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Abstract: This study addresses two important problem statements, namely, selection 
of training datasets for online Brain-Computer Interface (BCI) classifi er training and 
determination of participant concentration levels during an experiment. The work also 
attempted a pilot study to integrate electroencephalograms (EEGs) and Near Infra Red 
Spectroscopy (NIRS) for possible applications such as the BCI and for measuring 
cognitive levels. Two experiments are presented, the fi rst being a mathematical task 
interleaved with rest states using NIRS only. In the next, integration of the EEG-NIRS 
with reference to P300-based BCI systems as well as the experimental conditions 
designed to elicit the concentration levels (denoted as ON and OFF states here) during 
the paradigm, are presented. The fi rst experiment indicates that NIRS can be used to 
differentiate a concentrated (i.e., mental activity) level from the rest. However, the 
second experiment reveals statistically signifi cant results using the EEG only. We present 
details about the equipment used, the participants as well as the signal processing and 
machine learning techniques implemented to analyse the EEG and NIRS data. After 
discussing the results, we conclude by describing the research scope as well as the 
possible pitfalls in this work from a NIRS viewpoint, which presents an opportunity 
for future research exploration for BCI and cognitive performance measures.
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1 Introduction

Among the numerous possible modalities for measuring brain activity in Brain–Computer 
Interface (BCI) systems, the scalp electroencephalogram (EEG) (Hoffmann et al., 2007; 
Palaniappan, 2008) and optical Near Infra Red Spectroscopy (NIRS) (Sitaram et al., 2007; 
Nagaoka et al., 2010; Coyle et al., 2006) have been popular, since they are non-invasive, 
simple and comparatively user friendly. Recently, BCI systems are being explored for novel 
applications like computer cursor control (Wilson and Palaniappan, 2011), authentication 
(Gupta et al., 2008) and gaming (Lalor et al., 2005) and therefore, gauging participant 
concentration or motivational levels during the experimental sessions is of great interest. 
In spite of the rich complementary information provided by concurrent EEG and NIRS 
recordings, very few research groups have worked on that perspective. So far, studies 
(Kennan et al., 2002; Hirshfi eld et al., 2009; Salvatori et al., 2006) have focussed on 
simultaneous EEG–NIRS recordings in the occipital cortex or around the midline lobes, 
showing synchronisation of neural and hemodynamic activities during tasks. In Kennan 
et al. (2002), the authors showed that regions of peak hemodynamic activity are in closest 
proximity to the areas of peak electrical activity during an auditory oddball paradigm. In 
Hirshfi eld et al. (2009), an increase in HbO and a decrease in Hb were reported for oddball 
stimuli during auditory paradigms, using optodes placed on either side of the midline lobe. 
The work presented in Salvatori et al. (2006) on concomitant recording of EEG–NIRS 
highlights that concentration variations directly refl ect the increase in blood oxygenation 
required to support neural activity during a visual stimulus paradigm. In these studies, the 
EEG electrodes and the NIRS optodes were primarily placed around the visual cortex area 
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of the brain. Although early attempts to integrate the EEG and NIRS for monitoring brain 
functions have been made, there is defi nitely a lot of scope for research in this direction for 
BCI and cognitive applications.

EEG–NIRS integration could be used to address two applications, namely, selection of 
training datasets for online BCI classifi ers and participant concentration monitoring during 
an experiment. Selection of training datasets to train a classifi er is often a precursor for all 
online BCI experiments. The performance of an online classifi cation depends entirely on 
the training dataset used to train the classifi er. Factors like level of concentration, fatigue 
and workload cannot be gauged from EEG data (in standard BCI paradigms) to select 
the training dataset or monitor participant performance. With this scenario in mind, we 
embarked on a pilot study to integrate EEG and NIRS to help gauge the participants’ levels 
of concentration while they perform the experiment. NIRS optodes were placed in the 
frontal cortex (i.e., Brodmann area 10), responsible for memory and executive function, 
while EEG electrodes responsible for electrical activity during visual paradigms were 
chosen, as in Hoffmann et al. (2007), around the midline parietal region. To the best of the 
authors’ knowledge, this is a novel approach where concomitant EEG–NIRS recording is 
used for challenging BCI problems. This integration could be performed for any BCI-based 
paradigm (such as Donchin’s P300, motor imagery, slow cortical potentials, etc.).

2 Methodology – signal acquisition, design and participant setup

The design, setup and positioning of EEG electrodes and NIRS optodes are shown in Figure 
1. The participants were seated in a chair facing a computer monitor at distance of 70 cm. 
Automated synchronised recording of multi-modal signals are commonly used, but diffi culties 
in setting a common trigger for the EEG and NIRS devices prompted us to manually employ 
two BCI researchers to perform the synchronised recording sessions to obtain concurrent 
EEG-NIRS recordings while the participants were performing the experiment.

Figure 1 Design, setup and positioning of NIRS optodes (upper half) and EEG electrodes (lower 
half) (see online version for colours)
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2.1 EEG data collection
The EEG data were collected with a Biosemi Active Two system using a sampling rate of 
256 Hz. Since the purpose of this study was to investigate the integration of EEG with NIRS, 
the eight optimum channels for BCI reported in Hoffmann et al. (2007) as confi guration-II 
for able-bodied participants were used. Two recorded mastoid channels were used as 
reference channels, bringing the total number of EEG channels to 10. A Graphical User 
Interface (GUI) was developed using Visual Basic software and integrated into the Biosemi 
data logging software. The participants were asked to refrain from blinking during the 
experiment, which was performed in a room shielded from electromagnetic interference. 
A short break was given after every session.

2.2 NIRS data collection
A multichannel CW-NIRS Instrument from Artinis Medical Systems (Oxymon Mk III) was 
used for data acquisition. Two sources and two detectors were mounted on a custom designed 
headgear, made to hold the optodes on the participant’s forehead. Each source emits two 
wavelengths at 764 and 859 nm and the data was recorded at a sampling rate of 10 Hz. The 
headgear was made of linoleum and holes were punched to hold the optodes 3 cm apart. The 
distance of 3 cm was selected due to the depth of tissue that NIRS can interrogate, which 
is dependent on the distance between the source and the detector. A greater separation in 
size between the source and the detector would result in a greater imaging depth. However, 
if the separation is greater than 5 cm, the optical signal would weaken and might become 
unusable (McCormick et al., 1992; Zhang et al., 2007; Gratton et al., 2006). The optodes were 
carefully set-up, so that they would not affect the EEG electrodes. Since they were placed on 
the forehead, care was also taken that artifacts due to hair were not introduced. The Oxysoft 
software, provided by Artinis Medical Systems, was used to record both the channels (T1 and 
T2) at a sampling frequency of 10 Hz; the samples were then analysed in MATLAB.

2.3 Signal processing for EEG and NIRS
The EEG and NIRS data collected were analysed separately and the signal processing 
techniques are detailed below.

2.3.1 Signal processing for EEG
The data were referenced to the average of the mastoids channels and a forward-
reverse Butterworth band-pass fi lter with cut off frequencies (1 Hz and 12 Hz) was used 
to fi lter the data, to obtain the signals in the P300 spectral range. Filters with forward 
and reverse fi ltering to avoid phase distortion were used. Each trial was 256 samples 
in length and phase-locked to stimulus occurrence. To remove eye blinks and artifact 
activity, windsorising, as described in Hoffmann et al. (2007), was implemented, due to 
its simplicity and effectiveness. The data was normalised and the recorded eight channels 
were used for classifi cation.

2.3.2 Signal processing for NIRS
The optical data was fi ltered to remove motion artifacts and systematic physiological 
activities such as breathing and heartbeat by using an elliptical band-pass fi lter with 0.01 Hz 
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and 0.8 Hz as cut-off frequencies. These values are similar to those in other studies (Zhang 
et al., 2007; Gratton et al., 2006; Naito et al., 2007). These fi lter parameters also removed 
the baseline drift, as shown by the authors in Plichta et al. (2006) and Schroeter et al. (2004).

2.4 Experimental study
Two experimental studies were performed during this research work. In the fi rst study, we 
accessed the performance of NIRS during mathematical and relaxing states. In the second 
study, we embarked on EEG–NIRS integration, addressing two applications, namely, 
selection of the training dataset for the online BCI classifi er and participant concentration 
monitoring during an experiment. During both studies, participants were seated in a chair 
facing a computer monitor at a distance of 70 cm and the purpose of the experiments was 
explained for motivated involvement. The participants voluntarily signed a written consent 
form and the experiments were approved for ethics.

2.4.1 Mathematical and relaxation tasks using NIRS
During this study, three participants were asked to perform ten mathematical tasks (as 
presented in Table 1), which involved a combination of high level subtraction and addition, 
following the BODMAS rule (Brackets of Division Multiplication Addition and Subtraction) 
order of operations. The mathematical tasks were interleaved, with periods of relaxation 
(around 60 seconds), during which the participant relaxed/gazed at a white screen. Baseline 
recordings were also recorded at the beginning and the end of the experiment.

Table 1 Examples of mathematical tasks for NIRS study

Task 1 (107 + 235) – (78–(–12)) + 49 = ?
Task 2 (155–65) – (–18–(–24)) + 79 = ?
Task 3 (138 – (–27)) – (121 + 42) + 21 = ?

3 Analysis, results and discussion of fi rst experiment

Signal processing was performed, as discussed in the earlier section. The fi rst 15 seconds 
during the task and relaxation phases were considered, because it was reported to be the 
duration of rapid change in NIRS oxygenation levels in recent studies (Salvatori et al., 2006; 
Ayaz et al., 2006). For the accumulated task and relaxation trials, ensemble averages were 
calculated. The results for the three participants are depicted in Figures 2–4. Ten interleaved 
periods of task and relaxation are depicted in Figures 2–4 using coloured stem lines. The 
periods between red and blue stems indicate rest, while the periods between blue and red 
stems indicate task states. The recorded baselines are also illustrated in the fi gures. To give a 
clearer picture, two instances of task and relaxation phases are expanded and shown in Figure 
2. As anticipated, we noticed a higher oxygenation mean value from the ensemble trials 
during the math task than the relaxation phase for all participants. This is presented in Table 2. 

Table 3 tabulates the means of every interleaved, task and relaxation phase. A t-test was 
performed using the t-test2 MATLAB command and statistically signifi cant differences were 
observed at the 5% signifi cance level for participants one and two only, which is tabulated 
in Table 3.
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Figure 2 NIRS signals during ten interleaved task and relaxation phases for participant 1 with two 
instances expanded for easier understanding (see online version for colours)

Figure 3 NIRS signals during ten interleaved task and relaxation phases for participant 2 (see 
online version for colours)
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Figure 4 NIRS signals during ten interleaved task and relaxation phases for participant 3 (see 
online version for colours)

Table 2 Mean and standard deviations of the ten mathematical tasks and relaxation phases

Participant
Mean and std of task trials 

(Channel 1, HbO)
Mean and std of rest trials

(Channel 1, HbO)

1 0.1741 ± 0.1973 –0.039 ± 0.1498
2 0.0863 ± 0.1932 –0.0887 ± 0.1280
3 0.151 ± 0.234 –0.0195 ± 0.324

Table 3 Statistical analysis for mathematical tasks and relaxation phases (fi rst 15 seconds)

Participant 1
(Channel 1, HbO)

Participant 2
(Channel 1, HbO)

Participant 3
(Channel 1, HbO)

Mean of each 
task phase

Mean of each 
rest phase

Mean of each 
task phase

Mean of each 
rest phase

Mean of each 
task phase

Mean of each 
rest phase

0.3159 0.2478 0.4678 –0.2544 0.0260 0.0705
0.5057 –0.1712 0.1806 –0.2064 0.4162 –0.2083
0.3538 –0.0534 –0.2222 0.0192 0.0632 –0.2702
0.2492 –0.1043 0.0248 0.1164 –0.3758 0.1361
0.0724 –0.0456 0.0831 0.0043 0.4252 0.0408

–0.1266 –0.2180 0.1130 –0.0654 0.1549 –0.0038
–0.0757 –0.0747 0.0687 –0.2864 0.0977 –0.3413
0.1938 0.0299 –0.1199 –0.1026 0.2722 0.0882
0.2106 0.1645 0.2650 –0.0254 0.1139 –0.4214 
0.0423 –0.1741 0.0017 –0.0863 0.3209 0.7139

t-test p = 0.0137 t-test p = 0.0282 t-test p = 0.1937
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4 Experimental design of EEG–NIRS integration for P300 BCIs

Integration of the EEG and NIRS for BCI application was studied with reference to the P300 
oddball paradigm. A 4-class BCI oddball paradigm was used for this EEG-NIRS integration 
study. The EEG and NIRS data were recorded concurrently from four participants, when the 
participants perceived different colour fl ashes on a white background within a single square 
block, as shown in Figure 5. Two level tasks were used wherein stimuli with black and red 
colours were used as target cues, while the colours green and blue fl ashed more frequently 
and were denoted as non-targets. The participants were instructed to focus and keep a count 
of the cue (target) colour during the fi rst two sessions (S1 and S2), referred to as Task or ON 
state, while they gaze/relax (rest or OFF state) during the third session (S3). The participants 
in this case effectively concentrate on the target colour and the counting of the number of 
target blocks requires concentration. The experiment and protocols developed in this study 
have been designed to gain more insight about the workload experienced by a participant 
during the task (‘ON’ state) and the rest (‘OFF’ state). To prevent habituation, the number 
of recorded blocks during each session was varied. The recorded sessions were as follows:

• session S1 – 36 blocks to train the classifi er, wherein the participant counts cue fl ashes 
mentally (ON state)

• session S2 – 40 blocks for each cue, wherein the participant counts the cue fl ashes 
mentally (ON state)

• session S3 – 40 blocks for each cue, wherein the participant gazes at the fl ashes (OFF 
state).

The experimental time during session S1 was 4.08 minutes, while S2 and S3 sessions were 
4.53 minutes in duration. A baseline recording of 60 seconds was made before each session. 
The impedance levels of the EEG electrodes and the positioning of the NIRS optodes 
were also checked after each session, during the break. The experiments were designed 
to infer the effect of training classifi ers with data, wherein the participant concentrates on 
the experiments (ON state) and during instances when he/she does not concentrate on the 
experiment (i.e., gets onto the OFF state). A concurrent recording of EEG–NIRS provides 
complementary hemodynamic information from NIRS parameters. 

Figure 5 One colour block illustrating a sequence of fl ashes (total number blocks in each session 
was either 36 or 40). Note that only one block fl ashed on the screen at a time. The cue 
was the target colour (either black or red) (see online version for colours)
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5 Analysis and results of the second experiment

The signal processing techniques for the EEG and NIRS data were implemented as 
discussed in an earlier section. The concurrently recorded EEG and NIRS sessions were 
analysed in two different ways to study the utility of simultaneous recordings for BCI 
applications.

5.1 Training dataset selection
Two Bayes linear discriminant analysis (LDA) classifi ers with the same parameters were 
trained using S1 session (participant concentrates) and S3 session (participant does not 
concentrate) datasets. The block by block classifi cation accuracy for each colour cue, black 
and red, over time using session S2 data, for classifi ers trained on S1 session (participant 
concentrates) and S3 session (participant does not concentrate) datasets are shown 
diagrammatically in Figure 6(a) for one participant. Similar results were obtained for the 
other participants. The single trial classifi cation accuracies achieved for both the discussed 
cases are depicted in the fi rst and second columns of Table 4 for the four participants. Each 
session (S2 and S3) had 40 blocks, with each having four colours. Each colour was fl ashed 
for 100 ms with an ISI1 of 750 ms.

The x-axis in Figure 6(a) represents time, highlighting block by block EEG classifi cation 
accuracy, as shown by the y-axis. The time is calculated as 40 blocks × 4 colours × 850 ms/
1000 ms = 136 seconds. The stem plot in the fi gures highlights the classifi cation over time. 
A value of 1 on the y axis indicates correct detection and a 0 indicates incorrect detection for 
each block (four colour fl ashes). Green ovals represent EEG block misclassifi cations above 
two in sequence.

In another analysis, the Bayes LDA classifier was trained using the S1 dataset 
(concentrating) and the S3 dataset (not concentrating) was used as testing data. Poor 
EEG classifi cation was achieved and is depicted in the fi nal column of Table 4. The mean 
and standard deviations for sessions S2 (concentrating) and S3 (no concentration) were 
calculated for the NIRS data so as to gauge the possibility of selecting an effective training 
dataset from the NIRS parameters. However, the results obtained had no statistically 
signifi cant difference between the two sessions (S2 and S3) in the recorded NIRS data. 
Nevertheless, the results from the EEG indicate the importance of selecting training data 
where the participant concentrates, as shown by the higher number of green ovals – 11 ovals 
as compared to 5 ovals.

Table 4 EEG classifi cation accuracies (%) for various combinations of training and testing 
datasets

Partici-
pant

S1-Training Dataset (Concen-
trating), S2-Testing Dataset 

(Concentrating)

S3-Training Dataset, (No 
Concentration), S2-Test-
ing Data (Concentrating)

S1-Training Dataset, (Concen-
trating), S3-Testing Data (No 

Concentration)

1 73.75 % 27.50% 23.75%
2 48.75% 25.00% 16.25%
3 62.50% 32.50% 22.5%
4 56.25% 30.00% 23.75%
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5.2 Participant concentration monitoring
The use of concomitant EEG–NIRS in monitoring real-time participant concentration levels 
was also explored, as depicted in Figure 6(b). Due to space constraints, only the concomitant 
EEG–NIRS from one participant is shown here. EEG block misclassifi cations above two in 

Figure 6 Simultaneous EEG-NIR recording for one participant (see online version for colours)
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sequence were considered and the corresponding NIRS levels were analysed as illustrated 
in Figures 6(b). During most instances where poor classifi cation accuracy for EEG was 
obtained (as shown by the ovals), a corresponding low/minimum in the oxygenated blood 
of the NIRS was noticed, as shown by the red and purple arrows (purple arrows show 
the correct dip in NIRS close to the poor classifi cation accuracy, while red arrows do not 
indicate a dip). However, consistent results were not observed for all the poor classifi cation 
instances, as can be seen from Figure 6(b). Nevertheless, as this is only a pilot study, the 
results obtained are reported here.

6 Discussion

The use of EEG–NIRS integration in selecting training datasets as well as real-time monitoring 
of participant concentration was attempted. However, results due to the integration were not 
statistically signifi cant from an NIRS viewpoint. The possible pitfalls/speculations in this 
study could be the absence of trigger information and synchronisation of EEG and NIRS 
recordings, which would have helped in doing an accurate averaging analysis of NIRS data. 
Further, as the EEG has a higher frequency signal than NIRS, the concurrent real-time analysis 
might not have given effective results. NIRS was recorded from the forehead, while EEG was 
recorded in the midline parietal region, wherein this temporal difference and thus, differences 
due to the placements of the EEG electrodes and the NIRS optodes might have caused the poor 
results. Further, the NIRS speed of operation is limited by the nature of metabolic response 
as well as inherent delays, thereby making real-time concurrent analysis a diffi cult task. It 
is also to be noted that the P300 is a relatively fast-paced paradigm and so direct correlation 
was perhaps not possible to achieve. All said and done, one important motivation observed 
in this pilot study was the positive results obtained from an EEG viewpoint, highlighting 
the importance of selecting the correct training dataset to achieve good online classifi cation. 
However, it is hoped that this work will motivate further research on these lines.

Table 5 Mean and standard deviation of NIRS data for sessions S2 (concentrating) and S3 (no 
concentration)

S2: Mean and std, HbO (μm) S3: Mean and std, HbO (μm)

Participant Colour 1 Colour 2 Total Colour 1 Colour 2 Total

1 0.0185 ± 0.33 –0.0055 ± 0.23 0.0068 ± 0.29 0.0212 ± 0.38 –0.0113 ± 0.31 0.0052 ± 0.35
2 0.0644 ± 0.03 –0.0141 ± 0.38 0.0248 ± 0.36 –0.0232 ± 0.39 0.0246 ± 0.39 –0.0007 ± 0.40
3 0.0016 ± 0.19 0.0021 ± 0.18 0.0018 ± 0.18 –0.0241 ± 0.23 0.0021 ± 0.21 –0.0111 ± 0.22
4 0.0231 ± 0.45 –0.0457 ± 0.26 –0.0111 ± 0.37 –0.0079 ± 0.28 0.0095 ± 0.39 0.0007 ± 0.34

7 Conclusion

EEG has been popular as a modality for applications such as BCI and measuring cognitive 
levels. In recent times, research groups have started exploring the use of NIRS to obtain 
the control commands for BCI-based applications. Taking this idea forward, an attempt 
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to integrate the EEG and NIRS to solve challenging BCI issues, namely training dataset 
selection and participant concentration monitoring, was made. This study presented a 
recording setup using EEG electrodes and NIRS optodes, signal processing techniques 
and experiments performed. The study, involving mathematical tasks and relaxation states, 
provided motivating results conforming to those in the literature, where oxygenation mean 
values from the ensemble trials during math tasks were higher than during relaxation 
phases for all participants. It was envisaged that the complementary information provided 
by NIRS could be effectively used to select training datasets and monitor participant 
concentration using EEG–NIRS integration. Motivating results were obtained using EEG 
datasets only, as illustrated in Tables 4–5. Possibly, having a synchronised system with 
triggers for the EEG as well as NIRS and making an attempt on a slower-paced paradigm 
like motor imagery could probably have given better success. Though EEG–NIRS 
integration studies are still in their infancy, this work is hopefully a motivation for further 
exploration on that front for the BCI research community and for cognitive performance 
measures. 
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Inter –stimulus interval (ISI), which is the time between two fl ashes.


