. 

Next, we analyse the results from Figure 15 from the perspective of the execution 
agent’s effectiveness. On average, we find that the naïve execution agent produces faster, 
but less-accurate, results than the reactive and proactive agents. This is likely because the 
naïve agent had the greatest percentage of action failures, and contains no logic for 
recovering from these failures. Another finding is that the reactive execution agent can 
help improve accuracy over the naïve agent, but can negatively impact the execution 
time. An example of this negative impact is very clear in the reactive agent’s execution 
time in Figure 15(b). The reason that the execution time can be so large is that the 
reactive agent simply reacts to failures – meaning that it always tries to execute an action, 
and only after a failure occurs, can it react. The proactive execution agent, on the other 
hand, anticipates failures so it can improve on the reactive agent’s execution time. This 
improvement comes at the expense of potentially using sub-optimal resources because 
the resource allocation happens at runtime rather than being planned a priori. The system 
designer must carefully examine the trade-offs between the acceptability of sub-optimal 
resource utilisation and the large potential gains (around 40% improvement in execution 
time in our experiments) of proactive network-aware execution. 
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5.1.2 Performance 

Figure 16 shows the average number of packets that were transmitted across all network 
links over the course of the experiment. The first aspect to note from these results are that 
the naïve execution agent never successfully completed a plan in the partition/merge 
network scenario. This is because the naïve agent had no way of dealing with the major 
network disconnections that occur under that degree of network dynamism. 

Figure 16 Average number of packets transmitted across the entire network for various execution 
agents under different network dynamics (see online version for colours) 
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Note: The naïve execution agent never successfully completed executing a plan in the 
partition/merge mobility scenario, so it is not included in this figure. 

The second important aspect of the results in Figure 16 is how the proactive execution 
agent has a higher constant overhead, but can potentially save on the major network 
usage that occurs when the reactive agents handle faults. The reason for the proactive 
agent’s overhead is its network probing logic, designed to ensure that the service is 
available before the agent tries to invoke the service. This small network overhead 
prevents the major network mis-use that could potentially occur – e.g., the reactive agent 
in the partition/merge network scenario. 

5.2 Monitoring 

The analytic monitoring agents triggered a great deal of false positives when there were 
communication errors (in computing the residual) between the monitoring agents. Also, 
the analytic monitor was an active monitor, one that has an (possibly detrimental) effect 
on the system, while the data-driven monitor is passive, having no effect on the system. 
Furthermore, implementing the distributed residual calculation was more challenging 
than implementing the data-driven monitor. Thus, we conclude that, in general analytic 
monitors are less suitable in distributed environments than data-driven monitors. 
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Figure 17 Network statistics collected by the data-driven monitoring agent during the dynamic 
link weight mobility scenario, (a) no faults occurred (b) network faults did occur  
(see online version for colours) 
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The data-driven monitors, furthermore, were very useful as indications of network-related 
plan execution failures. Figure 17(a) shows the execution of a plan that encountered no 
failures, whereas Figure 17(b) shows how during a network-failure, the number of 
retransmitted packets increases while the number of successful outgoing packets remains 
constant (or near-constant). 

Over 54 trials, the data-driven network monitoring agents experienced only a 9.25% 
false-positive (type I error) rate and a 1.85% false-negative (type II error) rate. False-
positives occur more often (five times as frequently) because only one of the monitoring 
agents has to malfunction for a false-positive to register. For a false-negative to register, a 
network malfunction must go undetected by all of the monitoring agents. 

6 Related work 

We first compare and contrast our approach to managing uncertainty in the planning and 
execution agents. Then, we discuss how our monitoring agents relate to another common 
approach to monitoring. 

6.1 Managing uncertainty 

There are several ways to approach the problem of managing uncertainty, e.g., the 
uncertainty in the IED detection scenario described in Section 3.1. Typical approaches 
include the following: 

• eliminate uncertainty 

• reason about uncertainty 

• tolerate uncertainty. 

Certain types of uncertainty can be eliminated using better hardware or engineering the 
environment, but this method can increase the cost of planning or lessen applicability to 
real-world settings. On the other hand, we can reason about uncertainty during planning. 
This method results in more complex models and therefore higher planning complexity. 
The last method for decreasing the effects of uncertainty is by tolerating the uncertainty. 
In this approach, robust plan execution and monitoring help to prepare to handle 
conditions where plan execution might have otherwise failed. In our approach, we do not 
attempt to eliminate uncertainty in an effort to maintain practicality in our solution. We 
do, however, reason about uncertainty and tolerate uncertainty using both our planning 
and execution agents. 

According to Horvitz et al. (1988), “Decision theory is based on the axioms of 
probability and utility.” The purpose of decision theory is to formalise decision making 
under uncertainty. Decision-theoretic planning applies this concept of utilising a 
probability distribution over the possible outcomes of the actions to prefer plans with a 
higher expected utility. Similarly, probabilistic planners use information about the 
probabilities of the possible uncertain outcomes to construct plans that are likely to 
succeed. Probabilistic planners, however, typically represent plans as Markov decision 
processes (MDPs) or use symbolic planning approaches (Kushmerick et al., 1995). 
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Both decision-theoretic planning and probabilistic planning are done exclusively 
when a plan is being created. These forms of planning typically add significant 
complexity to the planning process, making them intractable for execution-time in most 
cases. These forms of planning typically add significant complexity to the planning 
process, making them intractable for execution agents. We draw on these decision-
theoretic planning in our guided planning agent for plan generation and incorporate less-
computationally-expensive forms of uncertainty management in our execution and 
monitoring agents. 

Where decision-theoretic planning reasons about uncertainty at plan-time, 
contingency planning deals with uncertainty by interleaving the planning and execution 
agents (Wilkins, 1985; Wilkins et al., 1995). Contingency planning most closely relates 
to our reactive execution agent. The reactive execution agent interleaves planning and 
execution by conducting on-line plan repairs if an action fails to execute. Contingency 
planning usually involves tight-coupling between the planning and execution agents, 
however, our reactive execution agent is loosely-coupled to our planning agents. 

In reactive planning, no specific sequence of actions is planned in advance. Instead 
the planner produces a set of condition-action rules, for example, universal plans 
(Schoppers, 1987) or situated control rules (SCRs) (Drummond and Bresina, 1990). 
Despite its name, reactive planning most closely relates to our proactive execution agent. 
The proactive agent requires a set of actions, but only grounds the resources of those 
actions at runtime (rather than plan-time). Thus, reactive planning deals with uncertainty 
entirely at execution time, as does our proactive execution agent. 

6.2 Monitoring 

Hart et al. (1990) describes a representation for action progress expectations, which they 
label envelopes. The term comes from performance envelopes in engineering disciplines 
which describe performance profiles. The point of these envelopes is to avoid wasting 
time executing costly actions when it is clear that they will fail prior to their completion. 
Using envelopes allows an agent to: 

• modify a failing plan so as to prevent its failure, 

• abandon a failing plan, 

• retire surplus resources from a succeeding plan, 

• improve a plan going unexpectedly well, and/or 

• reduce communication between cooperating agents (sharing expectations means they 
only have to communicate when the expectations are violated). 

Envelopes are similar to (and possibly slightly more descriptive than) our monitoring 
techniques, however we constrain plan modification logic to planning and execution 
agents. This design decision means that our monitoring agents perform only fault 
detection, isolation, and identification; and rely on the planning and execution agents to 
repair the active plan or construct a new plan entirely. We believe this approach better 
segregates the services provided by each agent. 
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7 Conclusions 

In this paper, we have presented a framework for coordinating distributed IED 
monitoring and detection in the context of network-centric planning, execution, and 
monitoring. Furthermore, we have designed and implemented network-aware agents 
capable of operating in dynamic, heterogeneous networks. 

We have demonstrated the importance of network-awareness in a series of empirical 
analyses based on a realistic IED detection scenario. The agents that exhibit  
network-awareness outperformed network-naïve agents with respect to not only network-
centric criteria (e.g., bandwidth consumed), but also domain-centric criteria (e.g., IED 
detection accuracy). Further, we find that network-awareness allowed agents to reactively 
and proactively adapt to highly-dynamic and volatile networks. We believe this  
network-centric approach is applicable to a broad range of distributed multi-agent 
systems (MASs). 

7.1 Future work 

The experiments presented in this work used only two of the three approaches to FDI 
from Pettersson (2005). Future work will investigate the use of network-aware,  
domain-specific, knowledge-based monitoring agents for further improving the 
performance and effectiveness of monitoring agents in distributed environments. 

Additionally, processing power, like network connectivity, is a limiting factor in the 
use of distributed services within resource-constrained networks. Future work will focus 
on incorporating awareness of computational resources into planning and execution 
agents, thereby enabling our framework to better utilise the processing power of 
heterogeneous actors within the network. 
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