
Int. J. Applied Cryptography, Vol. 3, No. 1, 2013 47

Copyright © 2013 Inderscience Enterprises Ltd.

Practical hybrid (hierarchical) identity-based
encryption schemes based on the decisional bilinear
Diffie-Hellman assumption

Sanjit Chatterjee*
Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore, 560012, India
E-mail: sanjit@csa.iisc.ernet.in
*Corresponding author

Palash Sarkar
Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata, 700108, India
E-mail: palash@isical.ac.in

Abstract: The paper proposes a (H)IBE scheme, which improves upon Waters’ scheme
from Eurocrypt 2005 by significantly reducing the size of the public parameters. The
improvement is based on two ideas: 1) partitioning the identities in smaller blocks; 2) reusing
public parameters. Modification of the basic HIBE scheme yields a CCA-secure hybrid HIBE
where symmetric key authentication is used to eliminate costly pairing operations from the
decryption algorithm. The protocols and the security arguments are recast in the most efficient
asymmetric pairing setting where one gets several variants of the basic protocol with associated
trade-offs in the ciphertext overhead and public parameter size. For practical security levels, the
variants we obtain are currently the most efficient and practical among all other schemes which
achieve similar security under the DBDH assumption. The basic idea provides improvements to
the construction of other cryptographic primitives such as signatures, wildcard IBE and
certificateless encryption.

Keywords: identity-based encryption; IBE; adaptive identity attacks; identity-based signature;
IBS; chosen ciphertext attacks; asymmetric pairing; decision bilinear Diffie-Hellman problem.

Reference to this paper should be made as follows: Chatterjee, S. and Sarkar, P. (2013)
‘Practical hybrid (hierarchical) identity-based encryption schemes based on the decisional
bilinear Diffie-Hellman assumption’, Int. J. Applied Cryptography, Vol. 3, No. 1, pp.47–83.

Biographical notes: Sanjit Chatterjee is an Assistant Professor in the Department of Computer
Science and Automation, Indian Institute of Science, Bangalore. His primary research interest is
in applied cryptography, in particular, the interplay of theory and practice for provably secure
cryptographic protocols.

Palash Sarkar received his Bachelor of Electronics and Telecommunication Engineering degree
in 1991 from Jadavpur University, Kolkata and Master of Technology in Computer Science in
1993 from Indian Statistical Institute, Kolkata. He completed his PhD from Indian Statistical
Institute in 1999. Since 2005, he has been a Professor at Indian Statistical Institute. His research
interests include cryptology, discrete mathematics and computer science.

1 Introduction

The concept of identity-based encryption (IBE) was
introduced by Shamir (1984). An IBE is a type of public key
encryption where the public key can be any binary string.
The corresponding secret key is generated by a private key
generator (PKG) and provided to the relevant user. The
notion of IBE simplifies several applications of public key
cryptography. The first efficient implementation and an

appropriate security model for IBE was provided by Boneh
and Franklin (2003).

The PKG issues a private key associated with an
identity. The notion of hierarchical identity-based
encryption (HIBE) was introduced in Horwitz and Lynn
(2002) and Gentry and Silverberg (2002) to reduce the
workload of the PKG. An entity in a HIBE structure has an
identity which is a tuple 1(,...,).v v j The private key
corresponding to such an identity can be generated by the

48 S. Chatterjee and P. Sarkar

entity whose identity is (v1, . . . , vj−1) and which possesses
a private key corresponding to this identity. The security
model for IBE was extended to that of HIBE in Horwitz
and Lynn (2002) and Gentry and Silverberg (2002).

Security of all public key cryptographic protocols relies
on some hardness assumption. Most IBE schemes use a
bilinear map G1 ×G2 → GT . Known examples of such
maps arise from elliptic curves where G1 and G2 are
subgroups of points of an elliptic curve (EC) and GT is a
subgroup of the multiplicative group of a finite field. In the
elliptic curve literature, it is customary to write the group
operation additively and we follow this convention for G1

and G2. The basic hardness assumption in the setting of
bilinear map is the hardness of the bilinear Diffie-Hellman
(BDH) problem and the hardness of its decisional version,
the so-called decision BDH (DBDH) problem.

The construction of the IBE scheme in Boneh and
Franklin (2003) and of the HIBE scheme in Gentry
and Silverberg (2002) were proven to be secure in the
appropriate models and were based on the hardness of the
(D)BDH problem. However, the proofs made use of the
so-called random oracle heuristic, i.e., the schemes made
use of certain functions which are modelled as uniform
random functions in the security proof. This led to a search
for schemes which can be proven to be secure without
the use of random oracles. The first such construction was
presented in Canetti et al. (2004). Unfortunately, the work
in Canetti et al. (2004) had to relax the security model
and consider a weaker model called the selective-ID (sID)
model. A more efficient construction of a (H)IBE secure in
the sID model was given by Boneh and Boyen (2004a).

The first construction of an IBE which can be proved
to be secure without using the random oracle heuristic
was given by Boneh and Boyen (2004b). Later, Waters
(2005) presented an efficient construction of an IBE which
is secure in the same setting.

One disadvantage of Waters’ (2005) scheme is the
rather large size of the public parameters of the scheme.
If identities are represented by a bit string of length n,
then the scheme requires a vector of length (n+ 1) to be
maintained as part of public parameter, where each element
of the vector is a point in a suitable elliptic curve group.
For κ-bit security, n has to be at least 2κ so that attaining
80-bit (resp. 128-bit) security requires 161 (resp. 257) EC
points as part of the public parameters. The rather large
size of the public parameters can be a problem for practical
implementation of the scheme.

In the same paper, Waters (2005) also outlined a
construction of a HIBE. The idea is to have a new set of
public parameters for each of the h levels of the HIBE.
This leads to a system having h(n+ 1) many elliptic curve
points as public parameters for an h-level HIBE having
n-bit identities at each level.

Bellare and Ristenpart (2009) performed a new analysis
of Waters’ IBE scheme which does not require the so-called
‘artificial abort’ step in the original proof of Waters
and followed in subsequent work (Chatterjee and Sarkar,
2005; Naccache, 2007). This results in a reduction of the
simulation time required in the security proof. On the other

hand, the security bound that they obtain is different from
the bound obtained by Waters. As a result, the analysis
in Bellare and Ristenpart (2009) does not always improve
the analysis performed by Waters (2005). Prior to the work
of Bellare and Ristenpart (2009), Hofheinz and Kiltz (2008)
proposed a new proof technique for Waters IBE. However,
as noted in Bellare and Ristenpart (2009), their technique
does not provide any significant gain in terms of concrete
security.

1.1 Our contributions

The basic problem that we consider in this paper is
to construct a practical (H)IBE of small depth for the
following setting.

1.1.1 Setting

1 security in the full model (i.e., against adaptive
ciphertext and adaptive identity attacks) introduced
in Boneh and Franklin (2003)

2 security is based on the hardness of the DBDH
problem

3 the proof does not use the random oracle heuristic.

We present solutions to this problem which build upon
Waters’ (2005) original proposal. Some of the basic ideas
behind these solutions appear in our previous conference
papers (Chatterjee and Sarkar, 2005, 2006a; Sarkar and
Chatterjee, 2007).

The (H)IBE construction is in two parts – construction
of a (H)IBE which is secure against chosen plaintext
attacks (CPA-secure) and then its modification to ensure
security against chosen ciphertext attacks (CCA-secure).
The CPA-secure HIBE is then converted to a hierarchical
identity-based signature (HIBS) scheme. Below we provide
an overview of our main results.

Use of asymmetric pairing. The basic scheme due to
Waters as well as most of the follow-up2 works (Chatterjee
and Sarkar, 2005, 2006a; Naccache, 2007; Kiltz and
Galindo, 2009) use symmetric pairings. In terms of efficient
implementation, this, however, is not a good choice. The
recent work by Bellare and Ristenpart (2009) describe
Waters (2005) IBE scheme using asymmetric pairings
but, in the so-called Type 2 setting. This requires an
efficiently-computable isomorphism ψ from G2 to G1.
They make use of this isomorphism in the security proof.
Research on pairing implementation shows (Galbraith et al.,
2008) that it is more efficient to implement pairing-based
schemes using asymmetric pairings in the so-called Type 3
setting. These are asymmetric pairings for which the
isomorphism ψ mentioned above is not known. As a result,
it is required to describe the scheme and the security
proof for the scheme without using such a mapping. The
Type 3 setting turns out to be the most general setting for
pairing-based cryptography.

Practical hybrid (hierarchical) identity-based encryption schemes 49

In this work, we describe all constructions using Type 3
pairings. This naturally leads to several variants with
associated trade-offs. We carefully analyse these variants
and identify the advantages of each. The use of Type 3
pairings is not completely routine and requires quite a bit
of thought to identify the useful ideas. Since the (H)IBE
scheme and associated primitives originating from the
work of Waters’ form an important class of cryptographic
primitives, we believe that our use of Type 3 pairings is
of significant value to the practical implementation of the
relevant primitives.

CPA-secure (H)IBE construction.

1 For an n-bit identity v = (v1, . . . , vn), Waters (2005)
defines a hash of the form U ′

1 +
∑n

i=1 viUi, where
U ′
1, U1, . . . , Un are EC points and are part of the

public parameters of the scheme. The generalisation
proposed in our conference paper (Chatterjee and
Sarkar, 2005) is to consider v as consisting of l blocks
of n/l-bits, v1, . . . , vl where each block is considered
to be an integer in the range {0, . . . , 2n/l − 1}. The
corresponding hash is then U ′

1 +
∑l

i=1 viUi. The
number of EC points required in this case is l + 1.
Putting l = n gives Waters scheme, whereas choosing
a suitable l gives a scheme requiring lesser space for
the public parameters. There is a consequent negative
effect on the security which we discuss later.

2 The extension to HIBE as suggested by Waters
(2005), was to choose the EC points U ′

1, U1, . . . , Un

separately for each level of the HIBE. In other words,
for an h-level HIBE, the public parameters are of the
form U ′

1, U1,1, . . . , U1,n, U ′
2, U2,1, . . . , U2,n, . . .,

U ′
h, Uh,1, . . . , Uh,n. In contrast, the HIBE construction

suggested by us in Chatterjee and Sarkar (2006a) uses
public parameters of the form U ′

1, . . . , U
′
h, U1, . . . , Ul

for 1 ≤ l ≤ n. In other words, the parameters
U ′
1, . . . , U

′
h correspond to the different levels of the

HIBE, whereas the parameters U1, . . . , Ul are the
same for all the levels. For l = n, this suggestion
reduces the number of EC points from (n+ 1)h to
n+ h without any additional security degradation
over Waters’ suggestion.

Signature schemes. It is an observation of Naor, that a
CPA-secure IBE scheme can be converted to a signature
scheme which is existentially unforgeable under chosen
message attacks. This conversion has been used earlier
to construct several signature schemes (Boneh et al.,
2001; Boneh and Boyen, 2004; Waters, 2005). Our
conference paper (Chatterjee and Sarkar, 2005) also shows
a conversion of the IBE scheme to a signature scheme.
Here we present a more general conversion of the HIBE
scheme to obtain a hierarchical identity-based signature
(HIBS) scheme. The special case of IBS obtained from
the HIBS has smaller size public parameters compared to
the earlier (Paterson and Schuldt, 2006) IBS obtained from
2-level Waters (2005) HIBE.

CCA-secure (H)IBE construction. The above mentioned
(H)IBE schemes are proved to be secure against adversaries
which are restricted from making ciphertext queries. Our
conference paper (Sarkar and Chatterjee, 2007) modifies
a technique from Boneh et al. (2005b) to ensure security
against chosen ciphertext attacks. In this paper, we extend
the technique of Sarkar and Chatterjee (2007) to work in
the setting of asymmetric pairing. While the basic idea of
the conversion is based on Boneh et al. (2005b), some new
ideas are introduced:

1 Ciphertext validity checking is partially done through
symmetric key authentication techniques. Doing this
avoids several pairing computations that would
otherwise be required for ciphertext validity checks.

2 Due to the use of symmetric key authentication, the
scheme requires hybrid encryption. We propose the
first application of efficient single-pass symmetric key
authenticated encryption (AE) schemes (Rogaway,
2004; Sarkar, 2010) in the context of hybrid (H)IBE
schemes.

Analysis of the schemes. The basic idea of the analysis
of CPA-security originates in the work of Boneh and
Boyen (2004a, 2004b) where they show a particularly
elegant algebraic method to simulate responses to the
adversarial key generation queries and to generate the
challenge ciphertext. Their construction requires mapping
an identity into an EC point. The proposed method for
performing this in Boneh and Boyen (2004b) is not very
efficient. Waters (2005) proposed an efficient method for
doing this but, as mentioned above, still requires large
public parameter size [it has been pointed out in Bellare
and Ristenpart (2009) that the mapping used by Waters
(2005) has actually appeared earlier (Chaum et al., 1987) in
a different context]. The analysis in Waters (2005) faced a
certain complication due to the possible non-independence
of the adversary’s success and the simulator’s requirement
of aborting. This was overcome by using the so-called
‘artificial abort’ technique which led to an increase in
the runtime of the simulator. This technique was later
followed in several other papers (Chatterjee and Sarkar,
2005; Naccache, 2007). As mentioned earlier, Bellare and
Ristenpart (2009) performed a different analysis of Waters’
scheme which does not require the artificial abort step.

We present the detailed analysis of the schemes
proposed here following both Waters (2005) and Bellare
and Ristenpart (2009). Waters required an aritifical abort
step to complete the analysis. This required the simulator
to possibly abort even after the adversary has successfully
completed its task. Bellare and Ristenpart remove this
artificial abort. One would have expected the resulting
analysis to have provided a better bound than that obtained
by Waters. However, in general the bound in Bellare and
Ristenpart (2009) is worse than the bound in Waters (2005).
This becomes much more evident when one moves from
IBE to HIBE. We nail down the exact reason for this.

50 S. Chatterjee and P. Sarkar

Due to the new analysis and due to the use of Type 3
pairings, the proofs in this paper are different from the
proofs provided in our conference papers (Chatterjee and
Sarkar, 2005, 2006a). Also, Bellare and Ristenpart (2009)
work in the Type 2 setting where for the proof they require
an efficiently-computable isomorphism ψ from G2 to G1.
Since we work in the Type 3 setting, we do not require
any such isomorphism and so, our proofs are also different
from those in Bellare and Ristenpart (2009).

The security argument for the CCA-secure scheme
is new to this paper and is not present in our previous
conference paper (Sarkar and Chatterjee, 2007). This
proof requires to handle several subtleties arising from
the fact that the ciphertext wellformedness is checked
using symmetric key techniques. In a sense, this is similar
to Kurosawa and Desmedt’s (2004) hybrid PKE which
improves upon the decryption algorithm of Cramer and
Shoup’s (2003) PKE scheme.

1.2 Related work

The Waters’ (2005) IBE scheme is based on the
algebraic framework developed by Boneh and Boyen
(2004a, 2004b). This framework has later been called
the commutative blinding framework (Boyen, 2008a). In
the first paper, Boneh and Boyen (2004a) consider the
weaker selective-identity security model and develop the
proof technique to simulate the response to adversarial
key generation queries and to simulate the generation of
the challenge ciphertext. The second paper employs this
technique to construct a scheme which is secure under
adaptive key generation requests from the adversary. The
essence of both techniques is to use an appropriate function
to hash an identity into an EC point and then use this point
to blind the master secret key while generating decryption
keys. In a theoretical sense the problem of constructing IBE
schemes secure under adaptive attacks was already settled
in Boneh and Boyen (2004b). The disadvantage was that
the scheme was very inefficient which was essentially due
to the form of the function that was used to map identities
into an EC point.

The main contribution of Waters (2005) was to design
an efficient hash function so as to work with the
above mentioned algebraic framework. Since this brought
the resulting scheme into the domain of practicability
(except for the large size of the public parameters),
the work (Waters, 2005) became quite important in
stimulating further research works on associated primitives.
As mentioned earlier, it has been pointed out in Bellare
and Ristenpart (2009) that the hash function used by Waters
(2005) was previously used in a different context (Chaum
et al., 1987). We have already mentioned our development
of Waters’ scheme.

Independent of our work, Naccache (2007) has obtained
the same generalisation of Waters’ IBE scheme as described
in our conference paper (Chatterjee and Sarkar, 2005). His
work is also in the setting of symmetric pairings. The use
of Type 3 pairings, the HIBE schemes, the HIBS signature

schemes and the modifications to attain CCA-security are
not present in Naccache’s work.

In recent years, several important constructions of
(H)IBE schemes have appeared in the literature. These are
mentioned below and we justify why from a practical point
of view, the constructions and the analysis in the current
paper are of interest. We would like to point out that all the
schemes mentioned below are in the setting of symmetric
pairings. The only exceptions are the recent construction of
Waters (2009) where the possibility of using asymmetric
pairings is mentioned only in the passing and the work of
Kiltz and Vahlis (2008) where asymmetric setting is briefly
considered towards the end of the paper.

1 Gentry (2006) provided a simple and efficient IBE
which can be proved to be secure in the full model
without using the random oracle heuristic. But, the
assumption used in Gentry (2006) is the so-called
q-ABDHE, which is a significantly more complex
assumption in comparison to the much simpler DBDH
assumption used in this work. One aspect of this
complexity is the fact that the assumption depends on
q which is the number of private key queries made by
an adversary. In the literature, such assumptions are
called non-static assumptions.

2 Waters (2009) (note that this is different from Waters,
2005) introduces a new technique called dual-system
encryption and presents an IBE where the number of
public parameters is constant and does not depend on
the size of the security parameter κ. For values of κ
of practical interest (such as κ = 80 or 128), we show
that it is possible to obtain public parameter sizes
which are smaller or comparable to Waters (2009)
with an additional security degradation of only a few
bits. Efficiencies of the encryption, decryption and key
generation algorithms of the schemes proposed in this
work are significantly better than the corresponding
algorithms in Waters (2009) (see Table 2 later). Thus,
from a practical point of view, the IBE scheme
described here is overall more efficient than the
asymptotically better scheme in Waters (2009). The
same remark applies to other IBE constructions in the
dual-system paradigm (Lewko and Waters, 2011;
Ramanna et al., 2012; Lewko, 2012).

3 Kiltz and Galindo (2009) have described CCA-secure
HIBE schemes by modifying the basic (Waters, 2005)
HIBE. Compared to Kiltz and Galindo (2009), our
technique for attaining CCA-security leads to a more
efficient decryption algorithm. This is due to the use
of symmetric key techniques to perform ciphertext
validity checking.

4 In a work subsequent to the appearance of our
conference paper (Sarkar and Chatterjee, 2007), Kiltz
and Vahlis (2008) describe a CCA-secure IBE scheme
which uses symmetric key authentication technique
(similar to the techniques used in Sarkar and
Chatterjee, 2007) and is based on the hardness of the

Practical hybrid (hierarchical) identity-based encryption schemes 51

mBDDH assumption, which is a stronger assumption
than the DBDH assumption. They obtain better
encryption and decryption efficiency at a cost of
increase in the size of the private key and the key
generation time.

5 The HIBE scheme described here has a security
degradation which is exponential in the length of the
HIBE, a feature which is shared by several other
constructions. As a consequence, the scheme is
suitable only for small depths (around 2 or 3). Some
later constructions avoid the exponential security
degradation but have other trade-offs. We mention
these below.

a The first such HIBE scheme is given in Gentry
and Halevi (2009). This construction, however, is
quite complicated and uses a hardness assumption
which is significantly more complicated than the
assumption q-ABDHE used in Gentry (2006).

b Waters (2009), extends his IBE scheme to
propose a HIBE scheme. While, the construction
and the underlying assumptions are simpler than
those in Gentry and Halevi (2009), compared to
the schemes described here, they are still quite
inefficient.

c Building on the work in Waters (2009), Lewko
and Waters (2010) describe a HIBE scheme
which achieve constant size ciphertexts.
Previously HIBE schemes with this
property (Boneh et al., 2005a) had been obtained
only for a weaker security model. The downside
in Lewko and Waters (2010) is that the scheme is
described using pairings over composite order
groups. They require the group order to be the
product of three distinct primes and the
assumption that it is difficult to find any factor of
the group order. Since this is based on the
difficulty of factoring, the group order must be
significantly larger leading to a corresponding
loss in efficiency.

6 Starting with the work of Gentry et al. (2008), several
IBE schemes have been proposed which use lattices
as the underlying algebraic framework. Rapid
development of lattice based IBE schemes have to
some extent mirrored the development of
pairing-based IBE schemes. The basic hardness
assumption is that of the learing with errors (LWE)
problem. The one major drawback of lattice-based
cryptography in general and which is also true for
IBE schemes is that the sizes of public parameters
and keys are rather large. So, from a practical point of
view, lattice based IBE schemes are still not
comparable with pairing-based schemes.

To summarise, consider the practical issue of designing
a CCA-secure IBE scheme achieving 80-bit or 128-bit
security in the setting described above (based on the

DBDH assumption and without using the random oracle
heuristic). For this problem, the construction (and the
analysis) presented here provides the most efficient and
practical solution known till date. In the same setting,
this paper also describes the most efficient CCA-secure
small-depth HIBE schemes for practical security levels. The
(identity-based and hierarchical identity-based) signature
schemes described here are the most efficient currently
known schemes based on the co-CDH problem in the
standard model. On the other hand, the constructions
presented here might not be particularly suitable for HIBEs
of higher depth. Another obvious limitation is that the
number of group elements in the public parameter is
(sub)linear in the bit-length of the idenity elements (hence,
the security parameter). However, as demonstrated in the
paper, the latter is not a significant problem for practical
constructions.

2 Preliminaries

The running time of all algorithms in this paper is upper
bounded by a polynomial in a security parameter κ.
Formally, all algorithms take 1κ as input. We will be
assuming this formalism without explicitly mentioning it.

2.1 HIBE scheme

Following Horwitz and Lynn (2002) and Gentry and
Silverberg (2002), a HIBE scheme is specified by four
(probabilistic) algorithms (which are polynomial time in the
security parameter): Set-Up, KeyGen, Encrypt and Decrypt.
For a HIBE of height h (henceforth denoted as h-HIBE)
any identity v is a tuple (v1, . . . , vj) where 1 ≤ j ≤ h.

• HIBE.SetUp. Takes as input the security parameter
and outputs (pk, sk), where pk is the public
parameter of the PKG and sk is the master secret of
the PKG. It also defines the domains of identities,
messages and ciphertexts.

• HIBE.KeyGen(v, dv|j−1
, pk). Takes as input a j-level

identity v, the secret dv|j−1
corresponding to its

(j − 1)-level prefix and pk and returns as output dv,
the secret key corresponding to v. In case j = 1,
dv|j−1

is equal to sk, the master secret of the PKG.

• HIBE.Encrypt(v,M, pk). Takes as input v, the
message M and pk, and returns C, the ciphertext
obtained by encrypting M under v and pk.

• HIBE.Decrypt(v, dv, C, pk). Takes as input v, the
secret key dv corresponding to v, a ciphertext C and
pk. Returns either ⊥ or M , the message which is the
decryption of C.

As usual, for soundness, we require that
HIBE.Decrypt(v, dv, C, pk) =M must hold for all v, dv,
C, pk, sk and M associated by the above four algorithms.

52 S. Chatterjee and P. Sarkar

Note. In this paper, a valid ciphertext is one which can
be produced as an output of the encryption algorithm. A
ciphertext is invalid if it is not valid. The definition of the
decryption algorithm, in itself, does not include a definition
of invalid ciphertext and so, the decryption algorithm may
never reject any ciphertext. As an example, the decryption
algorithm in Kiltz and Galindo (2009) is of this type.
Our CCA-secure schemes, however, will reject any invalid
ciphertext.

Identity-based encryption. An IBE is a special case of a
HIBE where the number of levels h is equal to one.

2.2 Security model for HIBE

Security is defined using an adversarial game. An adversary
A is allowed to query two oracles – a decryption oracle and
a key-extraction oracle. The game has several stages.
Set-up. In this stage, the simulator sets up the scheme and
provides A with the public parameters.

Query Phase 1. Adversary A makes a finite number
of queries in an adaptive fashion, where each query
is addressed either to the decryption oracle or to the
key-extraction oracle. In a query to the decryption oracle,
it provides a ciphertext as well as the identity under which
it wants the decryption. It gets back the corresponding
message or bad if the ciphertext is invalid. Similarly, in a
query to the key-extraction oracle, it asks for the private
key of the identity it provides and gets back this private
key. Further, A is allowed to make these queries adaptively,
i.e., any query may depend on the previous queries as well
as their answers. The adversary is not allowed to make any
useless queries, i.e., queries for which it can compute the
answer itself. For example, the adversary is not allowed to
ask for the decryption of a message under an identity if
it has already obtained a private key corresponding to the
identity.

Challenge. At this stage, A outputs an identity
v∗ = (v∗1, . . . , v∗j) for 1 ≤ j ≤ h, and a pair of messagesM0

and M1. There is the natural restriction on the adversary,
that it cannot query the key extraction oracle on v∗ or any
of its proper prefixes in either of the query phases 1 or 2.
A random bit γ is chosen and the adversary is provided
with C∗ which is an encryption of Mγ under v∗.

Query Phase 2. A now issues additional queries just like
Phase 1, with the (obvious) restrictions that it cannot ask
the decryption oracle for the decryption of C∗ under v∗.

Guess. A outputs a guess γ′ of γ.

The advantage of the adversary A is defined as:
AdvHIBE

A = |Pr[(γ = γ′)]− 1/2|.
The quantity AdvHIBE(t, qID, qC) denotes the maximum

of AdvHIBE
A where the maximum is taken over all

adversaries running in time at most t and making at most
qC queries to the decryption oracle and at most qID queries

to the key-extraction oracle. A HIBE scheme is said to be
(ϵ, t, qID, qC)-CCA secure if AdvHIBE(t, qID, qC) ≤ ϵ.

In the above game, we can disallow the adversary A
from querying the decryption oracle. Then AdvHIBE(t, q)
denotes the maximum advantage where the maximum is
taken over all adversaries running in time at most t and
making at most q queries to the key-extraction oracle.
A HIBE scheme is said to be (t, q, ϵ)-CPA secure if
AdvHIBE(t, q) ≤ ϵ.

Shi and Waters (2008) consider the situation where the
distribution of the keys depend on the actual delegation
path. We have not included this in the above security model
since in our constructions the decryption keys are always
uniformly distributed.

Security model for IBE. The security model for IBE is
derived from the security model for HIBE by simply
allowing only one level in the hierarchy.

2.3 Cryptographic bilinear map

Let G1,G2 and GT be cyclic groups having the same
prime order p where we write G1,G2 additively and GT

multiplicatively. A mapping e : G1 ×G2 → GT is called
a cryptographic bilinear map if it satisfies the following
properties.

• Bilinearity. e(aQ, bR) = e(Q,R)ab = e(bQ, aR) for
all Q ∈ G1, R ∈ G2 and a, b ∈ Zp.

• Non-degeneracy. If e(Q,R) is the identity of GT ,
then either Q is the identity of G1 or R is the identity
of G2.

• Computability. There exists an efficient algorithm to
compute e(Q,R) for all Q ∈ G1 and R ∈ G2.

Known examples of bilinear maps have G1 and G2 to be
subgroups of points on an elliptic curve and GT to be
a subgroup of the multiplicative group of a finite field.
Hence, in papers on implementation of bilinear pairings,
it is customary to write G1 and G2 additively and GT

multiplicatively. We follow this convention as it is closer to
the known examples.

If G2 = G1, the pairing is called symmetric since it
satisfies the property e(aP, bP) = e(P, P)ab = e(bP, aP).
Following Galbraith et al. (2008) we call this the Type 1
setting. Most of the pairing-based protocols are usually
described in this setting because of its relative simplicity.
For example, the initial proposal due to Waters (2005) or
its latter variants (Chatterjee and Sarkar, 2005, 2006a) are
given in terms of symmetric pairings. It is known, however,
that to achieve the same security level the Type 1 setting
requires working over larger size fields than those required
for the asymmetric settings. For practical implementations
this leads to a significant increase in the sizes of the various
quantities such as the public parameters and the ciphertexts.
Further, this difference in sizes cascades into a difference
in the performance of the associated algorithms including
encryption and decryption. Also the Type 1 pairings are

Practical hybrid (hierarchical) identity-based encryption schemes 53

quite restricted in terms of the choice of curves. Hence, it is
deemed desireable that the practical pairing-based schemes
should be implemented using asymmetric pairing whenever
feasible.

In the asymmetric setting, if an efficiently-computable
isomorphism ψ : G2 → G1 is known then it is called
the Type 2 setting (Galbraith et al., 2008). If no such
isomorphism is known then the pairing setting is called the
Type 3 setting. Current research (Galbraith et al., 2008)
suggests that Type 3 is overall a better choice than Type 2
in terms of size of elements of G2, the cost of scalar
multiplication in G2, the cost of pairing computation, etc.
In this work we use Type 3 setting to describe the protocols
and their security arguments. As a result, the schemes
can be implemented using fast pairings such as the ate
pairing (Hess et al., 2006), the R-ate pairing (Lee et al.,
2009) or the optimal ate pairing (Vercauteren, 2010).

The asymmetric setting allows the possibility of having
a smaller representation of the elements of G1 than that
of G2. The relative size depends on the choice of the
curve [see Freeman et al. (2010) for the available options
of pairing friendly curves]. For an IBE (or signature)
scheme, the relative size of the elements of G1 and G2

leads to several trade-off questions: which of the four
quantities (public parameters, master secret key, decryption
key, ciphertext) consist of elements of G1? Clearly, the
best situation would be if we could make all of these to
be elements of G1, but that is not possible. The different
possibilities of the trade-off give rise to different variants of
the basic scheme as we will see later.

2.4 Hardness assumptions

Let G1 = ⟨P1⟩, G2 = ⟨P2⟩, GT = ⟨e(P1, P2)⟩. Note that in
the Type 3 setting no efficiently-computable isomorphism
from G2 to G1 is known. We define the decisional bilinear
Diffie-Hellman (DBDH) problem in (p,G1,G2,GT , e).
Given a tuple (aP1, aP2, bP1, cP1, cP2, Z), where a, b, c
are independent and uniform random elements of Zp;
and Z ∈ GT ; distinguish between the distribution where
Z = e(P1, P2)

abc (which we denote as Z is real) and the
distribution where Z is an independent and uniform random
element of GT (which we denote as Z is random). The
advantage of a probabilistic algorithm B, which takes as
input a tuple (aP1, aP2, bP1, cP1, cP2, Z) and outputs a bit,
in solving the DBDH problem is defined as

AdvDBDHB = |Pr[B(aP1, aP2, bP1, cP1, cP2, Z)

= 1|Z is real]
−Pr[B(aP1, aP2, bP1, cP1, cP2, Z) (1)

= 1| Z is random]|

where the probability is calculated over the random choices
of a, b, c ∈ Zp as well as the random bits used by B. The
quantity AdvDBDH(t) denotes the maximum of AdvDBDHB
where the maximum is taken over all adversaries B running
in time at most t. By the (ϵ, t)-DBDH assumption we mean
AdvDBDH(t) ≤ ϵ.

Several versions of the (D)BDH problem in the
asymmetric setting are available in the literature (Smart and
Vercauteren, 2007; Boyen, 2008b; Chatterjee and Menezes,
2011). The version we use here is termed as DBDH-3
in Chatterjee and Menezes (2011) where it has been shown
that DBDH-3 is equivalent to DBDH-2, which is the
corresponding problem defined in the Type 2 settings. We
also note that the version of the DBDH in Type 2 used in
the analysis of Waters protocol in Bellare and Ristenpart
(2009) also provides bP2 as part of the problem instance.
This element is dropped from the problem instance of
DBDH-3 (as defined above) making it a potentially weaker
assumption.

A weaker variant of the DBDH assumption is the
following: given (aP2, bP1, bP2, cP1, Z) determine whether
Z = e(P1, P2)

abc or Z is random. Note that the quantities
cP2 and aP1 are not provided as part of the input instance.
This is a sort of minimalist assumption in the setting
of asymmetric pairing and has been called DBDH-3b
in Chatterjee and Menezes (2011). Later, we point out that
for some of the schemes that we describe, it is sufficient to
assume the hardness of the DBDH-3b problem.

The co-CDH problem in (p,G1,G2,GT , e)
is as follows: given a random Q ∈ G1 and
(zP1, zP2) ∈ G1 ×G2 for a uniform random z ∈ Zp,
the requirement is to compute zQ [this version of the
co-CDH problem in the Type 3 setting has been shown
to be equivalent to the co-CDH problem in the Type 2
setting (Chatterjee et al., 2010)]. An algorithm is said
to be successful if it can find zQ. The advantage of an
algorithm in solving the co-CDH problem is defined to
be the probability of its success. The co-CDH problem is
said to be (t, ϵ)-hard if the maximum advantage of any
adversary running in time t in solving the co-CDH problem
is at most ϵ. In the setting of symmetric pairings, i.e., if
G1 = G2, then the co-CDH problem is exactly the CDH
problem in G1.

2.5 Components AE, KDF and UOWHF

We briefly introduce and state the security notions for AE,
KDF and UOWHF. These will be required to construct the
CCA-secure HIBE scheme.

An AE scheme consists of two deterministic
algorithms – Encrypt and Decrypt. Both of these use a
common secret key k. The Encryptk algorithm takes as
input a nonce IV and a message M and returns (C, tag),
where C is (usually) of the same length as M . The
Decryptk algorithm takes as input a nonce IV and a pair
(C, tag) and returns either the message M or ⊥ (indicating
invalid ciphertext).

An AE algorithm possesses two security
properties – privacy and authenticity. For privacy, the
adversarial game is the following. The adversary A is
given access to an oracle which is either the encryption
oracle instantiated with a random key k or is an oracle
which simply returns random strings of length equal to
its input. After interacting with the oracle the adversary

54 S. Chatterjee and P. Sarkar

ultimately outputs a bit. The advantage of A is defined
to be |Pr[A = 1|real oracle]− Pr[A = 1|random oracle]|.
In the above game, the adversary is assumed to be
nonce-respecting, i.e., it does not repeat a nonce.

The security notion defined above provides the privacy
of an AE scheme. In particular, it implies the following
notion of one-time security. The adversary submits two
equal length messages M0 and M1. A random (IV∗, k∗)
pair is chosen and a random bit γ is chosen. The
adversary is given (C∗, tag∗) which is the encryption of
Mγ using IV∗ and k∗. The adversary then outputs γ′ and its
advantage is |Pr[γ = γ′]− 1/2| .We say that an AE scheme
satisfies (ϵ, t) one-time encryption security if the maximum
advantage of any adversary running in time t in the above
game is ϵ.

The authenticity property of an AE scheme is defined
through the following game. A nonce respecting adversary
A is given access to an encryption oracle instantiated by a
secret key k. It submits messages to the oracle and receives
as output ciphertext-tag pairs. Finally, it outputs a ‘new’
ciphertext-tag pair and a nonce, which can be equal to a
previous nonce. The advantage of A in this game is the
probability that the forgery is valid, i.e., it will be accepted
as a valid ciphertext. By an (ϵ, t)-secure authentication of
an AE scheme we mean that the maximum advantage of
any adversary running in time t in the above game is ϵ.

A KDF is a function KDF() which takes an input
K and produces as output a string Y . The security
notion for KDF is the following. For a randomly
chosen K, the adversary has to distinguish between
KDF(K) and a uniform random Y . The advantage of
an adversary attacking the KDF property is defined as
|Pr[A(KDF(K)) = 1]− Pr[A(Y) = 1]|. By an (ϵ, t)-KDF
we mean that the advantage of any adversary running in
time at most t is upper bounded by ϵ.

A function family {Hk}k∈K is said to be a universal
one-way hash family if the following adversarial task is
difficult. The adversary outputs an x; is then given a
randomly chosen k ∈ K and has to find x′ ̸= x such that
Hk(x) = Hk(x

′). We say that the family is (ϵ, t)-UOWHF
if the maximum advantage (probability) of an adversary
running in time t and winning the above game is ϵ.

2.6 Notation to denote time and space requirements

We mention the notation that will be used to denote the
times of different operations. Different notation is employed
to separate the use of symmetric pairing setting from that
of asymmetric pairing setting.

2.6.1 Asymmetric pairing setting

Recall that in this case e : G1 ×G2 → GT .

Time requirements.

[SM1] : cost of one scalar multiplication in G1

[SM2] : cost of one scalar multiplication in G2

[Pj] : cost of computing a product of j pairings of the
form e(R1, Q1)× e(R2, Q2)× · · · × e(Rj , Qj)

[E] : cost of one exponentiation in GT[
H(1)

n,l

]
: cost of hashing an identity into an element of G1

[see equation (2)][
H(2)

n,l

]
: cost of hashing an identity into an element of G2

[see equation (3)].

Note that e(Q1, R1)/e(Q2, R2) = e(Q1, R1)× e(Q2,−R2)
whose cost is [P2]. Similarly the cost of ratio of product of
pairings of more terms will be denoted by an appropriate
[Pj]. The rationale behind this notation is that it may be
more efficient to compute the product of pairings together
than to separately compute the pairings and then multiply
them.

The cost of computing V (1)
k (v) (denoted by

[
H(1)

n,l

]
) is

given by l scalar multiplications in G1, but, the size of
each scalar is small (only n/l bits as compared to the lg p
bits for a full scalar multiplication). So, one may consider
1
[
H(1)

n,l

]
to be approximately equal to 1[SM1]. We, however,

separately account for this cost. Similar considerations hold
for
[
H(2)

n,l

]
.

Space requirements. The sizes of the public parameters;
master secret key; a decryption key corresponding to an
identity; and a ciphertext will be denoted by a tuple
(i1, i2, i3, i4) which denotes that i1 elements of G1, i2
elements of G2, i3 elements of GT and i4 elements of Zp

are required.

2.6.2 Symmetric pairing setting

Recall that in this case e : G×G → GT .

Time requirements.

[SM] : cost of one scalar multiplication in G
[SPj] : cost of computing a product of j pairings of the

form e(R1, Q1)× e(R2, Q2)× · · · × e(Rj , Qj)
[SE] : cost of one exponentiation in GT

[Hn,l] : cost of hashing an identity into an element of G
[see equation (2) with G = G1)].

Space requirements. The sizes of the public parameters;
master secret key; a decryption key corresponding to an
identity; and a ciphertext will be denoted by a tuple
((i1, i2, i3)) which denotes that i1 elements of G, i2
elements of GT and i3 elements of Zp are required.

3 CPA-secure HIBE construction

In the asymmetric pairing setting, it is possible to obtain
different versions of the same protocol that was originally
proposed in the symmetric setting. Here we provide two
variants of the HIBE scheme in the Type 3 setting each of

Practical hybrid (hierarchical) identity-based encryption schemes 55

which allows different optimisation strategies. The first one
may be considered to be the basic HIBE scheme whereas
the second one is a variant which is advantageous in certain
situations, particularly when restricted to IBE.

3.1 HIBE-1

The identities are of the type (v1, . . . , vj), for
j ∈ {1, . . . , h} where each vk = (vk,1, . . . , vk,l) and vk,i
is an (n/l)-bit string which will also be considered to be
an integer in the set {0, . . . , 2n/l − 1}, where l divides n.
Choosing l = n gives vk to be an n-bit string as originally
considered by Waters (2005).

Set-up. The scheme is built from a Type-3 bilinear
setting (p,G1 = ⟨R1⟩,G2 = ⟨P2⟩,GT , e) as mentioned in
Section 2.3.

The public parameters are the following elements: P2,
e(R1, Q2), U ′

1, . . . , U
′
h, U1, . . . , Ul, where Q2 = αP2 for

some α chosen uniformly at random from Zp and U ′
i and

Ujs are chosen independently and uniformly at random
from G1. The master secret is αR1 ∈ G1.

Hashing an identity into an element of G1. Let
v = (v1, . . . , vl), where each vi is an (n/l)-bit string and
is considered to be an element of Z2n/l . For 1 ≤ k ≤ h we
define,

V
(1)
k (v) = U ′

k +
l∑

i=1

viUi. (2)

The (1) in the superscript refers to the fact that the
hashing is done into an element of G1. The quantities
U ′
k, U1, . . . , Ul are elements of G1 and are implicit in

the notation V
(1)
k (v). When v and G1 are clear from the

context we will write Vk instead of V (1)
k (v). The modularity

introduced by this notation allows an easier understanding
of the scheme. For l = n, this form of hashing was used by
Waters (2005) (and had appeared earlier in Chaum et al.,
1987).

Note that for the jth level of the HIBE, we add a single
element, i.e., U ′

j in the public parameter while the elements
U1, . . . , Ul are re-used for each level. This way we are able
to shorten the public parameter size.

Key generation. The first level private key is always
generated by the PKG using the master secret. For
example, the private key corresponding to v1 will be
d0 = αR1 + r1V

(1)
1 ∈ G1 and d1 = r1P2 ∈ G2 where r1

is chosen randomly from Z∗
p and V1 = U ′

1 +
∑l

j=1 v1,jUj .
Key delegation can be done in the manner shown

in Boneh and Boyen (2004a). Let v = (v1, . . . , vj), j ≤ h,
be the identity for which the private key is required.
Suppose (d′0, d

′
1, . . . , d

′
j−1) is a private key for the identity

(v1, . . . , vj−1). To generate a private key for v, choose rj
uniformly at random from Zp and compute:

d0 = d′0 + rjV
(1)
j (vj);

di = d′i for 1 ≤ i ≤ j − 1; dj = rjP2.

Then dv = (d0, d1, . . . , dj) is a private key for v. This
means that we can write

d0 = αR1 +

j∑
k=1

rkV
(1)
k (vk) and dk = rkP2 for 1 ≤ k ≤ j

where r1, . . . , rj are uniform random elements of Zp. Note
that the private key corresponding to the jth level identity
consists of one element from G1 and j elements from G2.

Encryption. Let v = (v1, . . . , vj) be the identity under
which a message M ∈ GT is to be encrypted. Return(

C0 =M × e(R1, Q2)
t, C1 = tP2,

B1 = tV
(1)
1 (v1), . . . , Bj = tV

(1)
j (vj)

)
where t is a uniform random element of Zp.

Decryption. Let C = (C0, C1, B1, . . . , Bj) be a ciphertext
and (d0, d1, . . . , dj) be a decryption key for an identity
v = (v1, . . . , vj). Return

C0 ×

(
j∏

k=1

e(Bk, dk)

e(d0, C1)

)
.

If the ciphertext is proper, then the correctness of the
decryption follows from a simple calculation using the
bilinear property of e.

C0 ×
∏j

k=1 e(Bk, dk)

e(d0, C1)

=M × e(R1, Q2)
t ×

∏j
k=1 e(Bk, dk)

e(d0, C1)

=M × e(R1, Q2)
t ×

∏j
k=1 e

(
tV

(1)
k (vk), rkP2

)
e
(
αR1 +

∑j
k=1 rkV

(1)
k (vk), tP2

)
=M × e(R1, Q2)

t ×

∏j
k=1 e

(
tV

(1)
k (vk), rkP2

)
e
(
αR1 +

∑j
k=1 rkV

(1)
k (vk), tP2

)
=M × e(R1, Q2)

t

×

∏j
k=1 e

(
tV

(1)
k (vk), rkP2

)
e(R1, Q2)t × e

(∑j
k=1 rkV

(1)
k (vk), tP2

)
=M × e(R1, Q2)

t

×

∏j
k=1 e

(
tV

(1)
k (vk), rkP2

)
e(R1, Q2)t ×

∏j
k=1 e(tV

(1)
k (vk), rkP2)

=M.

Note. If h = 1, then we obtain an IBE scheme and further,
if n = l, then we obtain Waters’ IBE scheme (in the setting
of Type 3 pairing).

56 S. Chatterjee and P. Sarkar

3.2 HIBE-2

Set-up. The structure of the identities and the setting
of Type-3 pairing is the same as that for HIBE-1. The
definition of the public parameters and the master secret
key is different. Let G1 = ⟨P1⟩ and G2 = ⟨P2⟩. Choose
a random element α from Zp and define R1 = αP1.
Choose random elements x1, . . . , xh and y1, . . . , yl from
Zp. Choose a random element Q2 from G2. The public
parameters consist of the following elements.

P1, U
′
1 = x1P1, . . . , U

′
h = xhP1,

U1 = y1P1, . . . , Ul = ylP1,
Q2,W

′
1 = x1P2, . . . ,W

′
h = xhP2,

W1 = y1P2, . . . ,Wl = ylP2

e(R1, Q2) ∈ GT .

The first and the second rows consist of h+ l + 1 elements
of G1 and G2 respectively. The master secret key is
αQ2 ∈ G2.

In the description below, the elements (U ′
i , Uj) will

be required for encryption while the elements (W ′
i ,Wj)

will be required for key delegation. The private key will
consists of elements of G2 while the ciphertext will consist
of elements of G1 and GT .

There are now two kinds of hashes for an n-bit string
v which is divided into l strings each of which is n/l bits
long. The first kind V (1)

k is defined from U ′
k, U1, . . . , Ul as

in equation (2). The other hash is defined as follows. The
superscript (2) refers to the fact that hashing is done into
G2 and W ′

k,W1, . . . ,Wl are implicit in the definition.

V
(2)
k (v) =W ′

k +

l∑
i=1

viWi. (3)

Key generation. Let v = (v1, . . . , vj), j ≤ h be the identity
for which the private key is required. Key generation and
delegation is done as in the HIBE-1. Only difference is
that the hash V

(2)
k of the component vk is used instead

of the V (1)
k . The private key corresponding to v is a tuple

(d0, d1, . . . , dj), where d0 = αQ2 +
∑j

k=1 rkV
(2)
k (vk) and

dk = rkP2.

Encryption. Suppose that a message M ∈ GT is to be
encrypted under an identity v = (v1, . . . , vj). A random
element t of Zp is chosen and the ciphertext is defined to
be

(
C0 =M × e(R1, Q2)

t,

C1 = tP1, B1 = tV
(1)
1 , . . . , Bj = tV

(1)
j

)
.

Note that other than C0 all other components are elements
of G1. This allows a reduction in the ciphertext overhead
in comparison to HIBE-1 where C1 is an element of G2.

Decryption. Given a ciphertext (C0, C1, B1, . . . , Bj)
encrypted under an identity v = (v1, . . . , vj) and a
decryption key dv for v, decryption is performed as follows.

C0 ×
∏j

k=1 e(Bk, dk)

e(C1, d0)
.

The correctness of the decryption is seen as follows. First
note that from the definition of the U ’s and the W ’s the
discrete log of V (1)

k to base P1 is equal to the discrete log
of V (2)

k to base P2. So we can write V
(1)
k = wkP1 and

V
(2)
k = wkP2.

C0 ×
∏j

k=1 e(Bk, dk)

e(C1, d0)

=M × e(R1, Q2)
t ×

∏j
k=1 e(Bk, dk)

e
(
tP1, αQ2 +

∑k
j=1 rkV

(2)
k

)
=M × e(R1, Q2)

t

×
∏j

k=1 e(Bk, dk)

e(R1, Q2)t ×
∏k

j=1 e
(
tP1, rkV

(2)
k

)
=M ×

∏j
k=1 e(Bk, dk)∏k

j=1 e (tP1, rkwkP2)

=M ×
∏j

k=1 e(Bk, dk)∏k
j=1 e (twkP1, rkP2)

=M ×
∏j

k=1 e(Bk, dk)∏k
j=1 e

(
tV

(1)
k , dk

)
=M.

Note. The case h = 1 corresponds to an IBE and is of
particular interest as a special optimisation is possible in
this case. Recall that the W ′

i ,Wj ∈ G2 are used in the
protocol for the purpose of key delegation only. In an IBE,
only the PKG generates the private key and there are no
lower level entities which need to have this capability. In
this case, the PKG does not need to actually generate the
W s. Instead, the PKG keeps the quantities x1, y1, . . . , yl
as part of the master secret key. The component d0 of the
secret key in the case of IBE equals αQ2 + r1V

(2)
1 . Using

the W s this computation has cost 1[SM2]+1
[
H(2)

n,l

]
. If

instead the values x1, y1, . . . , yl are used, then the quantity
r1V

(2)
1 can be directly computed as r1(x1 +

∑l
i=1 viyi)P2

and so the entire computation has cost 1[SM2]. This saves
the computation of one

[
H(2)

n,l

]
.3 In other words, in the

case of IBE it is possible to reduce the ciphertext overhead
from an element of G2 to an element of G1 without any
associated increase in the public parameter size.

3.3 Security statement and discussion

In this section, we state the result on security and discuss
its implications. Two theorems are stated whose proofs are

Practical hybrid (hierarchical) identity-based encryption schemes 57

given in Section 4. The first theorem follows Waters (2005)
style analysis while the second theorem follows Bellare
and Ristenpart (2009) analysis. Note, however, that both
Waters (2005) and Bellare and Ristenpart (2009) analyse
IBE, whereas, the results below are for HIBE.

Theorem 1. The HIBE schemes described in Section 3.1 and
Section 3.2 are (ϵhibe, t, q)-CPA secure assuming that the
(ϵdbdh, t

′)-DBDH assumption holds in (p,G1,G2,GT , e),
with

ϵhibe ≤ 2(m(µl + 1))hϵdbdh;

t′ = t+ tsim where tsim is the simulation time
which consists of the time to generate q private
keys and one challenge ciphertext plus a time of
O(ϵ−2

hibe ln(ϵ
−1
hibe)λ

−1 ln(λ−1)); λ = 1/(2(m(µl + 1))h);
µl = l(2n/l − 1) and m = max(2q, 2n/l). We further
assume m(1 + µl) < p.

Theorem 2. The HIBE schemes described in Section 3.1 and
Section 3.2 are (ϵhibe, t, q)-CPA secure assuming that the
(ϵdbdh, t

′)-DBDH assumption holds in (p,G1,G2,GT , e),
with

ϵhibe ≤ 2(m(µl + 1))hϵdbdh;

t′ ≤ t+ tsim and tsim is the simulation time, i.e., the
time to generate q private keys and one ciphertext;
µl = l(2n/l − 1), and m = max(2q/ϵhibe, 2n/l). We further
assume m(1 + µl) < p.

For h = 1, the above theorems state the results for the IBE
scheme and we write the corresponding advantage as ϵibe
(instead of ϵhibe).

The assumption m(1 + µl) < p in the above statements
is practical and similar assumptions are also made in Waters
(2005); Naccache (2007), though not quite so explicitly.
There are two main differences in the two statements. The
first difference is in the nature of the bound on ϵhibe and
this arises from the different expressions for m in the two
statements. The second difference is in the nature of the
simulation time tsim. The bound is better in the first result
while the simulation time is smaller in the second result.

Let δ = δ(n, l, h, q)
∆
= 2(m(µl + 1))h. The main point

of the above theorems is the bound on ϵhibe. This is stated
to be upper bounded by δϵdbdh. Ideally, one would like
the upper bound to be just ϵdbdh, since this tightly bounds
the adversary’s advantage in attacking the HIBE scheme
by the advantage in solving the DBDH problem. Viewed
in this way, the factor δ indicates the degradation in the
bound on adversary’s advantage that is promised by the
two theorems. Below we simplify the expression for the
degradation factor δ.

Since l ≥ 1, we have 1 + µl = 1 + l(2n/l − 1) ≤ l2n/l.
Consequently,

δ(n, l, h, q) = 2(m(µl + 1))h ≤ 2(ml2n/l)h.

The degradation is exponential in h and hence the result
is meaningful only for small values of h such as 2 or 3.

Degradation is determined by the actual value of m which
is different for the two theorems.

In Theorem 1, m = max(2q, 2n/l). Typically, one would
choose the parameters n and l such that m = 2q and then
the bound obtained from Theorem 1 is as follows.

ϵhibe ≤ 2(2ql2n/l)hϵdbdh. (4)

In Theorem 2, m = max(2q/ϵhibe, 2n/l). For all practical
choices of n and l we will have m = 2q/ϵhibe.

ϵhibe ≤ 2(m(µl + 1))hϵdbdh

= 2

(
2q

ϵhibe
(µl + 1)

)h

ϵdbdh ≤ 2

(
2q

ϵhibe
l2n/l

)h

ϵdbdh.

This can be re-written as

ϵh+1
hibe ≤ 2(2ql2n/l)hϵdbdh. (5)

The quantity q denotes the number of key extraction queries
made by the adversary. In the real world, this represents
the number of entities who collude to attack the system.
A value of q around 230 is more than adequate protection
against possible collusion sizes and has been earlier used
in Galindo (2004). Here we take q to be 231 so that 2q =
232. With this value of q, we suggest that the parameters
n and l are chosen so that 2n/l ≤ 232, so that m equals
2q. Then the expression for δ becomes 2(4lq2n/l)h. Putting
h = 1 gives an IBE and setting n = l as in Waters’ scheme
in (5), we obtain ϵ2ibe ≤ 8nqϵdbdh. Bellare and Ristenpart
(2009) obtained essentially the same bound. This bound
should be contrasted with the bound ϵibe ≤ 16nqϵdbdh
obtained from Theorem 1. As mentioned in Bellare and
Ristenpart (2009), the later bound is generally better and
the bound in Bellare and Ristenpart (2009) improves upon
the later bound in certain specific cases.

If h ≥ 2, the bound obtained from Theorem 2 becomes
much less attractive compared to the bound obtained from
Theorem 1. In view of this, below we analyse in details
only the bound in Theorem 1.

IBE. The special case of h = 1 leads to the security
statement for an IBE. In this case,

δ(n, l, 1, q) = 8lq2n/l. (6)

Further, if we choose l = n (which gives us Waters’
scheme), then δ(n, n, 1, q) = 16nq. This is the least
degradation that is obtained from Theorem 1. The trade-off
is that in this case the size of the public parameter is quite
large. By choosing suitable values of l < n, it is possible to
reduce the size of the public parameters with a consequent
increase in the value of the degradation. Below we discuss
this in more details.

The effect of security degradation has been
studied (Galindo, 2004; Bellare and Ristenpart, 2009) using
the so-called work factor which is the time by advantage
ratio. In our setting, for the IBE, we define WFIBE = t/ϵibe
and for DBDH, define WFDBDH = t′/ϵdbdh. The bound

58 S. Chatterjee and P. Sarkar

in Theorem 1 says that ϵibe ≤ δϵdbdh. In the following
analysis, we assume that this relation holds with equality.

WFDBDH =
t′

ϵdbdh
=
δ(n, l, 1, q)(t+ tsim)

ϵibe

≥ δ(n, l, 1, q)max(t, tsim)

ϵibe
≥ δ(n, l, 1, q)WFIBE.

The security parameter κ for the IBE scheme is defined to
be κ = lg(t/ϵibe) where lg is the logarithm to base two. So,

lgWFDBDH ≥ κ+ lg δ(n, l, 1, q). (7)

In the scheme, identities are n bits long, but, in actual
practice, identities are arbitrary length strings and will be
hashed into n-bit strings using a collision-resistant hash
function. For κ-bit security of such hash function, we
require n = 2κ (or more).

Suppose we fix a value of κ. Then as l decreases from
n to 1, the value of lgWFDBDH increases. In other words,
if l = n, then we obtain the minimum work factor for the
DBDH problem and as l decreases, the value of this work
factor also increases. The DBDH work factor quantifies the
difficulty of solving the DBDH problem and so it is of
interest to measure the amount by which the DBDH work
factor increases as l decreases. This is clearly quantified by
ζ(n, l)

∆
= lg δ(n, l, 1, q)− lg δ(n, n, 1, q). Using the value of

δ(n, l, 1, q) from (6), we have

ζ(n, l) =
n

l
− lg

n

l
− 1. (8)

As an example, if the ratio n/l = 16, then ζ(n, l) = 11,
i.e., the logarithm of the DBDH work factor is larger by 11
bits compared to the case l = n. In Table 1, we compare
the sizes of the public parameters and degradations for
κ = 80 and 128. These two values of the security parameter
are of the most practical interest. In this table, the values
of ζ(n, l) = 0 correspond to Waters’ scheme. We see that
for κ = 80, the number of elements of G1 required in
the public parameters can be reduced from 161 in Waters’
scheme to 21, 11 and 6 respectively with associated increase
in DBDH work factor of 4, 11 and 26 bits. Similarly, for
κ = 128, the number of G1 elements can be reduced from
257 in Waters’ scheme to 33, 17 and 9 respectively with a
similar associated increase in DBDH work factor. In both
cases, the decrease in the size of public parameters is quite
substantial and leads to practical schemes.

The effect of increase in DBDH work factor can be
offset by working in larger size groups. Heuristics estimates
of such sizes can be obtained from analysis of cryptographic
key sizes in Lenstra and Verheul (2001). In our conference
paper (Chatterjee and Sarkar, 2005) we have provided such
estimates. However, these estimates require working with
the asymptotic expression for the runtime of the number
field sieve algorithm for finding discrete logarithms over
a finite field. They can hardly be considered to be exact
and in particular, it is not clear whether these expressions

can accurately capture small differences in the work factors.
So, one may quite reasonably choose to ignore the small
increases in the DBDH work factors of 4 or 11 bits. On the
other hand, an increase of 26 bits may not be considered to
be small and may require an increase in the group sizes.

Table 1 Comparison of the size of public parameters and security
degradation

κ n l PP ζ(n, l) κ n l PP ζ(n, l)

80 160 160 (161,1,1) 0 128 256 256 (257,1,1) 0
80 160 20 (21,1,1) 4 128 256 32 (33,1,1) 4
80 160 10 (11,1,1) 11 128 256 16 (17,1,1) 11
80 160 5 (6,1,1) 26 128 256 8 (9,1,1) 26

Waters (2009) describes an IBE scheme where the size
of the public parameters is constant and does not depend
on the security parameter. The security of this scheme is
based on the hardnesses of both the decision linear (DLIN)
problem and the DBDH problem. Security degradation is
not clearly stated in Waters (2009), but, on going through
the proofs, a degradation by a factor of q on the advantage
of DLIN is seen. A summary of the time and space
requirement of this scheme is given in Table 2 along with
a comparison to the IBE scheme that is obtained from
HIBE-1 of Section 3.1.

For practical situations, choosing a small value for l
(for example, for 80-bit security one may choose l = 5, 10
or 20 and for 128-bit security, one may choose l = 8, 16
or 32) the size of the public parameters in the scheme
described here is smaller or comparable to the size of the
public parameters in Waters (2009). In every other aspect,
the scheme described here is better than that of Waters
(2009).

The description of the IBE scheme in Waters (2009) is
given in terms of symmetric pairing and it is mentioned in
the passing that use of asymmetric pairings will reduce the
number of public parameters by three. This will also reduce
the time for encryption, decryption and key generation.
However, even such a reduced variation will still be quite
inefficient compared to the schemes given here. Decryption,
for example, will require six pairings which will be
significantly slower than the single computation of the ratio
of two pairings required for decryption in the IBE versions
of HIBE-1 or HIBE-2 (see Table 2).

HIBE. In the scheme in Section 3.1, if we have h > 1,
then we obtain a proper HIBE scheme. As mentioned
earlier, the bound in Theorem 1 degrades exponentially
with h and hence the scheme described here is only
useful for HIBE schemes of small depths (either 2 or 3).
Gentry and Halevi (2009) and later Waters (2009) described
HIBE schemes which avoid this exponential security
loss. The scheme in Gentry and Halevi (2009) is very
complicated and is also based on a very complicated
security assumption. In contrast, the scheme in Waters
(2009) is simpler and based on DLIN and DBDH
assumptions. Though it is not explicitly mentioned, the
proofs show a degradation by a factor of q on the DLIN

Practical hybrid (hierarchical) identity-based encryption schemes 59

advantage and this is independent of the depth of the HIBE.
If the depth of the HIBE scheme is required to be long,
then clearly the scheme in Waters (2009) is better than the
scheme described here.

On the other hand, if one is interested in small
depth HIBE schemes, then the present construction offers
significant efficiency improvements over the scheme
in Waters (2009). Table 3 provides a comparative study of
the different parameters of the two schemes. As in the case
of IBE, for practical situations of 80-bit or 128-bit security
levels, one may choose a suitable value of l (l = 5, 10 or 20
for 80-bit security and l = 8, 16 or 32 for 128-bit security)
and then the size of the public parameters of the present
scheme is comparable to that of Waters (2009). In all other
aspects, the present scheme is better than that in Waters
(2009).

Waters (2005) had suggested a construction of a HIBE
scheme obtained by extending his IBE scheme. The
number of public parameters for this scheme is (n+ 1)h.
In contrast, by setting l = n we obtain n+ h public
parameters without any additional security degradation
compared to Waters (2005) scheme.

4 Proofs of Theorems 1 and 2

We provide the proof for HIBE-1 – essentially the same
technique applies for HIBE-2. Our goal is to show that
HIBE-1 is (ϵhibe, t, q)-CPA secure. In the game sequence
style of proofs, we start with the adversarial game defining
the CPA-security of the scheme against an adversary A and
then obtain a sequence of games as usual. In each of the
games, the simulator chooses a bit γ and the adversary
makes a guess γ′. By Xi we will denote the event that the
bit γ is equal to the bit γ′ in the ith game.

The basic structure of the games in both the proofs
of Theorems 1 and 2 are similar. Analysis of the games
are different for the two proofs. The proof of Theorem 1
requires an additional ‘artificial abort’ step. As a result,
the probability analysis of the two proofs are different.
In our descriptions of the two proofs, we first describe
the common structure of the games that are used in both
the proofs. After doing this, we separately present the two
different probability analyses.

4.1 Structure of the games

Game 0. This is the usual adversarial game used in
defining CPA-secure HIBE. We assume that the adversary’s
runtime is t and it makes q key extraction queries. Also,
we assume that the adversary maximizes the advantage
among all adversaries with similar resources. Thus, we have
ϵhibe =

∣∣Pr[X0]− 1
2

∣∣ .
Game 1. Suppose P1 (resp. P2) is the fixed generator of
G1 (resp. G2). Consider a tuple of the form:
(aP1, aP2, bP1, cP1, cP2, e(P1, P2)

abc) where a, b and c are
chosen uniformly and independently at random from Zp.

The simulator is assumed to know the values a, b and c.
But, the simulator can setup the scheme as well as answer
certain private key queries without the knowledge of these
values. Also, for certain challenge identities it can generate
the challenge ciphertext without the knowledge of a, b and
c. In the following, we show how this can be done. If the
simulator cannot answer a key extraction query or generate
a challenge without using the knowledge of a, b and c, it
sets a flag flg to one. The value of flg is initially set to zero.

Note that the simulator is always able to answer the
adversary (with or without using a, b and c). The adversary
is provided with proper replies to all its queries and is also
provided the proper challenge ciphertext. Thus, irrespective
of whether flg is set to one, the adversary’s view in
Game 1 is same as that in Game 0. Hence, we have
Pr[X0] = Pr[X1].

We next show how to setup the scheme and answer the
queries based on the tuple

(aP1, aP2, bP1, cP1, cP2, Z = e(P1, P2)
abc).

Set-up. Choose x′1, . . . , x′h and x1, . . . , xl randomly from
Zm; y′1, . . . , y′h and y1, . . . , yl randomly from Zp. Choose
k1, . . . , kh randomly from {0, . . . , µl}.

U ′
j = (p−mkj + x′j)bP1 + y′jP1, 1 ≤ j ≤ h;
Ui = xibP1 + yiP1, 1 ≤ i ≤ l.

}
(9)

Set the public parameters of HIBE to be
(P2, Q2 = aP2, R1 = bP1, U

′
1, . . . , U

′
h, U1, . . . , Ul). The

master secret is aR1 = abP1. In its attack, A will make
some queries, which have to be properly answered by the
simulator.

For 1 ≤ j ≤ h, we define several functions. Let
v = (v1, . . . , vl) where each vi is an n/l-bit string
considered to be an integer from the set {0, . . . , 2n/l − 1}.
We define

Fj(v) = p−mkj + x′j +
∑l

i=1 xivi
Jj(v) = y′j +

∑l
i=1 yivi

Lj(v) = x′j +
∑l

i=1 xivi (mod m)

Kj(v) =

{
0 if Lj(v) = 0
1 otherwise.

(10)

Recall that we have assumed m(1 + µl) < p (see the
statement of Theorems 1 and 2). Let Fmin and Fmax be the
minimum and maximum values of Fj(v). Fmin is achieved
when kj is maximum and x′j and the xi’s are all zero.
Thus, Fmin = p−mµl. We have mµl < m(1 + µl) and
by assumption m(1 + µl) < p. Hence, Fmin > 0. Again
Fmax is achieved when kj = 0 and x′j and the xi’s and
vi’s are equal to their respective maximum values. We
get Fmax < p+m(1 + l(2n/l − 1)) = p+m(1 + µl) = p
+m(1 + µl) < 2p. Thus, we have 0 < Fmin ≤ Fj(v) ≤ Fmax
< 2p. Consequently, Fj(v) ≡ 0 mod p if and
only if Fj(v) = p which holds if and only if
−mkj + x′j +

∑l
i=1 xivi = 0.

Now we describe how the queries made by A are
answered. The queries can be made in both Phases 1 and 2

60 S. Chatterjee and P. Sarkar

of the adversarial game (subject to the usual restrictions).
The manner in which they are answered by the simulator is
the same in both the phases.

Key extraction query. Suppose A makes a key
extraction query on the identity v = (v1, . . . , vj). Choose
random r1, . . . , rj from Zp. Suppose there is a u
with 1 ≤ u ≤ j such that Ku(vu) = 1. Otherwise set
flg to one. In the second case, the simulator uses
the value of a to return the proper decryption key
dv = (abP1 +

∑j
i=1 riV

(1)
i , r1V

(1)
1 , . . . , rjV

(1)
j). In the

first case, the simulator constructs a decryption key in the
following manner.

d0|u =− Ju(vu)
Fu(vu)aP1 + ru(Fu(vu)bP1 + Ju(vu)P1)

du = −1
Fu(vu)aP2 + ruP2

dk = rkP2 for k = {1, . . . , u− 1, u+ 1, . . . , j}
d0 = d0|u +

∑
k∈{1,...,j}\{u} rkV

(1)
k

 (11)

The key dv = (d0, d1, . . . , dj) is provided to A. The
quantity dv is a proper private key corresponding to
the identity v. This technique for simulating private key
generation was introduced by Boneh and Boyen (2004a)
and is crucial to the security reduction. For 1 ≤ i ≤ j and
j ̸= u, clearly di is properly constructed. So, we only need
to show that d0 and du are also properly constructed. For
this it is enough to show that d0|u is equal to aP2 +

r̃uV
(2)
u and du = r̃uP for some uniform random r̃u which

is independent of the other rs.

d0|u = abP1 − a
Fu(vu)
Fu(vu)

bP1 −
Ju(vu)
Fu(vu)

aP1

+ ru(Fu(vu)bP1 + Ju(vu)P1)

= abP1 −
a

Fu(vu)
(Fu(vu)bP1 + Ju(vu)P1)

+ ru(Fu(vu)bP1 + Ju(vu)P1)

= abP1 +

(
ru − a

Fu(vu)

)
(Fu(vu)bP1 + Ju(vu)P1)

= abP1 + r̃u

((
p−mku + x′u +

l∑
i=1

xivu,i

)
bP1

+

(
y′u +

l∑
i=1

yivu,i

)
P1

)
= abP1 + r̃u

(
(p−mku + x′u)bP1 + y′uP1.

+
l∑

i=1

vu,i (xibP1 + yiP1)
)

= abP1 + r̃u

(
U ′
u +

l∑
i=1

vu,iUi

)
= aR1 + r̃uV

(1)
u (vu).

Here r̃u = r − a/Fu(vu) and is a uniform random value
over Zp and is independent of the other rs as required. A
simpler calculation shows that du = r̃uP2.

Challenge. Let the challenge identity be
v∗ = (v∗1, . . . , v∗h∗), 1 ≤ h∗ ≤ h and the (equal length)
messages be M0 and M1. Choose a random bit γ. We
need to have Fk(v∗k) ≡ 0 mod p for all 1 ≤ k ≤ h∗. If
this condition does not hold, then set flg to one. In
the second case, the simulator uses the value of c to
provide a proper encryption of Mγ to A by computing
(Mγ × e(R1, Q2)

c, cP2, cV1, . . . , cVh∗). In the first case,
it constructs a proper encryption of Mγ in the following
manner.

(Mγ × Z,C1 = cP2, B1 = J1(v∗1)cP1, . . . , Bh∗

= Jh∗(v∗h∗)cP1)).

We require Bk to be equal to cV
(1)
k (v∗k) for 1 ≤ k ≤ h∗.

Using the definition of U ′
j and the Ui’s we obtain,

cV
(1)
k (v∗k) = c(Fk(v∗k)bP1 + Jk(v∗k)P1) = Jk(v∗k)cP1.

Here we use the fact, Fk(v∗k) ≡ 0 mod p. Hence, the
quantities B1, . . . , Bh∗ are properly formed.

Guess. The adversary outputs a guess γ′ of γ.

Game 2. This is a modification of Game 1 whereby the Z
in Game 1 is now chosen to be a random element of G2.
This Z is used to mask the message Mγ in the challenge
ciphertext. Since Z is random, the first component of
the challenge ciphertext is a random element of GT and
provides no information to the adversary about γ. Thus,
Pr[X2] =

1
2 .

Let flgi denote the random variable flg in Game i,
i = 1, 2. Denote by v(1), . . . , v(q) the identities in the q
key extraction queries and v∗ is the challenge identity. Let
V⃗ = (v∗, v(1), . . . , v(q)).

Let X⃗ be the tuple of random variables consisting of
the x’s and the x′’s used during set-up. Let Z⃗ be the tuple
of random variables consisting of the adversary’s private
random bits; the k’s, the y’s and the y′’s used during
set-up; and the r’s used in answering the key extraction
queries. Then X⃗ and Z⃗ are independent random variables.
A specific value of X⃗ will be denoted by x⃗; a specific value
of Z⃗ will be denoted by z⃗; and a specific value of V⃗ will
be denoted by v⃗.

Proposition 1. For any fixed v⃗, let λ(⃗v) ∆
= Pr[flgi(X⃗, v⃗) =

0]. Then λ− ≤ λ(⃗v) ≤ λ+ where

λ− =
(
1− q

m

)
λ+ and λ+ =

1

(m(µl + 1))h
.

The proof of Proposition 1 is given in Section 4.5.

4.2 Analysis for Theorem 1

Recall that in this case m = max(2q, 2n/l) and so
λ− ≥ 1/(2(m(µl + 1))h). We set λ ∆

= 1/(2(m(µl + 1))h).

Practical hybrid (hierarchical) identity-based encryption schemes 61

We show that it is possible to obtain an algorithm B for
DBDH in (p,G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e) by extending
Games 1 and 2. The extensions of both the games are
same and is described as follows. B takes as input a tuple
(aP1, aP2, bP1, cP1, cP2, Z) and sets up the HIBE scheme
as in Game 1. Also, the key extraction queries are answered
and the challenge ciphertext is generated as in Game 1. If
at any stage, flg is set to one, then B outputs a random bit
and aborts. At the end of the game, the adversary outputs
the guess γ′.

Artificial abort. This technique was introduced by Waters
(2005). The probability that B aborts in the query or
challenge phases depends on the adversary’s input. This
probability depends on transcript of the adversary, i.e., the
identities queried by the adversary and also the challenge
identity. The goal of the artificial abort step is to ensure that
B aborts with more or less the same probability irrespective
of the transcript of the adversary.

Suppose that flgi remains 0 during the simulation which
denotes the fact that there is no need to abort at the
end of the game. At this point, the values of the random
variables X⃗ , Z⃗ and V⃗ have been fixed. Let z⃗ and v⃗ be the
values of Z⃗ and V⃗ respectively. Note that fixing v⃗ fixes
the adversaries queries and the challenge identity. Further,
given these values z⃗ and v⃗, B can sample a new uniform
random value for X⃗ and evaluate whether it would have
needed to abort for this sampled value.

B now goes through an additional abort step. It does the
above sampling of X⃗ a total of

O(ϵ−2
hibeλ

−1 ln(ϵ−1
hibeλ

−1))

times and for each sample decides whether it would have
aborted or not. Based on the sum total of this decision, it
decides whether to abort or not. The exact details of this
strategy is explained in Section 4.3.
Output of B in Games 1 and 2. If B has not aborted both
at the end of game and also in the artificial abort step, then
B outputs 1 if γ = γ′; else 0.

The time taken by B in either Game 1 or 2 is easily
seen to be as stated in the statement of Theorem 1.

If Z is real, then the adversary is playing Game 1 and
if Z is random, then the adversary is playing Game 2. Let
Yi be the event that the simulator outputs 1 in Game i,
i = 1, 2. Then, we have

|Pr[Y1]− Pr[Y2]| ≤ ϵdbdh.

Let abi be the event that the simulator aborts in
Game i, i = 1, 2. This includes both usual abort
(i.e., due to flgi = 1) and artificial abort.

Pr[Yi]
= Pr[Yi ∧ (abi ∨ abi)]

= Pr[(Yi ∧ abi) ∨ (Yi ∧ abi)]

= Pr[Yi ∧ abi] + Pr[Yi ∧ abi]

= Pr[Yi | abi]Pr[abi] + Pr[Yi | abi]Pr[abi]

=
1

2
(1− Pr[abi]) + Pr[Xi | abi]Pr[abi] (12)

=
1

2
(1− Pr[abi ∧ (Xi ∨Xi)]) + Pr[Xi ∧ abi]

=
1

2
+

1

2

(
Pr[abi|Xi]Pr[Xi]− Pr[abi|Xi]Pr[Xi]

)
(13)

Table 2 Comparison to Waters (2009) IBE scheme

Scheme PP msk sec key cpr txt key gen enc dec
HIBE-1 (l + 1,1,1,0) (1,0,0,0) (1,1,0,0) (1,1,1,0) 1[SM1]+1[SM2] 1[SM1]+1[SM2] 1[P2]

h = 1 +1
[
H(1)

n,l

]
+1[E]+1

[
H(1)

n,l

]
HIBE-2 (l + 2, l + 2, 1, 0) (0,1,0,0) (0,2,0,0) (2,0,1,0) 2[SM2]+1

[
H(2)

n,l

]
2[SM1] 1[P2]

h = 1 +1[E]+1
[
H(1)

n,l

]
Waters (2009) ((12, 1, 0)) ((6, 0, 0)) ((8, 0, 1)) ((10, 0, 1)) 12[SM] 14[SM] + 1[SE] 9[P]+2[SM]

Note: Waters (2009) scheme uses symmetric pairings.

Table 3 Comparison of the HIBE scheme in Waters (2009) to HIBE-1 and HIBE-2

Scheme Parameter sizes Times
PP msk pvt key cpr txt key gen enc dec

HIBE-1 (h+ l, 1, 1, 0) (1, 0, 0, 0) (1, j, 0, 0) (j, 1, 1, 0) 1
[
H(1)

n,l

]
j
[
H(1)

n,l

]
+ 1[E] 1[Pj+1]

+1[SM1] + 1[SM2] +j[SM1] + 1[SM2]

HIBE-2 (h+ l + 1, (0, 1, 0, 0) (0, j + 1, 0, 0) (j + 1, 0, 1, 0) 1
[
H(2)

n,l

]
+ 2[SM2] j

[
H(1)

n,l

]
+ 1[E] 1[Pj+1]

h+ l + 1, 1, 0) +(j + 1)[SM1]
Waters (2009) ((13 + 2h,1,0)) ((3,0,0)) ((7 + 2j,0,j)) ((7 + j,0,j)) (9 + 4j)[SM] (11 + 3j)[SM] (7 + 2j)[SP1]

+1[SE] +2j[SM]

Notes: The quantity j refers to the number of components in the identity tuple for which the computation is carried out. The time
for key generation shows only the time required to generate a key for the j th level from a key for the (j − 1)st level.
Also, the comparison is meaningful only for h ≤ 3.

62 S. Chatterjee and P. Sarkar

To proceed further, we need bounds on Pr[abi|Xi] and
Pr[abi|Xi]. Recall that Xi is the event γ = γ′ in Game i.
From (29) (proved later in Section 4.3), we obtain

λ− λϵ

2
≤ Pr[abi|Xi],Pr[abi|Xi] ≤ λ+

λϵ

2
. (14)

Here ϵ = ϵhibe. Now we need to do some manipulations
with inequalities and for convenience we set
Ai = Pr[abi|Xi], Bi = Pr[Xi] and Ci = Pr[abi|Xi] and
D = Pr[Y1]− Pr[Y2]. We have from (14)

λ− λϵ

2
≤ Ai, Ci ≤ λ+

λϵ

2
.

Also, using (13)

2D = (A1B1 − C1(1−B1))

− (A2B2 − C2(1−B2)). (15)

Since both B1 and (1−B1) are non-negative, we have

Bi(λ− λϵ
2)≤ AiBi ≤Bi(λ+ λϵ

2)
(1−Bi)(−λ− λϵ

2)≤−Ci(1−Bi)≤ (1−Bi)(−λ+ λϵ
2).

Hence,

λ(2Bi − 1)− λϵ

2
≤ AiBi − Ci(1−Bi)

≤ λ(2Bi − 1) +
λϵ

2
. (16)

Putting i = 1 in (16), we obtain

λ(2B1 − 1)− λϵ

2
≤ A1B1 − C1(1−B1)

≤ λ(2B1 − 1) +
λϵ

2
. (17)

Multiplying (16) by −1 and putting i = 2 we obtain

−λ(2B2 − 1)− λϵ

2
≤ −(A2B2 − C2(1−B2))

≤ −λ(2B2 − 1) +
λϵ

2
. (18)

Combining (15), (17) and (18) we get

2λ(B1 −B2)− λϵ ≤ 2D ≤ 2λ(B1 −B2) + λϵ. (19)

This shows that |λ(B1 −B2)−D| ≤ λϵ
2 . Now

|λ(B1 −B2)| − |D| ≤ |λ(B1 −B2)−D| ≤ λϵ
2 . Note that

|D| = |Pr[Y1]− Pr[Y2]| ≤ ϵdbdh and recalling the values of
B1 and B2, we have

|Pr[X1]− Pr[X2]| ≤
ϵdbdh
λ

+
ϵhibe
2

. (20)

This completes the proof of the claim. �

Now we can complete the proof in the following manner.

ϵhibe =

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣
≤ |Pr[X0]− Pr[X2]|
≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|

≤ ϵhibe
2

+
ϵdbdh
λ

.

Rearranging the inequality gives the desired result. This
completes the proof of Theorem 1. �

4.3 Artificial abort: details and analysis

The entire technique of artificial abort can be explained
in terms of elementary probability theory without reference
to security proofs. We have taken this approach. After
outlining the necessary abstraction, we obtain the relevant
bounds. Then, we go back to the security proof and explain
how the technique fits within that scenario.

Let Ber(η) be the Bernoulli distribution with probability
of success η. Suppose X1, . . . , Xk are independent random
variables each following Ber(η). Let η′ = (

∑k
i=1Xi)/k.

Then for 0 < δ ≤ 2e− 1, we have using Chernoff bound
(see Motwani and Raghavan (1995))

Pr[|η′ − η| ≥ δη] ≤ 2× exp
(
−kηδ2

4

)
. (21)

Let λ be a lower bound on η, i.e., λ ≤ η and
ϵ be such that 0 < ϵ < 1. We want to ensure
2× exp

(
−kηδ2

4

)
≤ λϵ

8
and δ = ϵ/8. This gives us the

condition: 2× exp((−kηϵ2)/256) ≤ λϵ/8. This condition
holds when

k ≥
(
256

λϵ2
ln

16

λϵ

)
. (22)

If we consider η′ to be an approximation of η then,
for k satisfying (22), with high probability η′ is a good
approximation of η. Note that the lower bound on k in (22)
gives rise to the expression in the statement of Theorem 1.
The summary of all this is that for k satisfying (22) the
following inequality holds.

Pr[|η′ − η| ≥ δη] ≤ λϵ

8
. (23)

We now present an abstract description of the artificial
abort technique. Let X (resp. Y) be a random variable
which varies over a finite set Γ (resp. Σ). Suppose that the
random variable X follows the uniform distribution, while
the distribution of Y is unknown. Also, let X and Y be
independent. Let f be a function f : Γ× Σ → {0, 1} and
consider the following procedure.

Practical hybrid (hierarchical) identity-based encryption schemes 63

Procedure-A

1. Choose x from Γ according to the uniform distribution.
2. A value y is obtained from Σ according to

some unknown distribution.
3. Output f(x, y).

X (resp. Y) is the random variable representing x
(resp. y). The probability of outputting 1 in the above
game depends on the distribution of Y . Let ηy be the
probability that f(X, y) = 1, i.e., ηy = Pr[f(X, y) = 1] =
Pr[f(X,Y) = 1|Y = y] (since X and Y are independent).
Since the distribution of Y is not known, the value of ηy is
also not known. Let λ be a known lower bound on ηy , i.e.,
λ ≤ ηy for all y ∈ Σ.

We want to augment Procedure-A, such that the
probability of outputting 1 remains more or less the same
irrespective of the choice of y. This is done in the following
manner. By Ber(p) we mean the Bernoulli experiment
where 1 is produced with probability p and 0 is produced
with probability (1− p).

Procedure-B

1. Choose x from Γ according to the uniform distribution.
2. A value y is obtained from Σ according to some

unknown distribution;
3. if f(x, y) = 1, then
4. choose x(1), . . . , x(k) uniformly at random from Γ;

5. define η′ =
∑k

i=1 f(x
(i), y)

k
;

6. if η′ ≥ λ, then perform Ber(λ/η′);
7. else output 1;
8. else output 0.

The quantity η′ computed in Step 5 is an estimate of ηy,
for the y given in Step 2. To understand what is happening,
first suppose that the estimate η′ of ηy is exact. Since λ is a
lower bound on ηy , the condition in Step 6 will be true and
hence the above procedure will output 1 with probability
η × λ/η = λ. In other words, the above procedure will
output 1 with probability λ irrespective of the value of
y which is what we want. Now the estimate η′ will not
be exact and consequently the probability the Procedure-B
outputs 1 will be between two bounds as we outline below.

Analysis of Procedure-B. We now perform the probability
analysis that Procedure-B outputs 1. In the following, we
will use η to denote ηy , where y is chosen in Step 2 of
Procedure-B. Let ab be the event that Procedure-B outputs
0. We are interested in the event ab, i.e., the event that
Procedure-B outputs 1. More particularly, we are interested
in the probability of ab when the choice of y in Step 2 of
Procedure-B is fixed.

Let A be the event that |η′ − η| ≤ ηϵ
8 . Using

standard probability arguments (for events A and B,
Pr[A] = Pr[A|B] Pr[B] + Pr[A|B] Pr[B]) it is possible to
show the following.

Pr[ab|Y = y,A]− Pr[A] ≤ Pr[ab|Y = y] (24)
≤ Pr[ab|Y = y,A] + Pr[A].

First note that using the Chernoff bound analysis, we have
from (23) Pr[A] ≤ λϵ/8. We now consider Pr[ab|Y = y,A].
There are two cases to consider.

Case 1 (λ ≤ η − ηϵ
8). Suppose that A holds. Then

η − ηϵ
8 ≤ η′ ≤ η + ηϵ

8 . (25)

By the condition of this case, we have λ ≤ η − ηϵ
8

and so η′ ≥ λ. Hence, the ‘if’ condition in Step 6 of
Procedure-B is satisfied and therefore Pr[ab|Y = y,A] =
ηλ/η′. Using (25), it is easy to work out that for ϵ ≤ 4,

λ
(
1− ϵ

4

)
≤ λ

1 + ϵ
8

≤ λη

η′
≤ λ

1− ϵ
8

≤ λ
(
1 +

ϵ

4

)
.

This combined with the bound on Pr[A] shows that

λ
(
1− ϵ

2

)
≤ λ

(
1− ϵ

4

)
− λϵ

8

≤ Pr[ab|Y = y] ≤ λ
(
1 +

ϵ

4

)
+
λϵ

8

≤ λ
(
1 +

ϵ

2

)
.

Put differently, we have

|Pr[ab|Y = y]− λ| ≤ λϵ

2
. (26)

Case 2 (λ > η − ηϵ
8). As in Case 1, let A be the event

|η′ − η| ≤ ηϵ
8 . We identify two other events A1 and A2

as follows. A1 is the event η − ηϵ/8 ≤ η′ ≤ λ and A2 is
the event λ ≤ η′ ≤ η + ηϵ/8. Clearly, A = A1 ∨ A2 and
Pr[A] = Pr[A1] + Pr[A2]. Now, Pr[ab|Y = y,A2] = ηλ/η′

and Pr[ab|Y = y,A1] = η. When A1 occurs, η′ ≤ λ and so
Pr[ab|Y = y,A1] = η ≤ ηλ/η′. We can write

Pr[ab|Y = y,A]

=
Pr[ab|Y = y,A1]Pr[A1] + Pr[ab|Y = y,A2]Pr[A2]

Pr[A]

≤ ηλ

η′

≤ λ+
λϵ

4
.

The last inequality follows from the analysis of the
expression ηλ/η′ when A occurs as done for Case 1. Then,
as in Case 1, we have Pr[ab|Y = y] ≤ λ+ λϵ/2.

64 S. Chatterjee and P. Sarkar

We next consider the lower bound. Again, using the
analysis of Case 1, we have

Pr[ab|Y = y,A2] =
λη

η′
≥ λ− λϵ

4
.

Also,

Pr[ab|Y = y,A1] = η ≥ λ ≥ λ− λϵ

4
.

Using these two bounds, we obtain Pr[ab|Y = y,
A] ≥ λ− λϵ

4 and consequently as in Case 1, Pr[ab|Y =

y] ≥ λ− λϵ
2 . Thus, in both Cases 1 and 2, we have

|Pr[ab|Y = y]− λ| ≤ λϵ

2
. (27)

Summary. Thus, (27) shows that the probability that
Procedure-B outputs 1 is ‘very close’ to λ. Recall that y is
an element of Σ. Let Σ′ be any subset of Σ. Then

Pr[ab|Y ∈ Σ′] =
Pr[ab, Y ∈ Σ′]

Pr[Y ∈ Σ′]

=

∑
y∈Σ′ Pr[ab, Y = y]

Pr[Y ∈ Σ′]

=

∑
y∈Σ′ Pr[ab|Y = y]Pr[Y = y]

Pr[Y ∈ Σ′]
.

Using the upper and lower bounds on Pr[ab|Y = y]
from (27) shows that

|Pr[ab|Y ∈ Σ′]− λ| ≤ λϵ

2
. (28)

Relation to the security game. So far, we have been
analysing probabilities without any reference to the actual
adversarial game. We now relate this analysis to the proof.
This is seen by identifying the random variable X with the
random variable X⃗ in the security game and the random
variable Y with the random variable Z⃗ in the security game.
The set Σ then corresponds to the set of possible values of
Z⃗. We identify the set Σ0 to be the set of all possible values
of Z⃗ such that γ = γ′. Also, define Σ1 = Σ \ Σ0.

Let Γ be the set of possible values of X⃗; define
f : Γ× Σ → {0, 1} as follows: for x⃗ ∈ Γ and z⃗ ∈ Σ,
f(x⃗, z⃗) is 1 if B does not abort during the simulation,
i.e., flg is set to 0 at the end of the simulation. Then
Procedure-A evaluates f . Procedure-B on the other hand,
aborts in certain cases even when Procedure-A does not
abort. This additional abort has been termed ‘artificial
abort’ in Waters (2005).

We now follow the analysis of Procedure-B given in
Section 4.3. Successively using Σ0 and Σ1 in place of Σ′

in (28), we have,

λ− λϵ

2
≤ Pr[ab|γ = γ′],Pr[ab|γ ̸= γ′] ≤ λ+

λϵ

2
. (29)

4.4 Analysis for Theorem 2

Bellare and Ristenpart (2009) made some crucial
observations. Propositions 2 and 3 are based on the
discussion given in Bellare and Ristenpart (2009).

Proposition 2.

1 V⃗ is independent of X⃗

2 in the ith game, the event Xi is independent of X⃗

3 the random variable flgi is a function
flgi

∆
= flgi(X⃗, V⃗).

Proof:

1 Fix any value x⃗ for X⃗ . Irrespective of this value, the
independent and uniform random choices of the y’s
and the y′’s ensure that the public parameters are
independent and uniformly distributed points. The
independent and uniform random choices of the r’s
ensure that the response to any query is uniform
random and independent of other random variables.
Lastly, the independent and uniform randomness of c
ensures that the challenge ciphertext is independent of
X⃗ . This is true irrespective of whether flg is set to 1
or 0.

The adversary’s queries depends on its own random
choices, the distribution of the public parameters, the
responses to the queries and the challenge ciphertext.
By the above argument, for every fixed value of X⃗ ,
the distributions of these random variables are the
same. Hence, for every fixed value of X⃗ , the
probability that the adversary outputs a particular
query sequence is a constant, i.e., Pr[V⃗ = v⃗|X⃗ = x⃗]

does not depend on x⃗. Then it easily follows that V⃗
and X⃗ are independent.

2 The event Xi is the event γ = γ′ in Game i. The bit
γ is a uniform random bit which is independent of all
other quantities. In Games 0 and 1, the adversary’s
output γ′ is a function of its private random choices,
the public parameters, the responses to the queries and
the challenge ciphertext. So, as argued above, the
output γ′ is independent of X⃗ and hence the event
γ = γ′ is also independent of X⃗ . In Game 2, the bit γ
is statistically hidden from the adversary and hence
the probability of the event X2 is 1/2 irrespective of
the value of X⃗ .

3 The value of flgi is 0 if all the F -values
corresponding to the key extraction queries are
non-zero and the F -value for the challenge identity is
0. From the definition of the function F , it follows
that this event depends only on X⃗ and V⃗ and so the
random variable flgi is a function of these two
random variables. �

Practical hybrid (hierarchical) identity-based encryption schemes 65

Proposition 3.

Pr[flgi = 0|V⃗ = v⃗, Xi] = Pr[flgi = 0|V⃗ = v⃗].

Proof: From Proposition 2, flgi is actually flgi(X⃗, V⃗) and
the events V⃗ = v⃗ and Xi are determined by Z⃗ and is
independent of X⃗ . Let f1(Z⃗)

∆
= V⃗ and f2(Z⃗)

∆
= γ ⊕ γ′ for

suitable functions f1 and f2. The events V⃗ = v⃗ and Xi are
then f1(Z⃗) = V⃗ and f2(Z⃗) = 0.

Pr[flgi = 0|V⃗ = v⃗, Xi]

= Pr[flgi(X⃗, V⃗) = 0|f1(Z⃗) = v⃗, f2(Z⃗) = 0]

= Pr[flgi(X⃗, f1(Z⃗)) = 0|f1(Z⃗) = v⃗, f2(Z⃗) = 0]

= Pr[flgi(X⃗, v⃗) = 0|f2(Z⃗) = 0]

= Pr[flgi(X⃗, v⃗) = 0]

(since X⃗ and Z⃗ are independent)
= Pr[flgi(X⃗, V⃗) = 0|V⃗ = v⃗]
= Pr[flgi = 0|V⃗ = v⃗].

�
We show that it is possible to obtain an algorithm B for
DBDH in (p,G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e) by extending
Games 1 and 2. The extension of both the games is same
and is described as follows. B takes as input a tuple
(aP1, aP2, bP1, cP1, cP2, Z) and sets up the HIBE scheme
as in Game 1. Also, the key extraction queries are answered
and the challenge ciphertext is generated as in Game 1. If
at any stage, flg is set to one, then B outputs a random bit
and aborts. At the end of the game, the adversary outputs
the guess γ′. If B has not aborted up to this stage, then it
outputs 1 if γ = γ′; else 0.

If Z is real, then the adversary is playing Game 1 and
if Z is random, then the adversary is playing Game 2. The
time taken by B in either Game 1 or 2 is clearly t′. Note
that Pr[flgi(X⃗, V⃗) = 0] is the probability that B does not
abort during the game.

Let Yi be the event that B outputs 1 in Game i, i = 1, 2.
Then, we have

|Pr[Y1]− Pr[Y2]| ≤ ϵdbdh.

Let abi be the event flgi(X⃗, v⃗) = 1, i.e., the event that the
simulator aborts in Game i, i = 1, 2. Note that in this case
there is no artificial abort.

Proposition 4. εhibe ≤
εdbdh
λ+

+
q

m
.

Pr[Yi] = Pr[Yi | abi]Pr[abi] + Pr[Yi | abi]Pr[abi]

=
1

2
Pr[abi] + Pr[Xi | abi]Pr[abi]

=
1

2
Pr[abi] + Pr[Xi ∧ abi]

=
1

2
Pr[abi] + Pr[Xi ∧ flgi(X⃗, V⃗) = 0]

=
1

2
Pr[abi]

+
∑

v⃗
×Pr[Xi ∧ flgi(X⃗, V⃗) = 0 ∧ V⃗ = v⃗] (30)

=
1

2
Pr[abi] +

∑
v⃗

×Pr[flgi(X⃗, V⃗) = 0|Xi ∧ V⃗ = v⃗]

×Pr[Xi ∧ V⃗ = v⃗] (31)

=
1

2
Pr[abi] +

∑
v⃗

×Pr[flgi(X⃗, V⃗) = 0|V⃗ = v⃗]

×Pr[Xi ∧ V⃗ = v⃗] (32)

=
1

2
Pr[abi] +

∑
v⃗

×Pr[flgi(X⃗, v⃗) = 0]

×Pr[Xi ∧ V⃗ = v⃗] (33)

=
1

2
Pr[abi] +

∑
v⃗
λ(⃗v)Pr[Xi ∧ V⃗ = v⃗]. (34)

Steps (30) to (34) are based on a similar calculation
in Bellare and Ristenpart (2009).

Pr[Y1]− Pr[Y2]

=
∑
v⃗

λ(v⃗)(Pr[X1 ∧ V⃗ = v⃗]− Pr[X2 ∧ V⃗ = v⃗]).

Using λ− ≤ λ(v⃗) ≤ λ+ and
∑

v⃗ Pr[Xi ∧ V⃗ = v⃗] = Pr[Xi],
we obtain

λ− Pr[X1]− λ+ Pr[X2] ≤ Pr[Y1]− Pr[Y2]
≤ λ+ Pr[X1]− λ− Pr[X2].

Dividing throughout by λ+ and using λ−/λ+ = (1− q/m)
from Proposition 1, we get,

Pr[X1]− Pr[X2]−
q

m
Pr[X1]

≤ Pr[Y1]− Pr[Y2]
λ+

≤ Pr[X1]− Pr[X2] +
q

m
Pr[X2]

This shows

Pr[X1]− Pr[X2]−
Pr[Y1]− Pr[Y2]

λ+
≤ q

m
Pr[X1] ≤

q

m

and

Pr[X1]− Pr[X2]−
Pr[Y1]− Pr[Y2]

λ+
≥ − q

m
Pr[X2] ≥ − q

m
.

Combining these two bounds we obtain

− q

m
≤ (Pr[X1]− Pr[X2])−

Pr[Y1]− Pr[Y2]
λ+

≤ q

m
.

As a result,

| Pr[X1]− Pr[X2]| −
∣∣∣∣Pr[Y1]− Pr[Y2]

λ+

∣∣∣∣
≤
∣∣∣∣(Pr[X1]− Pr[X2])−

Pr[Y1]− Pr[Y2]
λ+

∣∣∣∣ ≤ q

m
.

66 S. Chatterjee and P. Sarkar

Assuming (εdbdh, t
′) hardness of DBDH, | Pr[Y1]−

Pr[Y2]| ≤ εdbdh. Using this, we get

| Pr[X1]− Pr[X2]| ≤
∣∣∣∣Pr[Y1]− Pr[Y2]

λ+

∣∣∣∣+ q

m

≤ εdbdh
λ+

+
q

m
.

The proof of Proposition 7.6 is now completed as follows.

εhibe =

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣
= |Pr[X0]− Pr[X2]|
≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|

≤ εdbdh
λ+

+
q

m
.

�
Since m was chosen to be at least 2q/εhibe, the proof of
Theorem 2 follows by substituting the value of m in the
statement of Proposition 4. �

4.5 Bounds on probability of not abort

We require the following independence results in obtaining
the required bound on the probability of abort. Similar
independence results have been used in Waters (2005);
Naccache (2007) in connection with IBE schemes.

Proposition 5. Let L(·) be as defined in (10). Let
v1, . . . , vj be identities, i.e., each vi = (vi,1, . . . , vi,l), with
vi,k to be an n/l-bit string (and hence
0 ≤ vi,k ≤ 2n/l − 1) and let θ ∈ {1, . . . , j}.

1 Pr

Lθ(vθ) = 0

∣∣∣∣∣∣
j∧

k=1,k ̸=θ

(Lk(vk) = 0)

 =
1

m
.

2 Let v′θ be an identity such that v′θ ̸= vθ. Then

Pr
[
Lθ(v′θ) = 0

∣∣∣∣∣
j∧

k=1

(Lk(vk) = 0)

]
=

1

m
.

The probability is over the independent and uniform random
choices of x′1, . . . , x′j , x1, . . . , xl from Zm.

Proof. Recall from (10) that Lk(vk) = x′k + vk,1x1 +
· · ·+ vk,lxl. The values x′1, . . . , x′j , x1, . . . , xl are chosen
independently and uniformly at random from Zm. In
particular, the independence of x′1, . . . , x

′
j ensure that

L1(v1), . . . , Lj(vj) are also independently and uniformly
distributed over Zm. The first point follows from this
observation.

For the second point, without loss of generality, we
may assume that θ = j, since otherwise we may rename
variables to achieve this. Since vj ̸= v′j , there is an
i ∈ {1, . . . , l} such that not both of vj,i and v′j,i are zeros.
Without loss of generality, suppose that v′j,i is non-zero.
Then the result follows from the independent and uniform
randomness of x′1, . . . , x′j , xi. �

Proof of Proposition 1: For any fixed v⃗, let ab(⃗v) be the
event flg(X⃗, v⃗) = 1. For 1 ≤ i ≤ q, let Ei denote the event
that the simulator does not abort on the ith key extraction
query and let C be the event that the simulator does not
abort in the challenge stage.

We first consider the event C. Suppose the challenge
identity is v∗ = (v∗1, . . . , v∗h∗). Event C holds if and only
if Fj(v∗j) ≡ 0 mod p for 1 ≤ j ≤ h∗. Recall that by choice
of p, we can assume Fj(v∗j) ≡ 0 mod p if and only if
x′j +

∑l
k=1 xkvj,k = mkj . Hence,

Pr[C] = Pr

 h∗∧
j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

) . (35)

For 1 ≤ j ≤ h∗ and 0 ≤ i ≤ µl, denote the event
x′j +

∑l
k=1 xkvj,k = mi by Aj,i and the event kj = i by

Bj,i. Also, let Cj,i be the event Aj,i ∧Bj,i.
Note that the event

∨µl

i=0Aj,i is equivalent to
the condition x′j +

∑l
k=1 xkvj,k ≡ 0 mod m and hence

equivalent to the condition Lj(vj) = 0. Since kj is chosen
uniformly at random from the set {0, . . . , µl}, we have
Pr[Bj,i] = 1/(1 + µl) for all j and i. The events Bj,i’s
are independent of each other and also independent of the
Aj,i’s. We have

Pr

 h∗∧
j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

)
= Pr

 h∗∧
j=1

(
µl∨
i=0

Cj,i

)
= Pr

[∨
i1,...,ih∗∈{0,...,µl} (C1,i1 ∧ · · · ∧ Ch∗,ih∗)

]
= Pr

[∨
i1,...,ih∗∈{0,...,µl}

(A1,i1 ∧B1,i1 ∧ · · · ∧Ah∗,ih∗ ∧Bh∗,ih∗)
]

=
∑

i1,...,ih∗∈{0,...,µl}
Pr [A1,i1 ∧B1,i1 ∧ · · · ∧Ah∗,ih∗ ∧Bh∗,ih∗]

=
∑

i1,...,ih∗∈{0,...,µl} (Pr [A1,i1 ∧ · · · ∧Ah∗,ih∗]

× Pr [B1,i1 ∧ · · · ∧Bh∗,ih∗])
= 1

(1+µl)h
∗
∑

i1,...,ih∗∈{0,...,µl} Pr [A1,i1 ∧ · · · ∧Ah∗,ih∗]

= 1
(1+µl)h

∗ Pr
[∨

i1,...,ih∗∈{0,...,µl} (A1,i1 ∧ · · · ∧Ah∗,ih∗)
]

= 1
(1+µl)h

∗ Pr

 h∗∧
j=1

(
µl∨
i=0

Aj,i

)
= 1

(1+µl)h
∗ Pr

 h∗∧
j=1

(Lj(vj) = 0)

= 1

(m(1+µl))h
∗ .

The last equality follows from Proposition 5(1). This shows
that Pr[C] ≤ 1/(m(1 + µl)

h) and so

Pr[ab(⃗v)] = Pr
[(

q∧
i=1

Ei

)
∧ C

]

≤ Pr[C] ≤ 1

(m(1 + µl))h
∗ .

Practical hybrid (hierarchical) identity-based encryption schemes 67

Since 1 ≤ h∗ ≤ h, we have Pr[C] ≤ min1≤i≤h 1/(m(1 +
µl))

h∗
= 1/(m(1 + µl))

h. This shows the required upper
bound.

For the lower bound, first note the following calculation.

Pr[ab(⃗v)] = Pr
[(

q∧
i=1

Ei

)
∧ C

]

= Pr
[(

q∧
i=1

Ei

)
|C

]
Pr[C]

=

(
1− Pr

[(
q∨

i=1

¬Ei

)
|C

])
Pr[C]

≥

(
1−

q∑
i=1

Pr [¬Ei |C]

)
Pr[C].

We now turn to bounding Pr[¬Ei|C]. For simplicity of
notation, we will drop the subscript i from Ei and consider
the event E that the simulator does not abort on a particular
key extraction query on an identity (v1, . . . , vj). By the
simulation, the event ¬E implies that Li(vi) = 0 for all
1 ≤ i ≤ j. This holds even when the event is conditioned
under C. Thus, we have Pr[¬E|C] ≤ Pr[∧j

i=1Li(vi) =
0|C]. The number of components in the challenge identity
is h∗ and now two cases can happen:
j ≤ h∗: By the scheme constraint (a prefix of the challenge
identity cannot be queried to the key extraction oracle), we
must have a θ with 1 ≤ θ ≤ j such that vθ ̸= v∗θ .
j > h∗: In this case, we choose θ = h∗ + 1.

Now we have

Pr[¬E|C] ≤ Pr
[

j∧
i=1

Li(vi) = 0|C

]
≤ Pr[Lθ(vθ) = 0|C]

= Pr
[
Lθ(vθ) = 0|

h∗∧
i=1

Li(v∗i) = 0

]
= 1/m.

The last equality follows from an application of either
Proposition 5(1) or Proposition 5(2) according as whether
j > h∗ or j ≤ h∗. Substituting this in the bound for
Pr[ab(⃗v)] we obtain

Pr[ab(⃗v)] ≥
(
1−

q∑
i=1

Pr [¬Ei |C]

)
Pr[C].

≥
(
1− q

m

) 1

(m(µl + 1))h∗

≥
(
1− q

m

) 1

(m(µl + 1))h
.

This completes the proof of Proposition 1. �

4.6 Comparison of the two analyses

The two analyses given above lead to two different bounds.
Since the artificial abort step requires B to possibly abort

even when the game has been successfully completed, one
would expect that doing away with this step should give
a better bound. Perhaps somewhat counter-intuitively, the
second analysis, which does not require artificial abort leads
to a worse bound compared to the first analysis. We provide
an explanation for this apparent anomaly.

The first thing to note is that the essential aim of both
the analyses is to ensure that the abort (usual and also
possibly artificial) takes place with more or less the same
probability irrespective of the adversarial transcript. In the
analysis for Theorem 1, the event ab consists of both usual
and artificial abort. From (29), we have

λ− λϵ

2
≤ Pr[ab|γ = γ′],Pr[ab|γ ̸= γ′] ≤ λ+

λϵ

2
.

In other words, this shows that the conditional probabilities
of not aborting is close to λ which is a lower bound
on the probability of not aborting during the simulation.
By the choice of m = 2q in Theorem 1, the value of
λ has been worked out to be λ = 1/(2(m(µl + 1))h)
= 1/(2(2q(µl + 1))h).

On the other hand, the analysis of Theorem 2 does
not have any aritificial abort step and directly uses
Proposition 1 to bound the probability of not abort. This
probability is between λ− and λ+ with λ− =

(
1− q

m

)
λ+

and λ+ = 1
(m(µl+1))h

. To ensure that λ− and λ+ are close,
one requires m to be equal to 2q/ϵhibe. But, this then results
in λ+ taking the value ϵhhibe

(2q(µl+1))h
. Comparing this to the

probability of not aborting in the case of Theorem 1, one
sees that in absolute terms, this probability is significantly
lower. So, even though there is no artificial abort in the
analysis of Theorem 2, due to the choice of parameters,
the actual probability of not abort is lower than the
corresponding probability for Theorem 1. Unsurprisingly
enough, the security bound for Theorem 2 is worse than the
bound for Theorem 1.

5 A hierarchical identity-based signature scheme

It is an observation of Naor (as mentioned in Boneh and
Franklin, 2003) that any IBE scheme can be converted into
a signature scheme. The signer plays the role of the PKG,
the message to be signed is treated as an identity and a
signature is a decryption key for the identity. Verification
of a signature on a message consists of encrypting a
random string using the message as the identity and then
determining whether decryption using the given signature
(i.e., the decryption key for the identity) gives back the
string. If the IBE is CPA-secure, then the constructed
signature scheme is secure in the sense of existential
unforgeability under a chosen-message attack.

The above idea has been used to construct several
signature schemes. For example, Boneh et al. (2001)
scheme is constructed from the IBE scheme by Boneh and
Franklin (2003) while the IBE scheme of Gentry (2006) on
hind sight gives the signature scheme of Boneh and Boyen
(2004). Waters (2005) himself had constructed a signature

68 S. Chatterjee and P. Sarkar

scheme based on his IBE scheme and our conference
paper had described a signature scheme obtained from the
generalisation of Waters’ (2005) IBE scheme.

The method of converting an IBE to a signature scheme
extends to convert a HIBE scheme into a hierarchical
identity-based signature (HIBS) scheme. This has been
noted in Gentry and Silverberg (2002). An entity with
identity v = (v1, . . . , vj) has a corresponding decryption
key dv. Signature on a message M is then simply the
decryption key for the identity tuple (v1, . . . , vj ,M) which
can be generated using dv, which now acts as a signing
key. So an (h+ 1)-level HIBE scheme gives rise to an
h-level HIBS scheme. Though conceptually simple, there is
a problematic issue. For such a scheme, the message space
and the identity space should be disjoint. As otherwise,
someone possessing the signature of M for the identity
(v1, . . . , vj) can now use this signature as a signing key
to produce a forgery for a message M ′ under the identity
(v1, . . . , vj ,M).

Paterson and Schuldt (2006) had described an
identity-based signature (IBS) scheme based on 2-level
Waters (2005) HIBE. The scheme has been proved to be
secure. Now, consider the situation where the individual
entities and the PKG both sign messages. The PKG signs
messages using the master secret key and an individual
entity signs messages using the signing key obtained from
the PKG. For such a scenario, the scheme in Paterson
and Schuldt (2006) is no longer secure. Basically, the
above situation applies. An adversary may obtain the PKG’s
signature on a ‘message’ M and then use this signature as
the signing key to sign messages under the ‘identity’ M .
This happens due to the fact that the scheme in Paterson
and Schuldt (2006) does not ensure that the message and
identity spaces are disjoint. Gentry and Silverberg noted
this issue of separating the message space and the identity
space while describing their HIBS scheme in Gentry and
Silverberg (2002) and suggested the use of a bit-prefix to
separate the two spaces. We also use a similar technique to
avoid this problem.

Below we describe the construction of two HIBS
scheme. The first scheme, HIBS-1 is obtained from the
HIBE scheme described in Section 3.1. A signature scheme
is obtained as a particular case. A new IBS is also obtained
as a particular case. Since we ensure that the message and
identity spaces are (computationally) disjoint, individual
users as well as the PKG can securely sign messages.
The major improvement of the new IBS scheme upon the
IBS scheme in Paterson and Schuldt (2006) is that the
size of the public parameters is reduced by almost half.
This improvement is a result of the reduction in public
parameters of the HIBE in Section 3.1 over the HIBE
in Waters (2005).

The second HIBS scheme is motivated by the goal of
reducing the length of the signature. We show that one
can achieve this at the cost of increasing the size of the
public parameters. A similar trade-off between the sizes
of the ciphertext and public parameters is obtained in the
construction of HIBE-1 versus HIBE-2. But, the HIBS-2
scheme that we define below is not obtained from HIBE-2.

In HIBE-2, the decryption key consists of elements of
G2. In the signature setting this decryption key would
correspond to a signature and so a direct conversion of
HIBE-2 to a HIBS scheme would result in the signature
consisting of elements of G2. Instead, we describe a
variant, where the signature components are elements of
G1, thus reducing the size of the signature. As one may
surmise, this suggests that there is a corresponding HIBE
where decryption keys consist of elements of G1 and the
ciphertext consists of elements of G2. In the HIBE setting,
this seems to be of less practical importance and so we did
not provide the details of this construction.

5.1 HIBS

A HIBS scheme consists of four algorithms (which
are probabilistic and polynomial time in the security
parameter): Set-Up, KeyGen, Sign and Verify. For a HIBS
of height h (henceforth denoted as h-HIBS) any identity v
is a tuple (v1, . . . , vj) where 1 ≤ j ≤ h.

• HIBS.SetUp and HIBS.KeyGen(v, dv|j−1
, pk) are

exactly the same as that of a HIBE scheme.

• HIBS.Sign(v, dv,M, pk). Takes as input v, a
decryption key dv for v, the message M and pk, and
returns sig, the signature of M under the identity v.

• HIBS.Verify(v,M, sig, pk). Takes as input v, message
M , signature sig and outputs yes if sig is a valid
signature for M under v or if this does not hold, then
it outputs no.

The security model for existential unforgeability under
chosen message attacks consists of a game between an
adversary and a simulator and goes through the following
phases.

Set-up. The simulator sets up the HIBS scheme, i.e.,
generates the public parameter pk and the master secret key
for the scheme and provides the adversary with pk.

Queries. The adversary makes two types of queries in an
interleaved and adaptive manner.

• Extract queries. The adversary can ask for the private
key of any identity. The simulator provides a private
key for this identity and the distribution of the private
key should be the same as that generated by
HIBS.KeyGen.

• Signature queries. In this type of query, the adversary
provides an identity and a message. The simulator has
to provide a proper signature on the message under
the given identity.

Forgery. At the end of the interaction, the adversary outputs
a message M∗, an identity v∗ and a signature sig∗. The
adversary is successful if the followings hold.

Practical hybrid (hierarchical) identity-based encryption schemes 69

• HIBS.Verify(v∗,M∗, sig∗, pk) returns yes.
• The adversary has not made any previous key

extraction query on v∗ or any of its prefixes.

• The adversary has not made any previous signature
query on (M∗, v∗).

The advantage of an adversary is defined to be the
probability that the adversary succeeds in the above
game. As usual, the HIBS scheme is said to be
(t, qID, qS , ϵ)-secure if the advantage of any adversary
which runs in time t, makes qID key extraction queries and
qS signature queries is at most ϵ.

Note that by the third condition of the above definition,
the adversary cannot win by forging a ‘new’ signature
on an ‘old’ message. An weaker alternative requirement
to the third condition is to only require that the triplet
(M∗, v∗, sig∗) is ‘new’. A signature scheme which is secure
against such adversaries is said to be strongly unforgeable.

5.2 HIBS-1

Let H : {0, 1}∗ → {0, 1}n be a collision resistant hash
function. The output of H is assumed to consist of l blocks
where each block is an n/l-bit string considered to be an
element of the set {0, . . . , 2n/l − 1}. Messages are assumed
to be arbitrary binary strings and identities are assumed to
be of the type (str1, . . . , strj), 1 ≤ j ≤ h and strk is an
arbitrary binary string. These are hashed into n-bit strings
in the following manner. If msg is a message, then compute
H(0||msg), while if strk is a component of an identity tuple
then compute H(1||strk). This ensures that n-bit strings
obtained from messages will not be equal to n-bit strings
obtained from identity components (assuming that H is
collision resistant). Following the notation for our HIBE
scheme, we will write vk = H(1||strk).

With the above modifications, one can easily convert
an (h+ 1)-level HIBE as decribed in Section 3.1 to an
h-level HIBS. For an identity at the jth level, the signature
will be the private key of a (j + 1)-level identity, with the
message to be signed constituting the last level ‘identity’
in the hierarchy. The signature so constructed contains one
element of G1 and j + 1 elements of G2.

Set-up. The scheme is built from a Type 3 bilinear
pairing setting (p,G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e). Suppose
the maximum number of levels in the HIBS is h.

The PKG chooses random U ′
1, . . . , U

′
h+1, U1, . . . , Ul

from G1. The PKG also chooses a random R1 ∈ G1

and a random integer α ∈ Zp and computes Q2 = αP2

and e(R1, Q2). The public parameters are the following
elements: P2, e(R1, Q2), U ′

1, . . . , U
′
h+1, U1, . . . , Ul, The

master secret is αR1. The hash function H is also specified
as part of the set-up.

Key generation. Let (str1, . . . , strj) be the identity for
which a key has to be generated and let vk = H(1||strk).
A key corresponding to this identity is generated by
essentially applying the key generation algorithm of

the HIBE scheme in Section 3.1 to (v1, . . . , vj). For
example, for a first level identity str1, v1 = H(1||str1)
and the PKG computes the corresponding private key as
d0 = αR1 + r1V

(1)
1 (v1) and d1 = r1P2, where V

(1)
1 (v1) =

U ′
1 +

∑l
i=1 v1,iUi and r1 is chosen randomly from Z∗

p.
Similarly, the entity with a signing key for (v1, . . . , vj−1)
(i.e., for (str1, . . . , strj−1)) can generate a signing key for
(v1, . . . , vj) (i.e., for (str1, . . . , strj)).

Signing. Suppose a message msg is to be signed under an
identity (str1, . . . , strj). Let vk = H(1||strk), for 1 ≤ k ≤ j
and vj+1 = H(0||msg) and let v = (v1, . . . , vj). Suppose
that dv is a signing key for v (i.e., for (str1, . . . , strj)).

Then a signature on msg under the identity
(str1, . . . , strj) is obtained by applying the key generation
algorithm described above in the following manner. Using
the key dv for v, a key for the ‘identity’ (v1, . . . , vj , vj+1)
is created and this key is returned as the signature sig.

Verification. The input is a tuple (msg, (str1, . . . , strj), sig)
where sig is of the form (d0, d1, . . . , dj+1) ∈ G1 ×Gj+1

2 .
Let vk = H(1||strk), 1 ≤ k ≤ j and vj+1 = H(0||msg) and
let Vk = V

(1)
k (vk) for 1 ≤ k ≤ j + 1. The input is accepted

if the following equality holds:

e(d0, P2) = e(R1, Q2)×
j+1∏
k=1

e(Vk, di).

Correctness of the verification is similar to the correctness
of the decryption for the HIBE-1 scheme in Section 3.1.

5.2.1 Comparison to previous signature schemes

The HIBS scheme described above has h levels and can be
instantiated to obtain a usual signature scheme and an IBS.
If we put h = 0, then we obtain a usual signature scheme
where as if we put h = 1, then we obtain an IBS. For
h = 0, the PKG is the signer as in Naor’s transformation.
For h = 1, the individual entities as well as the PKG can
securely sign messages.

When considered as an IBS, the above scheme offers
substantial reduction in the size of the public parameters
as compared to the IBS scheme in Paterson and Schuldt
(2006). While the IBS scheme in Paterson and Schuldt
(2006) is described in the setting of symmetric pairing
and requires ((2(l + 1), 1, 1)) size public parameters, the
scheme described here is in the setting of asymmetric
pairing and requires (l + 2, 1, 1, 0) size public parameters.
There are two aspects to the efficiency improvement – the
first one is due to working with asymmetric pairings and
the second one is inherited from the efficiency improvement
of the HIBE scheme in Section 3.1 over the HIBE scheme
suggested by Waters (2005). While the scheme in Paterson
and Schuldt (2006) can also be converted to asymmetric
pairing setting, since it is based on the HIBE in Waters
(2005), the size of public parameters will still be about
double that of the scheme proposed here.

70 S. Chatterjee and P. Sarkar

5.3 HIBS-2

We now suggest a second HIBS scheme where the signature
consists of only elements of G1. This might be useful for
certain applications where it is important to reduce the
overall signature length.

H : {0, 1}∗ → {0, 1}n is a collision resistant hash
function as in the construction of HIBS-1. The processing
of messages and identities are the same as in HIBS-1 and
we follow the same notation as in the case of HIBS-1.

Set-up. The scheme is built from a Type 3 bilinear
pairing setting (G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e). Suppose the
maximum number of levels in the HIBS is h. The PKG
chooses random xi, yj ∈ Z∗

p, where 1 ≤ i ≤ h+ 1 and 1 ≤
j ≤ l and computes U ′

i = xiP1, W ′
i = xiP2, Uj = yjP1,

Wj = yjP2. The PKG also chooses a random R1 ∈ G1

and a random integer α ∈ Z∗
p and computes Q2 = αP2

and e(R1, Q2). The public parameters are the following
elements: P2, e(R1, Q2),

−→
U = (U ′

1, . . . , U
′
h+1, U1, . . . , Ul),

−→
W = (W ′

1, . . . ,W
′
h+1,W1, . . . ,Wl). The master secret is

αR1. The hash function H is also specified as part of the
set-up.−→

U ∈ Gh+1+l
1 in the public parameter will be used by

the signers (for both key generation and signing) to hash an
identity or a message into an element of G1 and we will
use the notation V1,k for this mapping. On the other hand,
−→
W ∈ Gh+1+l

2 will be used by the verifier to hash an identity
or a message into an element of G2 and we will use the
notation V2,k for this mapping. Note that, V1,k and V2,k are
as defined by (2) and (3) and beacuse of the choice of

−→
U

and
−→
W , we have logP1

Vk,1 = logP2
Vk,2.

Key generation. Let (str1, . . . , strj) be the identity for
which a key has to be generated and let vk = H(1||strk).
A key corresponding to this identity is generated by
essentially applying the key generation algorithm of
the HIBE scheme in Section 3.1 to (v1, . . . , vj). For
example, for a first level identity str1, v1 = H(1||str1)
and the PKG computes the corresponding private key as
d0 = αR1 + r1V1,1(v1) and d1 = r1P1, where V1,1(v1) =
U ′
1 +

∑l
i=1 v1,iUi and r1 is chosen randomly from Z∗

p.
Similarly, the entity with a signing key for (v1, . . . , vj−1)

(i.e., for (str1, . . . , strj−1)) can generate a signing key for
(v1, . . . , vj) (i.e., for (str1, . . . , strj)). Note that the signing
key thus generated contains elements of G1 only.

Signing. Suppose a message msg is to be signed under an
identity (str1, . . . , strj). Let vk = H(1||strk), for 1 ≤ k ≤ j
and vj+1 = H(0||msg) and let v = (v1, . . . , vj). Suppose
that dv is a signing key for v (i.e., for (str1, . . . , strj)).

Then a signature on msg under the identity
(str1, . . . , strj) is obtained by applying the key generation
algorithm described above in the following manner. Using
the key dv for v, a key for the ‘identity’ (v1, . . . , vj , vj+1)
is created and this key is returned as the signature sig.

Verification. The input is a tuple (msg, (str1, . . . , strj), sig)
where sig is of the form (d0, d1, . . . , dj+1) ∈ Gj+2

1 .
Let vk = H(1||strk), 1 ≤ k ≤ j and vj+1 = H(0||msg)

and let V2,i = V2,i(vi) for 1 ≤ i ≤ j + 1. The input is
accepted if the following equality holds:

e(d0, P2) = e(R1, Q2)×
j+1∏
i=1

e(di, V2,i).

Correctness of the verification is similar to the correctness
of the decryption for the HIBE scheme in Section 3.1.
Trade-off between HIBS-1 and HIBS-2 is shown in Table 4.

5.4 Security

The security of HIBS-1 and HIBS-2 is based on the
hardness of the co-CDH problem as defined in Section 2.4.

Theorem 3. The signature schemes HIBS-1 and HIBS-2
are (t, qID, qS , ϵhibs)-secure in the sense of existential
unforgeability under chosen message attacks under the
assumption that the co-CDH problem in (p,G1,G2, Gt, e)
is (ϵco-cdh, t′) hard with

ϵhibs ≤ (2(m(µl + 1))h+1)ϵco-cdh

where t′ ≤ t+ tsim and tsim is the simulation time, i.e., the
time to generate qID private keys, sign qS messages and
verify one signature; µl = l(2n/l − 1), m = max(2q, 2n/l)
and q = qID + qS . We further assume m(1 + µl) < p.

Table 4 Trade-off between HIBS-1 and HIBS-2

Scheme Parameter sizes
PP msk pvt key sig

HIBS-1 (h+ l + 2, 1, 1) (1, 0, 0) (1, j, 0) (1, j + 1, 0)
HIBS-2 (h+ l + 2, h+ l + 2, 1) (1, 0, 0) (j + 1, 0, 0) (j + 2, 0, 0)

Scheme Times
key gen sign ver

HIBS-1 1
[
H(1)

n,l

]
+1[SM1]+1[SM2] 1

[
H(1)

n,l

]
+1[SM1]+1[SM2] (j + 1)

[
H(1)

n,l

]
+[Pj+3]

HIBS-2 1
[
H(1)

n,l

]
+2[SM1] 1

[
H(1)

n,l

]
+2[SM1] (j + 1)

[
H(2)

n,l

]
+[Pj+3]

Notes: Here j denotes the number of components in the identity for which the computations are done. Key generation time shows
only the time for generating a key for the j th level using a key for the (j − 1)st level.

Practical hybrid (hierarchical) identity-based encryption schemes 71

Note.

1 In the proof below, we will assume that the
collision-resistant function H behaves like an injective
function, i.e., for distinct inputs, the outputs of H are
distinct. This allows a simplification of the theorem
statement and makes the similarity to the security
analysis for HIBE somewhat more clearer. Formally,
it is possible to include the collision-resistant property
of H in the theorem statement. This can be done
following the approach in Rogaway (2006) for
formalising the security of keyless hash functions.
But, this would complicate the statement quite a bit.
So, we have chosen the simpler approach.

2 The proof is similar to that of Theorem 1 and we only
provide the main idea for the case of HIBS-2. The
security of HIBS-1 can be established in an analogous
manner.

3 A major difference from the proof of Theorem 1 is
that the artificial abort step is not required in this case.

Proof. An instance of the co-CDH problem in
(p,G1,G2,GT , e) is a tuple (Q, zP1, zP2) where Q is a
random element of G1. Basically, the simulator B sets
up the HIBS scheme from the instance (Q, zP1, zP2) in
a manner similar to that in the proof of Theorem 1. The
parameter R1 is set to be equal to Q; Q2 is set to be equal
to zP2. We assume that the secret key is zR1 which is
also unknown to the simulator. (In fact, the solution to the
co-CDH instance is to compute zQ = zR1.) The parameters
U1, . . . , Ul and U ′

1, . . . , U
′
h+1 are defined exactly as in the

proof of Theorem 1 and can be computed from zP1. In a
similar fashion, the simulator can compute the parameters
W1, . . . ,Wl and W ′

1, . . . ,W
′
h+1 from zP2.

Private key queries and signature queries made by the
adversary A are handled using essentially the same method
for answering the private key queries in the proof of
Theorem 1. This may result in the simulator B requiring to
abort.

Finally, the adversary A outputs a forgery
(msg, (str1, . . . , strj), sig) for some j in {1, . . . , h}. As
before, let vk = H(1||strk), for 1 ≤ k ≤ j and vj+1 =
H(0||msg). Note that by the collision resistant assumption
on H , vj+1 is not equal to the output of an application
of H to any earlier identity component. Also, the
adversary should not have made an earlier sign query on
(msg, (str1, . . . , strj)).

The signature sig is of the form (d0 = zR1 +∑j+1
i=1 riV1,i, d1 = r1P1, . . . , dj+1 = rj+1P1). If any of the

values Fi(vi), 1 ≤ i ≤ j + 1 is non-zero, then B aborts
(this is similar to the generation of challenge ciphertext in
the proof of Theorem 1). Otherwise, B computes

riV1,i = riV1,i(vi) = ri(Fi(vi)zP1 + Ji(vi)P1)

= riJi(vi)P1

= Ji(vi)di.

Note that B can compute Ji(vi) and since di = riP1 is
given, B can indeed compute riVi.

The simulator B now computes zQ as follows.

zR1 = d0 −

(
j+1∑
i=1

riV1,i

)

= zR1 +

(
j+1∑
i=1

riV1,i

)
−

(
j+1∑
i=1

riV1,i

)
= zQ.

Thus, contingent on the fact that the simulator B does not
abort, we obtain an algorithm to solve the co-CDH problem.
Further, we assume that if B has to abort, then it returns a
random element of G1 as output which is equal to zQ with
probability 1/p. A lower bound on the probability that B
does not abort is obtained from Proposition 1.

Let succ(B) be the event that B is successful and let
succ(A) be the event that the forgery attempt of adversary
A is successful. Also, let ab be the event that B aborts.
Note that unlike Theorem 1, there is no artificial abort in
this case.

Pr[succ(B)] = Pr[succ(B)|ab] Pr[ab] + Pr[succ(B)|ab] Pr[ab]
≥ Pr[succ(A)]Pr[ab].

Using Pr[succ(B)] ≤ ϵco-cdh, we have

Pr[succ(A)] ≤ Pr[succ(B)]
Pr[ab]

≤ ϵco-cdh
λ−

.

Since this relation holds for all adversaries A running in
time t and making (qID, qS) queries and substituting the
value of λ− from Proposition 1 with m = 2q, we obtain the
required result. �

5.5 A short signature scheme

HIBS-2 when specialised to a signature scheme admits an
optimisation which leads to a small size signature while
avoiding the associated increase in the size of the public
parameters. Also, since there are no identities, the role of
the hash function H is limited to only mapping messages
to elements of Zp; in particular, it is not required to use
H to separate between message and identity spaces. In this
section, we provide the details of this scheme. The security
of the scheme follows from Theorem 3 by setting h = 0.

Set-up. The Type 3 bilinear pairing setting
(G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e) is used. The signer chooses
random x, y1, . . . , yl ∈ Z∗

p and computes W ′ = xP2,
Wj = yjP2. The signer also chooses a random R1 ∈ G1

and a random integer α ∈ Z∗
p and computes Q2 = αP2

and e(R1, Q2). The public key consists of the following
elements: (P2, e(R1, Q2), W,W1, . . . ,Wl). The signing
key is (αR1, x, y1, . . . , yl).

72 S. Chatterjee and P. Sarkar

Table 5 CCA-secure HIBE: parameter sizes and costs of different operations

Parameter sizes Times
PP msk pvt key cpr txt key gen enc dec

(h+ l + 1, 1, 1, 0) (1, 0, 0, 0) (2, j, 0, 0) (j + 1, 1, 0, 0) 1
[
H(1)

n,l

]
j
[
H(1)

n,l

]
+ 1[E] 1[P2] + 1[Pj+1]

+1[SM1] + 1[SM2] +(j + 2)[SM1] + 1[SM2] +1[SM1]

Notes: The variable j refers to the number of components in the input identity tuple. Since R1 is required only for decryption, we count
it as part of the decryption key and not as part of the public parameters. Costs of symmetric key operations are not shown.

Signing. Suppose a message msg is to be signed
and let v = H(msg). Choose a uniform random r
from Z∗

p and define the signature to be (d0, d1),
where d0 = αR1 + rV1,1(v), d1 = rP1, and V1,1(v) =(
x+

∑l
j=1 viyj

)
P1. Note that the signature consists of

two elements of G1.

Verification. The input is a tuple (msg, sig) where sig is of
the form (d0, d1). Let v = H(msg) and let V2,1 = V2,1(v).
The input is accepted if the following equality holds:

e(R1, Q2) = e(d0, P2)× e(d1,−V2,1)

=
e(d0, P2)

e(d1, V2,1)
.

Note Compared to HIBS-2 with h = 0, the Us are not
required and this saves (l + 1) elements of G1 from the
public parameters. There is an increase in the size of the
signing key by (l + 1) elements of Zp. Depending on the
application, this may not be significant. For example, if
the signing is to be done by a server, then the storage of
the signing key is not an issue, but the transmission of
the signatures will be important. On the other hand, if the
signing is to be done using a smart card, then requiring a
small signing key becomes more important and the trade-off
obtained by this scheme is less relevant.

This provides the smallest size signature among all
schemes whose security is based on a static assumption and
whose security reduction does not assume any function to
be a random oracle.

The signature scheme described by Waters (2005)
based on his IBE scheme also has two group elements
as the signature. But, the description is in the setting of
Type 1 pairing (symmetric pairing) and so, the lengths
of representations of these two group elements will be

significantly longer than the lengths of representations
of two elements of G1. A straightforward conversion of
Waters signature to asymmetric pairing setting will give a
scheme whose signatures consist of one element of G1 and
one element of G2. Achieving a signature scheme in the
Type 3 setting where the signature consists of two elements
of G1 is not a completely routine task.

6 CCA-secure HIBE protocol

In this section, we modify the CPA-secure HIBE-1 scheme
of Section 3.1 to obtain a CCA-secure HIBE scheme.
We provide an explicit hybrid scheme. This allows us
to improve the decryption efficiency as we explain later.
The modification consists of certain additions to the set-up
procedure as well as modifications of the encryption and
the decryption algorithms. No changes are required in the
key generation algorithm.

The HIBE-2 scheme of Section 3.2 can also be
converted in a similar manner to yield a CCA-secure
HIBE scheme. The details are very similar to the case
of HIBE-1 and are omitted. All the trade-offs of HIBE-1
versus HIBE-2 also hold under conversion to CCA-secure
schemes. When specialised to an IBE scheme, HIBE-2
admits an additional optimisation. This is discussed later
and we also provide the details of the IBE version of
HIBE-2 scheme.

The additions to HIBE-1 are based on the technique
used by Boyen-Mei-Waters (Boneh et al., 2005b) and are
also based on the IBE construction by Boneh and Boyen
(2004a) (BB-IBE). The BMW and the BB techniques are
described in the setting of symmetric pairing and we
convert these into the setting of asymmetric pairing. Some
new ideas – incorporating length of the identity into the
ciphertext and using symmetric key authentication to verify
ciphertext well formedness – are introduced. Also, an AE
scheme is used to combine the two tasks of symmetric key
encryption and authentication.

The description of the construction is given in Figure 1.
The bold portions of Figure 1 provide the additional
points required over the CPA-secure HIBE construction of
Section 3.1. We provide some intuition of how decryption
queries are answered. First, let us consider what happens if
we attempt to simulate decryption queries by key extraction
queries. The idea is that we use a key extraction query to
derive the private key of the identity which is provided
as part of the decryption query. Then this private key is
used to decrypt the ciphertext. This idea works fine except
for the situation where a decryption query is made on a
prefix of the challenge identity. Since, it is not allowed to
query the key extraction oracle on prefixes of the challenge
identity, the above simulation technique will not work. We
need an additional mechanism to answer such decryption
queries.

Practical hybrid (hierarchical) identity-based encryption schemes 73

Figure 1 CCA-secure HIBE

HIBE.SetUp

1. Choose α uniformly at random from Zp.
2. Set Q2 = αP2.
3. Choose R1, U

′
1, . . . , U

′
h, U1, . . . , Ul randomly from G1.

4. Choose W randomly from G1.
5. Let Hs : {1, . . . , h} ×G2 → Zp be chosen from a UOWHF

and made public.
6. Public parameters:

R1 (required only for decryption),
P2, e(R1, Q2), U

′
1, . . . , U

′
h, U1, . . . , Ul and W.

7. Master secret key: αR1.

HIBE.KeyGen: Identity v = (v1, . . . , vj).

1. Choose r1, . . . , rj randomly from Zp.
2. d0 = αR1 +

∑j
k=1 rkV

(1)
k (vk).

3. dk = rkP2 for k = 1, . . . , j.
4. Output dv = (d0, d1, . . . , dj).

HIBE.Encrypt: Identity v = (v1, . . . , vj); message M .

1. Choose t randomly from Zp.
2. C1 = tP2, B1 = tV

(1)
1 (v1), . . . , Bj = tV

(1)
j (vj).

3. K = e(R1, Q2)
t.

4. (IV, dk) = KDF(K).
5. (cpr, tag) = AE.Encryptdk(IV,M).
6. υ = Hs(j,C1); Wυ = W+ υR1; C2 = tWυ .
7. Output (C1,C2, B1, . . . , Bj , cpr, tag).

HIBE.Decrypt: Identity v = (v1, . . . , vj);
ciphertext (C1,C2, B1, . . . , Bj , cpr, tag);
decryption key dv = (d0, d1, . . . , dj).

1. υ = Hs(j,C1); Wυ = W+ υR1.
2. If e(Wυ,C1) ̸= e(C2,P2) return ⊥.
3. K = e(d0, C1)×

∏j
k=1 e(Bk,−dk).

4. (IV, dk) = KDF(K).
5. M = AE.Decryptdk(IV, C, tag).

(This may abort and return ⊥).
6. Output M .

Notes: 1 Maximum depth of the HIBE is h.
2 Identities are of the form v = (v1, . . . , vj), j ∈ {1, . . . , h}, vk = (vk,1, . . . , vk,l) and vk,i is an (n/l)-bit string.
3 The setting (p,G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e) is of Type 3 pairing as defined in Section 2.3.
4 The notation V

(1)
k () is given in (2).

5 Key generation is the same as the scheme in Section 3.1.

The mechanism that we have used is primarily based on
the BMW technique (Boneh et al., 2005b). The parameter
W along with R1 and Q2 define an instance of a BB-IBE
scheme. During encryption, an ‘identity’ υ = Hs(j, C1) for
this scheme is generated from the randomiser C1 = tP2

and the length j of the identity tuple. Using this identity,
a separate encapsulation of the key e(R1, Q2)

t is made.
This encapsulation consists of the element C2 (and C1). In
the security proof, if a decryption query is made on the
challenge identity, then this encapsulation is used to obtain
the private key of υ and answer the decryption query.

The use of the function Hs() is different from its use
in Boneh et al. (2005b). In Boneh et al. (2005b), the
function Hs() maps G1 to Zp. On the other hand, in the
HIBE scheme in Figure 1, Hs() maps {1, . . . , h} ×G2

to Zp. Our aim is to include information about the
length of the identity into the output of Hs(). Without
this information, an encryption for a (j + 1)-level identity
can be converted to an encryption for its j-level prefix
by simply dropping the term corresponding to the last
component in the identity.

The other aspect is that of checking for the
well formedness of the ciphertext. A well formed
ciphertext requires verifying that C1 = tP2, C2 = tWυ and
B1 = tV1(v1), . . . , Bj = tVj(vj). In other words, we need
to verify the following.

logP2
C1 = logWυ

C2 and logP2
C1

= logV1(v1)B1 = · · · = logVj(vj)Bj .

In Figure 1, the first equality is explicitly verified, whereas
the second equality is not. The idea is that if the second
equality does not hold, then the key K that will be
reconstructed will be improper and indistinguishable from
random (to the adversary). Correspondingly, the quantities
(IV, dk) will also be indistinguishable from random and
symmetric authentication with this pair will fail (otherwise
the adversary has broken the authentication of the AE
scheme). Thus, instead of using j pairings for verifying
the second equality, we use symmetric authentication to
reject invalid ciphertext. This leads to a more efficient
decryption algorithm. Note that the use of hybrid encryption
is very crucial in the current context. This is similar to the
Kurosawa-Desmedt PKE (Kurosawa and Desmedt, 2004),
which provides improved efficiency over the Cramer-Shoup
scheme for hybrid encryption.

The additional requirements of group elements and
operations for attaining CCA-security compared to the
scheme in Section 3.1 consists of the following.

1 one extra element W ∈ G1 in the public parameters

2 two additional scalar multiplications in G1 during
encryption

3 one additional scalar multiplication in G1 and one
pairing-based verification during decryption.

74 S. Chatterjee and P. Sarkar

6.1 Security statement

The security statement for the new scheme is given below.

Theorem 4. The HIBE scheme described in Figure 1
is (ϵhibe, t, qID, qC)-CCA secure assuming that the
(ϵdbdh, t

′)-DBDH assumption holds in (p,G1,G2,GT , e);
Hs is an (ϵuowhf , t

′)-UOWHF; KDF is (ϵkdf , t
′)-secure;

and the AE scheme possesses (ϵauth, t
′)-authentication

security and (ϵenc, t
′) one-time encryption security; where

ϵhibe ≤ q
p + ϵuowhf + 2h(m(µl + 1))hϵdbdh
+hqCϵauth + 2ϵkdf + ϵenc;

(36)

t′ = t+ tsim and tsim is the simulation time, i.e.,
the time to generate qID private keys, decrypt qC
ciphertexts and generate one ciphertext plus a time
of O(ϵ−2

hibe ln(ϵ
−1
hibe)λ

−1 ln(λ−1)); µl = l(2n/l − 1); m =
max(2q, 2n/l) and q = qID + qC . We further assume m(1 +
µl) < p.

The proof is given in Section 6.2. The statement of
Theorem 4 is almost the same as that of Theorem 1 with
the following differences.

1 The above theorem states CCA-security.

2 The security degradation of ϵdbdh is by a factor of
2h(m(µl + 1))h in the above statement where as it is
equal to 2(m(µl + 1))h in Theorem 1, i.e., there is an
additional degradation by a factor of h.

3 The value of q in the expression for m is the sum of
qID and qC whereas in Theorem 1 it is only qID. The
reason for having qC as part of q is that it may be
required to simulate decryption queries using key
extraction queries.

For 2q ≥ 2n/l (typically l would be chosen to ensure this),
we have

ϵhibe ≤ ϵuowhf + 2h(2lq2n/l)hϵdbdh

+2ϵkdf + ϵenc + hqCϵauth.

The corresponding upper bound on ϵhibe from Theorem 1
is (2lqID2n/l)hϵdbdh. Thus, we get an additional security
degradation by a factor of h while attaining CCA-security.
Since h is the maximum number of levels in the HIBE,
its value is small and the degradation is not significant.
Also, q in the present case includes both key extraction and
decryption queries.

6.2 Proof of Theorem 4

The construction of CCA-secure HIBE in Figure 1 is
built on the construction of CPA-secure HIBE given in
Section 3.1. The proof of Theorem 1 shows how to set-up
the scheme, answer key-extraction queries and generate the
challenge ciphertext. The proof of Theorem 4 incorporates
these aspects of the proof of Theorem 1. Additionally, we
have the following considerations.

1 definition of W during set-up.

2 generation of C2 during challenge generation as well
as generation of a proper ciphertext using the AE
scheme.

3 properly answering decryption queries.

The proof of Theorem 4 is given as a sequence of games.
In each game, a bit γ is chosen randomly and the adversary
makes a guess γ′. By Xi we denote the event that γ = γ′

in the ith game.

Game 0. This is the usual adversarial game for defining
CCA-security of HIBE schemes. We assume that the
adversary’s runtime is t, it makes qID key-extraction queries
and qC decryption queries. Also, we assume that the
adversary maximises the advantage among all adversaries
with similar resources. Thus, we have

ϵhibe =

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣ .
The group element C∗

1 which is provided to the adversary
during the challenge generation does not depend on the
adversary’s input. We will assume that this is randomly
chosen during setup. Also, we will assume that during
set-up an integer hθ is chosen uniformly at random from
{1, . . . , h}. The significance of hθ will become clear later.
We will denote the quantities corresponding to the challenge
by a superscript ∗.

Game 1. This is the same as Game 0, with the following
change. If the adversary ever submits a decryption query
of the form (C1, C2, B1, . . . , Bj) with (j, C1) ̸= (hθ, C

∗
1)

and Hs(j, C1) = Hs(hθ, C
∗
1), then the simulator rejects

the query. Let F1 be the event that a decryption query
is rejected only by this check. It is easy to see that
Pr[F1] ≤ ϵuowhf . If F1 does not occur, then Game 0 and
Game 1 are identical. Using the difference lemma (as
named in Shoup, 2004), we obtain

|Pr[X0]− Pr[X1]| ≤ Pr[F1] ≤ ϵuowhf .

Game 2. This game is the main non-trivial game
of the proof and is based on Game 1 in the proof
of Theorem 1. The scheme is setup from a tuple
(aP1, aP2, bP1, cP1, cP2, Z = e(P1, P2)

abc), where we
assume that a, b and c are known to the simulator. There are
four parts to this game – setup; simulation of key-extraction
queries; simulation of decryption queries; and challenge
generation.

As in Game 1 in the proof of Theorem 1, for certain
queries as well as for certain challenge identities, the
simulator is unable to answer without using the values of
a, b or c. In such cases, it sets a flag flg to 1 (which
is initially set to 0). However, it always answers the
adversary’s queries properly and hence the adversary’s view
remains unchanged from the previous game. Thus, we have
Pr[X1] = Pr[X2].

Practical hybrid (hierarchical) identity-based encryption schemes 75

Set-up. Set Q2 = aP2 and R1 = bP1. The secret key is
aR1 = abP1. Also, set C∗

1 = cP2 and hθ is chosen during
set-up as mentioned in Game 0.

The public parameters (U ′
1, . . . , U

′
h, U1, . . . , Ul) are

required to handle key extraction queries. The construction
of these parameters are as in the proof of Theorem 1.

The parameter W is required for answering decryption
queries (and is not present in the proof of Theorem 1). We
show how to define W . Compute υ = Hs(hθ, cP2); choose
β randomly from Zp and define W = −υbP1 + βP1. The
choice of hθ corresponds to the fact that at this point we
are guessing the length of the challenge identity.

Key extraction query. The technique for answering such
queries is as described in the proof of Theorem 1.

Decryption query. Suppose C = (C1, C2, B1, . . . , Bj) is a
decryption query for the identity v = (v1, . . . , vj). There are
several cases to consider.

Case (v1, . . . , vj) is not a prefix of (v∗1, . . . , v∗hθ
):. In this

case, a private key dv for v is obtained using the technique
for simulating key extraction query. This dv is used to
decrypt the ciphertext. In the process of key extraction, the
variable flg might have to be set to one.

Case (v1, . . . , vj) is a prefix of (v∗1, . . . , v∗hθ
):. If

either j < hθ or C1 ̸= C∗
1 , then by Game 1, we can

assume that Hs(j, C1) ̸= Hs(hθ, C
∗
1). So suppose that

(j, C1) = (hθ, C
∗
1). We assume that this happens only

in Phase 2. In Phase 1, the randomly chosen C∗
1 is not

available to the adversary and hence the event C1 = C∗
1

can occur only with negligible probability of q/p, which
accounts for the term q/p in the security bound.

Using j = hθ, we have (v1, . . . , vj) = (v∗1, . . . , v∗hθ
).

Recall that C∗
1 = cP2 and so C1 = C∗

1 implies that
C1 = cP2, i.e., logP2

(C1) = c. Now C∗
1 = cP2 implies

that B∗
i = cV

(1)
i (v∗i). Also, vi = v∗i implies V

(1)
i (vi) =

V
(1)
i (v∗i). This and logP2

(C1) = c implies Bi =

cV
(1)
i (vi) = cV

(1)
i (v∗i) = B∗

i , as otherwise the query
is necessarily mal-formed and is rejected. As a result,
(B1, . . . , Bj) = (B∗

1 , . . . , B
∗
j). Also, using (j, C1) =

(hθ, C
∗
1) it is easy to verify that C2 = C∗

2 . Thus, we have
(C1, C2, B1, . . . , Bj) = (C∗

1 , C
∗
2 , B

∗
1 , . . . , B

∗
j). In other

words, the decryption query is on the challenge ciphertext,
which is not allowed in the game. Hence, we cannot have
(j, C1) = (hθ, C

∗
1) and so Hs(j, C1) ̸= Hs(hθ, C

∗
1).

Let υ′ = Hs(j, C1) and Wυ′ =W + υ′bP1. The
simulator verifies whether e(Wυ′ , C1) = e(C2, P2) and
proceeds if the test succeeds. If the test fails, it returns
⊥ to A. Note that, at this point, since we have verified
that e(Wυ′ , C1) = e(C2, P2), we can write C1 = tP2 and
C2 = tWυ′ for some t in Zp.

Choose r randomly from Zp and compute Eυ′ and
dυ′ in the following manner. Recall that υ = Hs(hθ, cP2)

and W = −υbP1 + βP1. Since, υ′ = Hs(j, C1) ̸=
Hs(hθ, C

∗
1) = υ, the inverse of (υ′ − υ) (modulo p) exists.

Eυ′ = −β
υ′−υaP1 + r((υ′ − υ)bP1 + βP1)

= abP1 +
(
r − a

υ′−υ

)
(υ′bP1 +W)

= abP1 + r̃Wυ′

dυ′ = rP2 − 1
υ′−υaP2

= r̃P2.

(37)

This technique is based on Boneh et al. (2005b) which
is in turn based on the technique of Boneh and Boyen
(2004a). The verification of the above computation is quite
routine – in particular the second equality can be easily seen
by substituting W = −υbP1 + βP1.

The decryption can now be performed as follows.

e(Eυ′ , C1)

e(C2, dυ′)
=
e(abP1 + r̃Wυ′ , tP2)

e(tWυ′ , r̃P2)

= e(R1, Q2)
t.

Note that any such decryption query can be answered
without using the values of a, b or c.

The simulation of the decryption query makes the role
of W clear. The scheme uses K = e(Q1, R2)

t to be the
encapsulated secret key and creates two encapsulations of
it. The first encapsulation is using the HIBE scheme of
Section 3.1, where as the second encapsulation is using the
BB-IBE scheme from Boneh and Boyen (2004a). In the
actual scheme, the second encapsulation is never used (apart
from verifying its correctness). It is used in the simulation
to obtain K and answer a decryption query if the identity
of the decryption query is a prefix of the challenge identity.
The advantage is that the BB-IBE scheme is only required
to be selective-ID secure and hence the ‘challenge identity’
υ for the BB-IBE scheme can be generated during set-up.

Challenge. The adversary submits a challenge identity
(v∗1, . . . , v∗h∗) and two M0 and M1 of equal lengths. The
challenge ciphertext is of the form (C∗

1 , C
∗
2 , B

∗
1 , . . . , B

∗
h∗),

where we have already chosen C∗
1 = cP2 during set-up. The

components B∗
1 to B∗

h∗ are generated as in the proof of
Theorem 1.

The component C∗
2 is new to this scheme and we

show how to generate it. If h∗ ̸= hθ, then set flg to
1, i.e., the random guess of the length of the challenge
identity during the set-up turns out to be incorrect. In
this case, the simulator uses a, b and c to generate the
challenge and answer the adversary. Otherwise, set C∗

2 =
βcP1. This C∗

2 is properly formed. To see this first note
that υ = Hs(h

∗, cP2) and so we require C∗
2 = cWυ . This

follows from the following calculation.

C∗
2 = cWυ = c(υbP1 +W)

= c(υbP1 − υbP1 + βP1) = cβP1 = βcP1.

Choose a random bit γ. Set K∗ = Z and then apply the rest
of the encryption procedure to complete the encryption for
the message Mγ .

76 S. Chatterjee and P. Sarkar

Game 3. This game is the same as Game 2, with the only
difference that the Z in Game 2 is now replaced by a
random element of GT .

Details of how to obtain a DBDH solver from the two
games are given as part of the proof of Theorem 1. This
analysis also holds for the current proof. The only new
abort condition is during challenge generation, when h∗ ̸=
hθ. Since 1 ≤ h∗, hθ ≤ h and hθ is chosen randomly from
{1, . . . , h}, the probability of this new abort is 1/h. With
this small change, an analysis similar to the one done in the
proof of Theorem 1 shows the following result.

Proposition 6. |Pr[X2]− Pr[X3]| ≤ 2h(m(µl + 1))hϵdbdh.

Game 4. At this point, we have K∗ to be random. Since
we are assuming that a, b and c are known to the simulator,
we can also assume that u′j and ui are known to the
simulator such that U ′

j = u′jP1 and Ui = uiP1. This follows
easily from the definition of Ui and U ′

j given in (9) in the
proof of Theorem 1. More explicitly, u′j = (p−mkj + x′j)
b+ y′j and ui = xib+ yi.

Knowing the u′js and the uis and using the definition
of Vi in (2) we can assume that for any Vi, the simulator
is able to compute wi such that Vi = wiP1. The adversary
may submit a decryption query with C1 = tP2 and for
some i, Bi = t1Vi with t ̸= t1. The knowledge of wi allows
the simulator to test for this in the following manner:
If e(Vi, C1) ̸= e(wiC1, P2), then t1 ̸= t and the query is
malformed. The simulator can now detect and reject such
a query. Note that this checking is not done in the actual
scheme. So, we would like to be assured that the probability
of getting to this checking stage is small. In other words, we
would like to be assured that if the query is malformed as
above and the scheme does not reject it, then the adversary
has broken the authentication property of the AE scheme.

Let Rejection Rule 0 be the rule whereby a ciphertext is
rejected based on the failure of the authentication property
of the AE scheme. Let Rejection Rule 1 be the rejection
rule mentioned above. Let F4 be the event that a malformed
query is rejected by Rule 1 but not by Rule 0. Our aim is
to show that the probability of this happening is low. Note
that if no query is rejected by Rule 1, then Games 3 and 4
are identical.

From this point onwards, we will only be considering
decryption queries. The adversary makes a total of qC
decryption queries. We will use the superscript (ȷ) to
denote the quantities related to the ȷth decryption query.
For example, K(ȷ) denotes the input to KDF() in the ȷth
decryption query.

We now employ a ‘plug and pray’ technique used
in Kurosawa and Shoup (2005) and assume that the ıth

component of the ȷth query is malformed, i.e., C(ȷ)
1 = tP2

and B(ȷ)
ı = t1Vı(v(ȷ)ı) with t ̸= t1. Note that the ‘plug and

pray’ here also extends over the levels of the HIBE, a
feature which is not required in Kurosawa and Shoup
(2005). Let F ′

4 be the event that the query is not rejected by
Rule 0 but the ıth component of the ȷth query fails Rule 1.

Then Pr[F4] ≤ h× qC × Pr[F ′
4] and we have

|Pr[X3]− Pr[X4]| ≤ Pr[F4] ≤ h× qC × Pr[F ′
4]. (38)

We would like to upper bound Pr[F ′
4]. For this we use the

deferred analysis technique of Kurosawa and Shoup (2005).
Also, since we have done a ‘plug and pray’ over the levels
of the HIBE, henceforth we will assume that there is only
one level in the HIBE, i.e., we are considering an IBE
scheme. This will simplify the notation as this will result in
only one B which is of the form tV with V = wP1.

Game 5. We modify Game 4 in the following manner. If
the ȷth decryption query is detected to be malformed using
Rule 1, then we set K(ȷ) to be a random element of G2. We
now have to argue that this does not change the adversary’s
point of view. In effect, we are setting both K∗ and K(ȷ)

to be independent random elements and have to argue that
this is what the adversary can expect to see.

Let us now analyse the relationship between the identity
v∗ for the challenge ciphertext and the identity v(ȷ) for the
malformed query. There are two cases to consider.

Case v∗ = v(ȷ). In this case, the adversary cannot ask for
the private key of v(ȷ). Let the secret key corresponding to
v(ȷ) be (abP1 + rV (ȷ), rP2), where r is a random element
of Zp. Then the adversary expects K(ȷ) of the malformed
query to be

K(ȷ) =
e(abP1 + rV (ȷ), tP2)

e(t1V (ȷ), rP2)

= e(bP1, aP2)
t × e(P1, P2)

wr(t−t1).

Since t ̸= t1 (as the query is malformed) and r is uniform
random, K(ȷ) is also uniform random. On the other hand,
the adversary expects K∗ to be e(bP1, aP2)

t∗ where t∗ is
uniform random. Hence, the adversary expects K∗ to be
random. Further, the randomness of K(ȷ) and K∗ depend on
the randomness of r and t∗ which are independent. Hence,
the adversary also expects K(ȷ) and K∗ to be independent
and uniform random quantities as provided to the adversary.

Case v∗ ̸= v(ȷ). In this case, the adversary can ask for the
secret key for v(ȷ) but not before making the malformed
decryption query. If the adversary knows the secret key for
v(ȷ), then he can decrypt any ciphertext encrypted using
v(ȷ). Thus, it is useless for him to query the decryption
oracle using v(ȷ) after obtaining the secret key for v(ȷ).
Recall that we had disallowed such useless queries.

The adversary can first ask for the decryption of a
malformed query and then ask for the private key for
the same identity. We have to ensure that the answers to
the decryption and private key queries are consistent. By
consistency we mean the following. Suppose the adversary
makes a decryption query with v(ȷ) and later a private key
extraction query on v(ȷ). With the private key dv(ȷ) returned
to him, the adversary can decrypt its own earlier decryption
query. Consistency requires that the output given to him on
his decryption query should be equal to what he computes

Practical hybrid (hierarchical) identity-based encryption schemes 77

for himself. The next modification ensures this consistency.
In this case, the independence of K∗ and K(ȷ) will be easily
ensured.

Let the ȷth query be of the form (t(ȷ)P2, t
(ȷ)
1 V). Suppose

the simulator returns K(ȷ) = e(bP1, aP2)
t
(ȷ)
2 . On a later

private key query on v(ȷ), the simulator has to return
(abP1 + r(ȷ)V, r(ȷ)P2) for some uniform random r(ȷ) ∈ Zp.
The consistency requirement is satisfied if

e(P1, P2)
abt

(ȷ)
2 = e(bP1, aP2)

t
(ȷ)
2 = K(ȷ)

=
e(abP1 + r(ȷ)V, t(ȷ)P2)

e(t
(ȷ)
1 V, r(ȷ)P2)

= e(bP1, aP2)
t(ȷ) × e(V, P2)

r(ȷ)(t(ȷ)−t
(ȷ)
1)

= e(P1, P2)
abt(ȷ)+wr(t(ȷ)−t

(ȷ)
1 .

Recall that V = wP1. The above consistency condition can
be written as

t
(ȷ)
2 = t(ȷ) +

wr(ȷ)(t(ȷ) − t
(ȷ)
1)

ab
. (39)

Note that the simulator does not know t(ȷ) and t(ȷ)1 . The ȷth
malformed query is answered in the following manner. The
simulator chooses an r(ȷ) (required for answering a possible
future key extraction query on v(ȷ)) uniformly at random;
computes A = e(P1, P2)

abt(ȷ) (this can be done since the
simulator knows a, b and t(ȷ)P2) and then computes

B =
e(r(ȷ)V (ȷ), t(ȷ)P2)

e(t
(ȷ)
1 V (ȷ), r(ȷ)P2)

= e(P1, P2)
r(ȷ)w(t(ȷ)−t

(ȷ)
1).

Note that both numerator and denominator is computable
from what is known to the simulator. Then the
simulator computes K(ȷ) = (A×B)1/(ab) which is equal
to e(bP1, aP2)

t
(ȷ)
2 where t(ȷ)2 is as given in (39). This value

K(ȷ) is returned to the adversary. Since r(ȷ) is random, so
is t(ȷ)2 and hence K(ȷ) is random. Later if the adversary asks
for the private key for v(ȷ), then the simulator uses r(ȷ) to
construct the private key and answer the adversary.

Define F ′
5 in a manner similar to F ′

4. Then we have

Pr[X4] = Pr[X5] and Pr[F ′
4] = Pr[F ′

5]. (40)

Game 6. This is obtained from Game 5 by the following
modification. In Game 5, the keys (IV,∗ dk∗) and
(IV(ȷ), dk(ȷ)) are obtained by applying KDF to K∗ and
K(ȷ) respectively. In Game 6, these are generated randomly.
Define F ′

6 in a manner similar to that of F ′
4. Then we have

|Pr[X5]− Pr[X6]| ≤ 2ϵkdf and |Pr[F ′
5] = Pr[F ′

6]|. (41)

The factor of two comes due to the fact that the adversary
can break one out of these two invocations of KDF.

In Game 6, K∗ and (IV, dk) are random and
independent of the elements C∗

1 , C
∗
2 , B

∗
1 , . . . , B

∗
h∗ . The

message Mγ is encrypted using the random (IV∗, dk∗).
If the adversary is able to correctly guess γ, then the
one-time security of the AE scheme is broken. Hence,
|Pr[X6]− 1/2| ≤ ϵenc.

Now, we turn to bounding the probability of the event
F ′
6. Recall that the occurrence of the event F ′

6 implies that
the query has passed the authentication of the underlying
AE scheme. At this point, we have Kȷ to be uniform
random and hence, using the security of KDF, the pair
(IVȷ, dkȷ) is also uniform random (and unknown to the
adversary). Thus, the adversary has been able to obtain
a forgery for the AE scheme under a uniform random
key (without even making any previous queries for this
key). This violates the authentication property of the AE
scheme and hence Pr[F ′

6] ≤ ϵauth. Finally, combining all
the inequalities, we obtain

ϵhibe =

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣
≤ |Pr[X0]− Pr[X1]|+ |Pr[X2]

− Pr[X3]|+ |Pr[X3]− Pr[X4]|
+ |Pr[X5]− Pr[X6]|+ |Pr[X6]− 1/2|

≤ q/p+ ϵuowhf + 2h(m(µl + 1))hϵdbdh

+ hqCϵauth + 2ϵkdf + ϵenc.

This completes the proof. �

6.3 Comparison to previous work

The CCA-secure HIBE scheme constructions described
in the previous section can be specialised to obtain
CCA-secure PKE and IBE as special cases. We show that
when specialised to a PKE scheme, one gets the BMW
construction in the Type 3 setting. When specialised to IBE
schemes, we obtain more efficient IBE schemes compared
to the previously best known constructions.

Public key encryption. In this case there are no identities
and no PKG. It is possible to make the following
simplifications.

SetUp:

1 the elements U ′
1, . . . , U

′
h, U1, . . . , Ul are no longer

required

2 the UOWHF Hs can be replaced by an injective
embedding from G2 to Zp

3 a random w in Zp is chosen and W is set to be equal
to wP1

4 a random α ∈ Zp is chosen and R1 is set to be equal
to αP1

5 the secret key is now (αQ2, α, w) ∈ G2 × Z2
p while

the public key is (P1,W, e(R1, Q2)) ∈ G2
1 ×GT

78 S. Chatterjee and P. Sarkar

6 the AE scheme can be replaced with a one-time
secure data encapsulation mechanism (DEM)

7 the public key consists of two elements of G1 and a
single element of GT . The secret key, on the other
hand, consists of a single element of G2 and two
elements of Zp.

KeyGen: This is not required at all.

Encrypt:

1 set C1 = tP1. Note that C1 is now an element of G1

which reduces the ciphertext overhead

2 the elements B1, . . . , Bj are not required

3 encryption with a DEM will not produce a tag.
4 the ciphertext expansion consists of two elements of

G1

5 one encryption takes time 3[SM1] + 1[E].

Decrypt:

1 The purpose of the pairing verification in (H)IBE was
to ensure that the same randomiser t is used in the
computation of C1 and C2.from 1 to h. For an IBE,
the length is always one. Hence, in this Recall that
C1 = tP1 and C2 = tWυ, where Wυ =W + υR1.
With the knowledge of w and α, this can be done as
follows. Compute w′ = w + υα and verify whether
w′C1 = C2. This requires only one scalar
multiplication in G1 as opposed to one pairing
verification. It is also due to such verification that we
are able to work with C2 in G1 which follows from
W being in G1. The HIBE in Figure 1 has W ∈ G2

and hence C2 also in G2.

2 The value of K is reconstructed as K = e(C1, αQ2).

3 Since the AE scheme is replaced with a DEM,
symmetric authentication will not be done.

4 The time for decryption is 1[SM1] + 1[P1].

With these simplifications, we obtain the BMW scheme
in the Type 3 pairing setting. The details are shown
in Figure 2. A security reduction for this scheme can
be extracted from the proof of Theorem 4 and will be
the Type 3 counter-part of the proof in Boneh et al.
(2005b). The efficiency of the Type 3 variant of BMW is
comparative with the well-known (Kurosawa and Desmedt,
2004) PKE scheme.

Identity-based encryption. In this case h = 1. The
scheme in Figure 1 remains unchanged except for one
simplification. In a HIBE, the length of the identity tuple
can vary from 1 to h. For an IBE, the length is always one.
Hence, in this case, we can restrict the domain of Hs to be
G2. Since, G2 has cardinality p, the domain and range of
Hs are the same and we can also take Hs to be an injective
embedding from G2 to Zp as has been done in the BMW
construction.

Let us denote the IBE scheme arising from the HIBE
scheme in Figure 1 to be IBE-1. This corresponds to
converting the (CPA-secure) HIBE-1 scheme in Section 3.1
to a CCA-secure HIBE scheme and then instantiating that
to an IBE by putting h = 1 (except for doing away with
the length as an input to Hs). As mentioned earlier, one
can similarly convert HIBE-2 of Section 3.2 to obtain a
CCA-secure HIBE scheme. For this scheme, when h = 1
there is an additional optimisation that is possible where
the public key size can be made equal to that of IBE-1 at
the cost of increasing the size of the master secret key. In
Figure 3 we provide the details of this IBE scheme which
we call IBE-2.

Figure 2 CCA-secure PKE scheme

PKE.SetUp

1. Choose α randomly from Zp;
2. Choose w randomly from Zp;
3. Set R1 = αP1; W = αP1.
4. Choose Q2 randomly from G2.
5. Let Hs : G2 → Zp be chosen

from a UOWHF and made public.
6. Public key: e(R1, Q2),W, P1.
7. Secret key: αQ2, α, w.

PKE.Encrypt message M .

1. Choose t randomly from Zp.
2. C1 = tP1,
3. K = e(R1, Q2)

t.
4. dk = KDF(K).
5. (cpr, tag) = DEM.Encryptdk(M).
6. υ = Hs(C1); Wυ = W + υR1; C2 = tWυ .
7. Output (C1, C2, cpr).

PKE.Decrypt: ciphertext (C1, C2, cpr);
secret key αQ2, α, w.

1. υ = Hs(C1); w′ = w + υα;
2. If w′C1 ̸= C2 return ⊥.
3. K = e(C1, αQ2).
4. dk = KDF(K).
5. M = DEM.Decryptdk(C).
6. Output M .

Note: The pairing setting (p,G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e) is as defined in Section 2.3.

Practical hybrid (hierarchical) identity-based encryption schemes 79

Figure 3 IBE-2: a CCA-secure IBE scheme

IBE.SetUp

1. Choose α randomly from Zp;
2. Set R1 = αP1; R2 = αP2.
3. Choose Q2 randomly from G2.
4. Choose x, y1, . . . , yl randomly from Zp.
5. Set U ′ = xP1, U1 = y1P1, . . . , Ul = ylP1.
6. Choose w randomly from Zp;
7. Set W1 = wP1; W2 = wP2;
8. Let Hs : G2 → Zp be chosen

from a UOWHF and made public.
9. Public parameters:

R2,W2 (required only for decryption)
R1, P1,W1, e(R1, Q2), U

′, U1, . . . , Ul.
10. Master secret key: αQ2, x, y1, . . . , yl.

IBE.KeyGen: Identity v.

1. Choose r randomly from Zp.
2. d0 = αQ2 + r

(
x+

∑l
i=1 viyi

)
P2.

3. d1 = rP2.
4. Output dv = (d0, d1).

IBE.Encrypt: Identity v; message M .

1. Choose t randomly from Zp.
2. C1 = tP1, B1 = tV (1)(v).
3. K = e(R1, Q2)

t.
4. (IV, dk) = KDF(K).
5. (cpr, tag) = AE.Encryptdk(IV,M).
6. υ = Hs(C1); Wυ = W1 + υR1; C2 = tWυ .
7. Output (C1, C2, B1, cpr, tag).

IBE.Decrypt: Identity v;
ciphertext (C1, C2, B1, cpr, tag);
decryption key dv = (d0, d1).

1. υ = Hs(C1); W ′
υ = W2 + υR2.

2. If e(C1,W
′
υ) ̸= e(C2, P2) return ⊥.

3. K = e(d0, C1)× e(B1,−d1).
4. (IV, dk) = KDF(K).
5. M = AE.Decryptdk(IV, C, tag).

(This may abort and return ⊥).
6. Output M .

Notes: 1 Identities are n-bit strings and an identity v is written as v = (v1, . . . , vl) where vi is an (n/l)-bit string.
2 The pairing setting (p,G1 = ⟨P1⟩,G2 = ⟨P2⟩,GT , e) is as defined in Section 2.3.
3 The notation V

(1)
k and V

(2)
k are as given in (2) and (3) respectively.

A proof of security for IBE-2 can be described quite easily
along the lines of Theorem 4. The hard problem would be
the DBDH-3b problem described in Section 2.4 (in fact, the
security of HIBE-2 can also be based on the hardness of the
DBDH-3b problem). In the simulation, we set Q2 = aP2,
R1 = bP1, R2 = bP2, C∗

1 = cP1, W1 = −υ(bP1) + βP1

and W2 = −υ(bP2) + βP2.
Let us now compare IBE-1 and IBE-2 with the previous

construction by Kiltz and Galindo (KG) (2009). This
comparison is given in Table 6. For IBE-2 (as shown in
Figure 3), in Table 6, we have included R2 and W2 as
part of the decryption key and not as part of the public
parameters. These two quantities are not required for
encryption and in real implementations would be passed to
a user along with the decryption key.

Kiltz and Galindo (2009) suggests a method of
implicit rejection. They construct an identity-based key
encapsulation mechanism such that the following holds.
If the ciphertext is valid (i.e., the ciphertext has been
produced by invoking the encapsulation algorithm), then
the proper key is generated, while if the ciphertext is
invalid, then a random key is generated. When combined
with a one-time secure DEM, the decryption algorithm

of the corresponding IBE scheme never rejects any
ciphertext. This results in replacing some of the pairing
computations by scalar multiplications.

In a work subsequent to the publication of our
conference paper (Sarkar and Chatterjee, 2007), Kiltz
and Vahlis (KV) (2008) use symmetric authentication
techniques (akin to the techniques used in Sarkar and
Chatterjee, 2007) and a different hardness assumption to
obtain an IBE having improved efficiency of encryption
and decryption. The assumption they use is the one used
in Boneh et al. (2005a) and Chatterjee and Sarkar (2006b)
tailored to work for IBE: given P, aP, bP, b2P, cP and Z,
determine whether Z is equal to e(P, P)abc or whether Z
is random. This is called the mBDDH assumption in Kiltz
and Vahlis (2008). In comparison to the more usual DBDH
assumption, in this case, the extra element b2P is provided.
The more general version of this assumption was introduced
in Boneh et al. (2005a) where biP for several more values
of i are provided as part of the problem instance. Coming
back to the mBDDH assumption, the extra element b2P
allows the proof of the scheme in Kiltz and Vahlis (2008)
to simulate the generation of an extra element as part of the
secret key. Due to this reason (and also because of the use

80 S. Chatterjee and P. Sarkar

of symmetric authentication) the efficiency of encryption
and decryption is improved. This, however, comes at a
cost. For one thing, the underlying assumption is stronger;
secondly, the number of group elements in the private
key is more than that used in the current scheme and the
KG-IBE. Also, the key generation time is more, though
this is of less significance, since key generation is a less
frequent activity.

For the KG and KV schemes, Table 6 shows the costs
assuming symmetric pairings. For the same security level,
the sizes of representations of group elements for symmetric
pairing implementation is a few times larger than that
for asymmetric pairing implementation. The KG schemes
can be converted to the setting of asymmetric pairings.
This, however, will not be useful, since the decryption
algorithm (with or without using implicit rejection) will
be slower than the decryption algorithms of IBE-1 and
IBE-2. For KG with implicit rejection, basically, the time
for the four extra scalar multiplications plus a hash of
the identity will be more than the time difference arising
between 2[P2] and 1[P3]. This is due to the fact that we use
symmetric key authentication to replace pairing operations,
something which is not done by KG. Conversion of the KV
scheme to the setting of asymmetric pairing (as has been
considered in the full version) will provide faster encryption
and decryption algorithms. The trade-off is that a stronger
hardness assumption is used and also the private key size
will be longer and key generation time will be more. In
summary, if one is interested in IBE schemes based on the
hardness of the DBDH assumption, then IBE-1 and IBE-2
are the currently known most efficient CCA-secure IBE
schemes which are secure in the full model without the
random oracle heuristic.

Hierarchical identity-based encryption. Based on the work
by BMW (Boneh et al., 2005b), the KG paper (Kiltz and
Galindo, 2009) sketches a construction of a HIBE scheme
(in the setting of symmetric pairing). This is based on
Waters (2005) HIBE scheme and so the number of public
parameters is significantly more compared to the schemes
described here. Also, the advantage of using symmetric key

authentication to replace pairing computation extends to our
HIBE schemes. As a result, for small depth h = 2, 3, the
HIBE schemes described here are the best known schemes
which are secure in the full model, does not use the random
oracle heuristics and are based on the hardness of the
DBDH problem.

7 Concluding remarks

In this paper, we revisited the problem of constructing
practical (hierarchical) IBE based on the DBDH
assumption. Our starting point is Waters (2005) (H)IBE
scheme and its generalisations and improvements that had
been proposed in our earlier conference papers (Chatterjee
and Sarkar, 2005, 2006a). These (H)IBE constructions are
recast in the most efficient setting of asymmetric pairings
which is the Type 3 setting. Moving from symmetric to
asymmetric pairing settings leads to several variants of the
basic scheme with associated trade-offs.

We described two such variants of the CPA-secure
HIBE and then showed how to modify them to obtain
CCA-secure hybrid schemes. The final schemes are secure
against adaptive adversaries (making both key extraction
and decryption queries) without using the random oracle
heuristic. Security is based on the hardness of the DBDH
problem. To the best of our knowledge, in this setting,
the IBE schemes described in this paper are the currently
known most efficient constructions.

Following Naor’s transformation, we have described
how to obtain a HIBS scheme by modifying the CPA-secure
HIBE schemes. Instances of the HIBS schemes result in a
usual signature scheme as well as an IBS scheme both of
which improve upon previously known proposals under the
same assumption. Improvements of constructions for other
cryptographic primitives are possible using the ideas given
here. We mention two such examples.

Table 6 Comparison of parameter sizes and costs of different operations

Scheme assump Parameter sizes Times
PP msk pvt key cpr txt key gen enc dec

IBE-1 DBDH (l + 2, 1, 1, 0) (1, 0, 0, 0) (2, 1, 0, 0) (2, 1, 0, 0) 1
[
H(1)

n,l

]
+ 1

[
H(1)

n,l

]
+ 1[E]+ 2[P2] + 1[SM1]

1[SM1] + 1[SM2] 3[SM1] + 1[SM2]

IBE-2 DBDH (l + 4, 0, 1, 0) (1, 0, 0, l + 1) (0, 4, 0, 0) (3, 0, 0, 0) 2[SM2] 1
[
H(1)

n,l

]
+ 1[E] 2[P2] + 1[SM2]

+4[SM1]
KG (Kiltz and DBDH ((l + 3, 1, 0)) ((1, 0, 0)) ((2, 0, 0)) ((3, 0, 0)) 1[Hn,l] + 2[SM] 1[Hn,l] 3[SP2] + 1[Hn,l]
Galindo, 2009) +4[SM] + 1[SE] +1[SM]
KG (Kiltz and DBDH ((l + 3, 1, 0)) ((1, 0, 0)) ((2, 0, 0)) ((3, 0, 0)) 1[Hn,l] + 2[SM] 1[Hn,l]+ 1[SP3] + 1[Hn,l]
Galindo, 2009) 4[SM] + 1[SE] +5[SM]
(imp rej)
KV (Kiltz and mBDDH ((l + 2, 1, 0)) ((1, 0, 0)) ((3, 0, 0)) ((2, 0, 0)) 1[Hn,l] + 3[SM] 1[Hn,l]+ 1[SP2] + 1[SM]
Vahlis, 2008) 3[SM] + 1[SE]

Note: Costs of symmetric key operations are not shown.

Practical hybrid (hierarchical) identity-based encryption schemes 81

1 A wildcard IBE (WIBE) extends the notion of HIBE.
This primitive was introduced in Abdalla et al. (2006).
Birkett et al. (2007) provided a construction of a
CCA-secure WIBE by modifying the Kiltz-Galindo
scheme (KG-HIBE) in Kiltz and Galindo (2009). The
conversion from KG-HIBE to WIBE described
in Birkett et al. (2007) can be applied to the HIBE
described in this work to obtain a different WIBE.

a As in Kiltz and Galindo (2009), the WIBE
scheme in Birkett et al. (2007) works with
symmetric pairings and requires ((h(n+ 1), 1, 1))
size public parameters. Using our technique in
the asymmetric pairing setting, this will come
down to (h+ l, 1, 1, 0) where one can choose a
suitable l between 1 and n. Even for l = n, the
number of public parameters is substantially less
than that of Birkett et al. (2007). This reduction
in public parameters is inherited from the
reduction in public parameters of the HIBE in
Section 3.1 over the HIBE suggested in Waters
(2005) and Kiltz and Galindo (2009).

b Recall that the KG-HIBE makes several
pairing-based verifications to check the
well-formedness of the ciphertext. The
CCA-secure HIBE scheme given in this work
removes these pairings and performs
well-formedness check using symmetric
authentication. This results in a WIBE whose
decryption algorithm is more efficient than what
has been reported in Birkett et al. (2007). The
details of the construction and the proof are fairly
straightforward from the description given
in Birkett et al. (2007) and the current work.

2 A 2-level Waters (2005) HIBE has been used to
construct a CCA-secure certificateless encryption
(CLE) scheme in Dent et al. (2008) using the setting
of symmetric pairings. Again using the HIBE scheme
of the present work, one obtains a CLE scheme in the
setting of asymmetric pairings with significantly
smaller size public parameters as well as a more
efficient decryption algorithm.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments.

References
Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G.

and Smart, N.P. (2006) ‘Identity-based encryption gone
wild’, in Bugliesi, M., Preneel, B., Sassone, V. and
Wegener, I. (Eds.): ICALP (2), Lecture Notes in Computer
Science, Vol. 4052, pp.300–311, Springer.

Abe, M., Gennaro, R., Kurosawa, K. and Shoup, V.
(2005) ‘Tag-KEM/DEM: a new framework for hybrid
encryption and a new analysis of Kurosawa-Desmedt KEM’,
in Cramer, R. (Ed.): Advances in Cryptology – EUROCRYPT
2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Proceedings,
Lecture Notes in Computer Science, Aarhus, Denmark,
Springer, 22–26 May, Vol. 3494, pp.128–146.

Batten, L.M. and Safavi-Naini, R. (Eds.) (2006) Information
Security and Privacy, 11th Australasian Conference, ACISP
2006, Proceedings, Lecture Notes in Computer Science,
Springer, Melbourne, Australia, 3–5 July, Vol. 4058.

Bellare, M. and Ristenpart, T. (2009) ‘Simulation without
the artificial abort: Simplified proof and improved
concrete security for Waters’ IBE scheme’, in Joux, A.
(Ed.): EUROCRYPT, Lecture Notes in Computer Science,
Vol. 5479, pp.407–424, Springer.

Birkett, J., Dent, A.W., Neven, G. and Schuldt, J.C.N.
(2007) ‘Efficient chosen-ciphertext secure identity-based
encryption with wildcards’, in Pieprzyk, J., Ghodosi, H.
and Dawson, E. (Eds.): ACISP, Lecture Notes in Computer
Science, Vol. 4586, pp.274–292, Springer.

Boneh, D. and Boyen, X. (2004a) ‘Efficient selective-ID
secure identity-based encryption without random oracles’,
in Cachin, C. and Camenisch, J. (Eds.): Advances in
Cryptology – EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic
Techniques, Proceedings, Lecture Notes in Computer
Science, Interlaken, Switzerland, Springer, 2–6 May,
Vol. 3027, pp.223–238.

Boneh, D. and Boyen, X. (2004b) ‘Secure identity based
encryption without random oracles’, in Franklin, M.K.
(Eds.): Advances in Cryptology – CRYPTO 2004, 24th
Annual International Cryptology Conference, Proceedings,
Lecture Notes in Computer Science, Springer, Santa Barbara,
California, USA, 15–19 August, Vol. 3152, pp.443–459.

Boneh, D. and Boyen, X. (2004) ‘Short signatures without
random oracles’, Cachin, C. and Camenisch, J. (Eds.):
Advances in Cryptology – EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, Lecture Notes in Computer
Science, Interlaken, Switzerland, Springer, 2–6 May,
Vol. 3027, pp.56–73.

Boneh, D. and Franklin, M.K. (2003) ‘Identity-based encryption
from the weil pairing’, SIAM J. Comput., Vol. 32, No. 3,
pp.586–615; earlier version appeared in the Proceedings of
CRYPTO 2001.

Boneh, D., Boyen, X. and Goh, E-J. (2005a) ‘Hierarchical
identity based encryption with constant size ciphertext’,
in Cramer, R. (Ed.): Advances in Cryptology – EUROCRYPT
2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Proceedings,
Lecture Notes in Computer Science, Aarhus, Denmark,
Springer, 22–26 May, Vol. 3494, pp.440–456; Full version
available at Cryptology ePrint Archive; Report 2005/015.

Boyen, X., Mei, Q. and Waters, B. (2005b) ‘Direct chosen
ciphertext security from identity-based techniques’,
in Atluri, V., Meadows, C. and Juels, A. (Eds.): ACM
Conference on Computer and Communications Security,
ACM, pp.320–329.

82 S. Chatterjee and P. Sarkar

Boneh, D., Lynn, B. and Shacham, H. (2001) ‘Short signatures
from the Weil pairing’, in Boyd, C. (Ed.): ASIACRYPT,
Lecture Notes in Computer Science, Springer, Vol. 2248,
pp.514–532.

Boyen, X. (2008a) ‘Flexible IBE and beyond in the
commutative-blinding framework’, in Joye, M. and
Neven, G. (Eds.): Identity-Based Cryptography, Volume 2 of
Cryptology and Information Security Series, IOS Press.

Boyen, X. (2008b) ‘The uber-assumption family’, in
Galbraith, S.D. and Paterson, K.G. (Eds.): Pairing, Lecture
Notes in Computer Science, Vol. 5209, pp.39–56, Springer.

Cachin, C. and Camenisch, J. (Eds.) (2004) Advances in
Cryptology – EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic
Techniques, Proceedings, Lecture Notes in Computer
Science, Interlaken, Switzerland, Springer, 2–6 May,
Vol. 3027.

Canetti, R., Halevi, S. and Katz, J. (2004) ‘Chosen-ciphertext
security from identity-based encryption’, in Cachin,
C. and Camenisch, J. (Eds.) (2004) Advances in
Cryptology – EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic
Techniques, Proceedings, Lecture Notes in Computer
Science, Interlaken, Switzerland, Springer, 2–6 May,
Vol. 3027, pp.207–222.

Chatterjee, S. and Menezes, A. (2011) ‘On cryptographic
protocols employing asymmetric pairings – the role of Ψ
revisited’, Discrete Applied Mathematics, Vol. 159, No. 13,
pp.1311–1322.

Chatterjee, S. and Sarkar, P. (2005) ‘Trading time for space:
towards an efficient IBE scheme with short(er) public
parameters in the standard model’, in Won, D.H. and Kim, S.
(Eds.): ICISC, Lecture Notes in Computer Science, Springer,
Vol. 3935, pp.424–440.

Chatterjee, S. and Sarkar, P. (2006a) ‘HIBE with short public
parameters without random oracle’, in Lai, X. and Chen, K.
(Eds.): ASIACRYPT, Lecture Notes in Computer Science,
Springer, Vol. 4284, pp.145–160; see also Cryptology ePrint
Archive, Report 2006/279.

Chatterjee, S. and Sarkar, P. (2006b) ‘New constructions of
constant size ciphertext HIBE without random Oracle’,
in Rhee, M.S. and Lee, B. (Eds.): ICISC, Lecture Notes in
Computer Science, Springer, Vol. 4296, pp.310–327.

Chatterjee, S., Hankerson, D., Knapp, E. and Menezes, A. (2010)
‘Comparing two pairing-based aggregate signature schemes’,
Des. Codes Cryptography, Vol. 55, Nos. 2–3, pp.141–167.

Chaum, D., Evertse, J-H. and van de Graaf, J. (1987)
‘An improved protocol for demonstrating possession
of discrete logarithms and some generalizations’, in
EUROCRYPT, pp.127–141.

Cramer, R. (Ed.) (2005) Advances in Cryptology – EUROCRYPT
2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Proceedings,
Lecture Notes in Computer Science, Aarhus, Denmark,
Springer, 22–26 May, Vol. 3494.

Cramer, R. and Shoup, V. (2003) ‘Design and analysis of
practical public-key encryption schemes secure against
adaptive chosen ciphertext attack’, SIAM J. Comput., Vol. 33,
No. 1, pp.167–226.

Dent, A.W., Libert, B. and Paterson, K.G. (2008) ‘Certificateless
encryption schemes strongly secure in the standard model’,
in Cramer, R. (Ed.): Public Key Cryptography, Lecture Notes
in Computer Science, Springer, Vol. 4939, pp.344–359.

Franklin, M.K. (Ed.) (2004) Advances in Cryptology – CRYPTO
2004, 24th Annual International Cryptology Conference,
Proceedings, Lecture Notes in Computer Science, Springer,
Santa Barbara, California, USA, 15–19 August, Vol. 3152.

Freeman, D., Scott, M. and Teske, E. (2010) ‘A taxonomy
of pairing-friendly elliptic curves’, J. Cryptology, Vol. 23,
No. 2, pp.224–280.

Galbraith, S.D., Paterson, K.G. and Smart, N.P. (2008) ‘Pairings
for cryptographers’, Discrete Applied Mathematics, Vol. 156,
No. 16, pp.3113–3121.

Galindo, D. (2004) ‘The exact security of pairing based
encryption and signature schemes’, Based on a talk at
Workshop on Provable Security, INRIA, Paris, available from
author’s website.

Gentry, C. (2006) ‘Practical identity-based encryption without
random oracles’, in Vaudenay, S. (Ed.): EUROCRYPT,
Lecture Notes in Computer Science, Springer, Vol. 4004,
pp.445–464.

Gentry, C. and Halevi, S. (2009) ‘Hierarchical identity based
encryption with polynomially many levels’, in Reingold, O.
(Ed.): TCC, Lecture Notes in Computer Science, Springer,
Vol. 5444, pp.437–456.

Gentry, C. and Silverberg, A. (2002) ‘Hierarchical ID-based
cryptography’, in Zheng, Y. (Ed.): ASIACRYPT, Lecture
Notes in Computer Science, Springer, Vol. 2501, pp.548–566.

Gentry, C., Peikert, C. and Vaikuntanathan, V. (2008) ‘Trapdoors
for hard lattices and new cryptographic constructions’,
in Ladner, R.E. and Dwork, C. (Eds.): STOC, ACM,
pp.197–206.

Hess, F., Smart, N.P. and Vercauteren, F. (2006) ‘The eta
pairing revisited’, IEEE Transactions on Information Theory,
Vol. 52, No. 10, pp.4595–4602.

Hofheinz, D. and Kiltz, E. (2008) ‘Programmable hash functions
and their applications’, in Wagner, D. (Ed.): CRYPTO,
Lecture Notes in Computer Science, Springer, Vol. 5157,
pp.21–38.

Horwitz, J. and Lynn, B. (2002) ‘Toward hierarchical
identity-based encryption’, in Knudsen, L.R. (Ed.):
EUROCRYPT, Lecture Notes in Computer Science, Springer,
Vol. 2332, pp.466–481.

Kiltz, E. and Galindo, D. (2006) ‘Direct chosen-ciphertext secure
identity-based key encapsulation without random oracles’,
in Batten, L.M. and Safavi-Naini, R. (Eds.): Information
Security and Privacy, 11th Australasian Conference, ACISP
2006, Proceedings, Lecture Notes in Computer Science,
Springer, Melbourne, Australia, 3–5 July, Vol. 4058,
pp.336–347.

Kiltz, E. and Galindo, D. (2009) ‘Direct chosen-ciphertext secure
identity-based key encapsulation without random oracles’,
Theor. Comput. Sci., Vol. 410, Nos. 47–49, pp.5093–5111;
Earlier version appeared as Kiltz and Galindo 2006.

Kiltz, E. and Vahlis, Y. (2008) ‘CCA2 secure IBE: standard
model efficiency through authenticated symmetric
encryption’, in Malkin, T. (Ed.): CT-RSA, Lecture Notes in
Computer Science, Springer, Vol. 4964, pp.221–238.

Practical hybrid (hierarchical) identity-based encryption schemes 83

Kurosawa, K. and Desmedt, Y. (2004) ‘A new paradigm
of hybrid encryption scheme’, in Franklin, M.K. (Ed.):
Advances in Cryptology – CRYPTO 2004, 24th Annual
International Cryptology Conference, Proceedings, Lecture
Notes in Computer Science, Springer, Santa Barbara,
California, USA, 15–19 August, Vol. 3152, pp.426–442.

Lee, E., Lee, H-S. and Park, C-M. (2009) ‘Efficient and
generalized pairing computation on abelian varieties’, IEEE
Transactions on Information Theory, Vol. 55, No. 4,
pp.1793–1803.

Lenstra, A.K. and Verheul, E.R. (2001) ‘Selecting cryptographic
key sizes’, J. Cryptology, Vol. 14, No. 4, pp.255–293.

Lewko, A.B. (2012) ‘Tools for simulating features of composite
order bilinear groups in the prime order setting’, in
Pointcheval, D. and Johansson, T. (Eds.): EUROCRYPT,
Lecture Notes in Computer Science, Springer, Vol. 7237,
pp.318–335.

Lewko, A.B. and Waters, B. (2010) ‘New techniques for
dual system encryption and fully secure HIBE with short
ciphertexts’, in Micciancio, D. (Ed.): TCC, Lecture Notes in
Computer Science, Springer, Vol. 5978, pp.455–479.

Lewko, A.B. and Waters, B. (2011) ‘Unbounded HIBE
and attribute-based encryption’, in Paterson, K.G. (Ed.):
EUROCRYPT, Lecture Notes in Computer Science, Springer,
Vol. 6632, pp.547–567.

Motwani, R. and Raghavan, P. (1995) Randomized Algorithms,
Cambridge University Press, USA.

Naccache, D. (2007) ‘Secure and practical identity-based
encryption’, IET Information Security, Vol. 1, No. 2,
pp.59–64.

Paterson, K.G. and Schuldt, J.C.N. (2006) ‘Efficient
identity-based signatures secure in the standard model’,
in Batten, L.M. and Safavi-Naini, R. (Eds.): Information
Security and Privacy, 11th Australasian Conference, ACISP
2006, Proceedings, Lecture Notes in Computer Science,
Springer, Melbourne, Australia, 3–5 July, Vol. 4058,
pp.207–222.

Ramanna, S.C., Chatterjee, S. and Sarkar, P. (2012) ‘Variants of
Waters’ dual system primitives using asymmetric pairings
– (extended abstract)’, in Fischlin, M., Buchmann, J. and
Manulis, M. (Eds.): Public Key Cryptography, Lecture Notes
in Computer Science, Springer, Vol. 7293, pp.298–315.

Rogaway, P. (2004) ‘Efficient instantiations of tweakable
blockciphers and refinements to modes OCB and PMAC’,
in Lee, P.J. (Ed.): ASIACRYPT, Lecture Notes in Computer
Science, Springer, Vol. 3329, pp.16–31.

Rogaway, P. (2006) ‘Formalizing human ignorance’, in
Nguyen, P.Q. (Ed.): VIETCRYPT, Lecture Notes in Computer
Science, Springer, Vol. 4341, pp.211–228.

Sarkar, P. (2010) ‘Pseudo-random functions and parallelizable
modes of operations of a block cipher’, IEEE Transactions
on Information Theory, Vol. 56, No. 8, pp.4025–4037.

Sarkar, P. and Chatterjee, S. (2007) ‘Construction of a hybrid
hibe protocol secure against adaptive attacks’, in Susilo, W.,
Liu, J.K. and Mu, Y. (Eds.): ProvSec, Lecture Notes in
Computer Science, Springer, Vol. 4784, pp.51–67.

Shamir, A. (1984) ‘Identity-based cryptosystems and signature
schemes’, in Blakley, G.R. and Chaum, D. (Eds.): CRYPTO,
Lecture Notes in Computer Science, Springer, Vol. 196,
pp.47–53.

Shi, E. and Waters, B. (2008) ‘Delegating capabilities in
predicate encryption systems’, in Aceto, L., Damgård,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.
and Walukiewicz, I. (Eds.): ICALP (2), Lecture Notes in
Computer Science, Springer, Vol. 5126, pp.560–578.

Shoup, V. (2004) ‘Sequences of games: a tool for taming
complexity in security proofs’, Cryptology ePrint Archive,
Report 2004/332.

Smart, N.P. and Vercauteren, F. (2007) ‘On computable
isomorphisms in efficient asymmetric pairing-based systems’,
Discrete Applied Mathematics, Vol. 155, No. 4, pp.538–547.

Vercauteren, F. (2010) ‘Optimal pairings’, IEEE Transactions on
Information Theory, Vol. 56, No. 1, pp.455–461.

Waters, B. (2005) ‘Efficient identity-based encryption without
random oracles’, in Cramer, R. (Ed.): Advances in
Cryptology – EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, Lecture Notes in Computer
Science, Aarhus, Denmark, Springer, 22–26 May, Vol. 3494,
pp.114–127.

Waters, B. (2009) ‘Dual system encryption: realizing fully
secure IBE and HIBE under simple assumptions’, in
Halevi, S. (Ed.): CRYPTO, Lecture Notes in Computer
Science, Springer, Vol. 5677, pp.619–636.

Notes
1 Parts of the paper have appeared in different and abridged forms

in Chatterjee and Sarkar (2005, 2006a) and
Sarkar and Chatterjee (2007).

2 Including the versions of the schemes in our conference papers
upon which this work is based.

3 We remark that a similar reduction of the computational cost in
key generation is possible in the IBE version of HIBE-1.
However, there is no associated reduction in the size of the
public parameter as U ′

1 and the Uis are required for the
encryption also.

